A Recognition-Molecule-Free Photoelectrochemical Sensor Based on Ti3C2/TiO2 Heterostructure for Monitoring of Dopamine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of Ti3C2/TiO2 Composites
2.3. Preparation of PEC Sensor
3. Results and Discussion
3.1. Characterization of Ti3C2/TiO2 Composites
3.2. Photoelectrochemical Properties
3.3. PEC Sensor for DA Detection
3.4. Selectivity and Stability of the PEC Sensor
3.5. Real Samples Analysis
3.6. PEC Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Howe, M.W.; Tierney, P.L.; Sandberg, S.G.; Phillips, P.E.M.; Graybiel, A.M. Prolonged dopamine signalling in striatum signals proximity and value of distant rewards. Nature 2013, 500, 575–579. [Google Scholar] [CrossRef] [PubMed]
- Wise, R.A. Dopamine, learning and motivation. Nat. Rev. Neurosci. 2004, 5, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Berke, J.D. What does dopamine mean? Nat. Neurosci. 2018, 21, 787–793. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.Q.; Zheng, N.; Chen, S.F.; Ma, Q. Fluorescence detection of dopamine based on nitrogen-doped graphene quantum dots and visible paper-based test strips. Anal. Methods 2017, 9, 2246–2251. [Google Scholar] [CrossRef]
- Abbas, Y.; Akhtar, N.; Ghaffar, S.; Al-Sulami, A.I.; Asad, M.; Mazhar, M.E.; Zafar, F.; Hayat, A.; Wu, Z. Cyclophosphazene Intrinsically Derived Heteroatom (S, N, P, O)-Doped Carbon Nanoplates for Ultrasensitive Monitoring of Dopamine from Chicken Samples. Biosensor 2022, 12, 1106. [Google Scholar] [CrossRef]
- Gao, B.W.; Zhao, X.; Liang, Z.S.; Wu, Z.F.; Wang, W.; Han, D.X.; Niu, L. CdS/TiO2 nanocomposite-based photoelectrochemical sensor for a sensitive determination of nitrite in principle of etching reaction. Anal. Chem. 2021, 93, 820–827. [Google Scholar] [CrossRef]
- Han, F.J.; Song, Z.Q.; Xu, J.N.; Dai, M.J.; Luo, S.L.; Han, D.X.; Niu, L.; Wang, Z.X. Oxidized titanium carbide MXene-enabled photoelectrochemical sensor for quantifying synergistic interaction of ascorbic acid based antioxidants system. Biosens. Bioelectron. 2021, 177, 112978. [Google Scholar] [CrossRef]
- Wang, L.N.; Liu, Z.B.; Wang, D.D.; Ni, S.; Han, D.X.; Wang, W.; Niu, L. Tailoring heterostructured Bi2MoO6/Bi2S3 nanobelts for highly selective photoelectrochemical analysis of gallic acid at drug level. Biosens. Bioelectron. 2017, 94, 107–114. [Google Scholar] [CrossRef]
- Zhou, M.; Huang, H.; Zhao, X.; Cheng, Z.; Deng, W.; Tan, Y.; Xie, Q. A novel signaling strategy for an ultrasensitive photoelectrochemical immunoassay based on electro-fenton degradation of liposomes on a photoelectrode. Anal. Chem. 2022, 94, 13913–13920. [Google Scholar] [CrossRef]
- Chen, X.; Mao, S.S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 2007, 107, 2891–2959. [Google Scholar] [CrossRef]
- Rajh, T.; Chen, L.X.; Lukas, K.; Liu, T.; Thurnauer, M.C.; Tiede, D.M. Surface restructuring of nanoparticles: An efficient route for ligand-metal oxide crosstalk. J. Phys. Chem. B 2002, 106, 10543–10552. [Google Scholar] [CrossRef]
- Dimitrijevic, N.M.; Saponjic, Z.V.; Rabatic, B.M.; Rajh, T. Assembly and charge transfer in hybrid TiO2 architectures using biotin-avidin as a connector. J. Am. Chem. Soc. 2005, 127, 1344–1345. [Google Scholar] [CrossRef]
- Tavella, F.; Ampelli, C.; Leonardi, S.G.; Neri, G. Photo-electrochemical sensing of dopamine by a novel porous TiO2 array-modified screen-printed Ti electrode. Sensors 2018, 18, 3566. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Zhang, Z. Defect-engineered TiO2 nanotube photonic crystals for the fabrication of near-infrared photoelectrochemical sensor. J. Mater. Chem. B 2017, 5, 4883–4889. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, L.; Zhang, N.; Han, D.; Dong, X.; Niu, L. Biomolecule-free, selective detection of o-diphenol and its derivatives with WS2/TiO2-based photoelectrochemical platform. Anal. Chem. 2015, 87, 4844–4850. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Yang, X.; Li, Y.; Yu, H.; Wang, H.; Peng, F. Hybrids of two-dimensional Ti3C2 and TiO2 exposing 001 facets toward enhanced photocatalytic activity. ACS Appl. Mater. Interfaces 2016, 8, 6051–6060. [Google Scholar] [CrossRef]
- Xie, Y.Z.; Wang, Y.; Ma, Y.; Ye, J.S. Photoelectrochemical sensor based on carboxylated graphdiyne co-sensitized TiO2 for sensitive detection of dopamine. Mater. Today Chem. 2022, 26, 101143. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, M.; Gao, P.; Gao, W.; Bian, Z.; Jia, N. Photoelectrochemical sensing of dopamine using gold-TiO2 nanocomposites and visible-light illumination. Microchim. Acta 2019, 186, 326. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Rong, M.; Zhao, T.; Zhao, L.; Wang, Y.; Chen, X. Solar-induced photoelectrochemical sensing for dopamine based on TiO2 nanoparticles on g-C3N4 decorated graphene nanosheets. J. Electroanal. Chem. 2015, 759, 32–37. [Google Scholar] [CrossRef]
- Liu, F.; Zhou, A.; Chen, J.; Jia, J.; Zhou, W.; Wang, L.; Hu, Q. Preparation of Ti3C2 and Ti2C MXenes by fluoride salts etching and methane adsorptive properties. Appl. Surf. Sci. 2017, 416, 781–789. [Google Scholar] [CrossRef]
- Babak, A.; Xie, Y.; Majid, B.; Lu, J.; Brian, C.H.; Lars, H.; Paul, R.C.K.; Yury, G.; Michel, W.B. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 2015, 9, 9507–9516. [Google Scholar]
- Sun, B.; Qiu, P.; Liang, Z.; Xue, Y.; Zhang, X.; Yang, L.; Cui, H.; Tian, J. The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis. Chem. Eng. J. 2021, 406, 127177. [Google Scholar] [CrossRef]
- Sun, B.; Tao, F.; Huang, Z.; Yan, W.; Zhang, Y.; Dong, X.; Wu, Y.; Zhou, G. Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity. Appl. Surf. Sci. 2021, 535, 147354. [Google Scholar] [CrossRef]
- Grzegórska, A.; Głuchowski, P.; Karczewski, J.; Ryl, J.; Wysocka, I.; Siuzdak, K.; Trykowski, G.; Grochowska, K.; Zielińska-Jurek, A. Enhanced photocatalytic activity of accordion-like layered Ti3C2 (MXene) coupled with Fe-modified decahedral anatase particles exposing {101} and {001} facets. Chem. Eng. J. 2021, 426, 130801. [Google Scholar] [CrossRef]
- Wu, Z.; Fu, W.; Xu, H.; Zheng, R.; Han, F.; Liang, Z.; Han, D.; Han, D.; Li, F.; Niu, L. A simple preparation method of in situ oxidized titanium carbide MXene for photocatalytic degradation of catechol. New J. Chem. 2022, 46, 9364–9371. [Google Scholar] [CrossRef]
- Chen, Y.; Li, X.; Cai, G.; Li, M.; Tang, D. In situ formation of (001)TiO2/Ti3C2 heterojunctions for enhanced photoelectrochemical detection of dopamine. Electrochem. Commun. 2021, 125, 106987. [Google Scholar] [CrossRef]
- Naguib, M.; Mashtalir, O.; Lukatskaya, M.R.; Dyatkin, B.; Zhang, C.; Presser, V.; Gogotsi, Y.; Barsoum, M.W. One-step synthesis of nanocrystalline transition metal oxides on thin sheets of disordered graphitic carbon by oxidation of MXenes. Chem. Commun. 2014, 50, 7420–7423. [Google Scholar] [CrossRef]
- Swamy, V.; Kuznetsov, A.; Dubrovinsky, L.S.; Caruso, R.A.; Shchukin, D.G.; Muddle, B.C. Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase TiO2. Phys. Rev. B 2005, 71, 184302. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Lu, G.; Shi, G.; Wang, Y.; Wang, R.; Xie, X.; Sun, J. In-situ preparation of Ti3C2/Ti3+-TiO2 composites with mosaic structures for the adsorption and Photo-degradation of flowing acetaldehyde under visible light. Appl. Surf. Sci. 2020, 531, 147101. [Google Scholar] [CrossRef]
- Ahmed, B.; Anjum, D.H.; Hedhili, M.N.; Gogotsi, Y.; Alshareef, H.N. H2O2 assisted room temperature oxidation of Ti2C MXene for Li-ion battery anodes. Nanoscale 2016, 8, 7580–7587. [Google Scholar] [CrossRef]
- Zhu, J.; Tang, Y.; Yang, C.; Wang, F.; Cao, M. Composites of TiO2 nanoparticles deposited on Ti3C2 MXene nanosheets with enhanced electrochemical performance. J. Electrochem. Soc. 2016, 163, A785–A791. [Google Scholar] [CrossRef]
- Pradhan, T.; Jung, H.S.; Jang, J.H.; Kim, T.W.; Kang, C.; Kim, J.S. Chemical sensing of neurotransmitters. Chem. Soc. Rev. 2014, 43, 4684–4713. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Liu, Y.; Dong, S.; Ye, Z.; Guo, Y. One-step hydrothermal synthesis of a TiO2-Ti3C2Tx nanocomposite with small sized TiO2 nanoparticles. Ceram. Int. 2017, 43, 11065–11070. [Google Scholar] [CrossRef]
- Xin, Y.; Li, Z.; Wu, W.; Fu, B.; Wu, H.; Zhang, Z. Recognition unit-free and self-cleaning photoelectrochemical sensing platform on TiO2 nanotube photonic crystals for sensitive and selective detection of dopamine release from mouse brain. Biosens. Bioelectron. 2017, 87, 396–403. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, D.; Dong, S.; Qiao, J.; Zeng, Z.; Shao, S. A visible-light-driven photoelectrochemical sensing platform based on the BiVO4/FeOOH photoanode for dopamine detection. Electrochim. Acta 2022, 414, 140207. [Google Scholar] [CrossRef]
- Wang, C.; Chen, J.; Zhang, L.; Yang, Y.; Huang, M.; Chen, C.; Li, C.; Xie, Y.; Zhao, P.; Fei, J. An ultra-sensitive dopamine photoelectrochemical sensing platform based on two-dimensional Zn carbon nanosheets, hollow Cu2O and CdTe QDs composite films. Carbon 2022, 198, 101–109. [Google Scholar] [CrossRef]
- Peng, J.; Li, X.; Liu, Y.; Zhuge, W.; Zhang, C.; Huang, Y. Photoelectrochemical sensor based on zinc phthalocyanine semiconducting polymer dots for ultrasensitive detection of dopamine. Sens. Actuators B Chem. 2022, 360, 131619. [Google Scholar] [CrossRef]
Analyte | Added (µM) | Found (µM) | Recovery (%) | RSD (%) (n = 3) |
---|---|---|---|---|
Human Blood serum | 0 | Not detection | - | - |
0.50 | 0.51 | 102.0 | 4.2 | |
5 | 4.93 | 98.6 | 2.7 | |
50 | 50.6 | 101.2 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Han, F.; Wang, T.; Guan, L.; Liang, Z.; Han, D.; Niu, L. A Recognition-Molecule-Free Photoelectrochemical Sensor Based on Ti3C2/TiO2 Heterostructure for Monitoring of Dopamine. Biosensors 2023, 13, 526. https://doi.org/10.3390/bios13050526
Wu Z, Han F, Wang T, Guan L, Liang Z, Han D, Niu L. A Recognition-Molecule-Free Photoelectrochemical Sensor Based on Ti3C2/TiO2 Heterostructure for Monitoring of Dopamine. Biosensors. 2023; 13(5):526. https://doi.org/10.3390/bios13050526
Chicago/Turabian StyleWu, Zhifang, Fangjie Han, Tianqi Wang, Liwei Guan, Zhishan Liang, Dongxue Han, and Li Niu. 2023. "A Recognition-Molecule-Free Photoelectrochemical Sensor Based on Ti3C2/TiO2 Heterostructure for Monitoring of Dopamine" Biosensors 13, no. 5: 526. https://doi.org/10.3390/bios13050526
APA StyleWu, Z., Han, F., Wang, T., Guan, L., Liang, Z., Han, D., & Niu, L. (2023). A Recognition-Molecule-Free Photoelectrochemical Sensor Based on Ti3C2/TiO2 Heterostructure for Monitoring of Dopamine. Biosensors, 13(5), 526. https://doi.org/10.3390/bios13050526