ZnO-Based Electrochemical Immunosensor to Assess Vaccine-Induced Antibody-Mediated Immunity against Wild-Type and Gamma SARS-CoV-2 Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Human Serum Samples
2.3. Biosensor Construction
2.4. Morphological and Spectroscopic Characterizations
2.5. Electrochemical Measurements
2.6. Enzyme-Linked Immunosorbent Assay (ELISA) Assay
2.7. Statistical Analysis
3. Results and Discussion
3.1. Detection of Anti-S Protein Antibodies from Individuals Vaccinated with ChAdOx1-S (Oxford–AstraZeneca) and BNT162b2 (Pfizer–BioNTech) Using the FTO-ZnONRs/Spike WT Immunosensor
3.2. Antibody Responses Using the Adapted P.1 Spike ZnONRs Immunosensor
3.2.1. Morphological and Spectroscopic Characterization
3.2.2. Calibration Curve of the FTO-ZnONRS/Spike P.1 (Gamma Variant) Immunosensor
3.2.3. Detection of Antibody Responses from Vaccinated Individuals Using the P.1 Strain (Gamma Variant) Adapted Immunosensor
3.2.4. FTO-ZnONRs/Spike WT and FTO-ZnONRs/Spike P.1 Immunosensor Performance Analysis
3.2.5. Correlation of Anti-S Protein Antibody Levels Results by the WT Spike ZnONRs and P.1 Spike ZnONRs Immunosensors
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
DPV | Differential pulse voltammetry |
FTO | Fluorine-doped tin oxide |
OPOCT | Optofluidic point-of-care testing fluorescence |
P.1 S protein | SARS-CoV-2 Gamma variant spike protein |
SPR | Surface plasmon resonance |
S protein | SARS-CoV-2 spike protein |
WT S protein | SARS-CoV-2 wild-type spike protein |
WT S protein peptide | SARS-CoV-2 wild-type spike protein peptide |
WT S protein RBD | SARS-CoV-2 receptor binding domain of wild-type spike protein |
ZnONRs | Zinc oxide nanorods |
References
- Harvey, W.T.; Carabelli, A.M.; Jackson, B.; Gupta, R.K.; Thomson, E.C.; Harrison, E.M.; Ludden, C.; Reeve, R.; Rambaut, A.; Peacock, S.J.; et al. SARS-CoV-2 Variants, Spike Mutations and Immune Escape. Nat. Rev. Microbiol. 2021, 19, 409–424. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Wu, J.; Nie, J.; Zhang, L.; Hao, H.; Liu, S.; Zhao, C.; Zhang, Q.; Liu, H.; Nie, L.; et al. The Impact of Mutations in SARS-CoV-2 Spike on Viral Infectivity and Antigenicity. Cell 2020, 182, 1284–1294.e9. [Google Scholar] [CrossRef]
- López-Cortés, G.I.; Palacios-Pérez, M.; Veledíaz, H.F.; Hernández-Aguilar, M.; López-Hernández, G.R.; Zamudio, G.S.; José, M.V. The Spike Protein of SARS-CoV-2 Is Adapting Because of Selective Pressures. Vaccines 2022, 10, 864. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, J.R.; Ruiz, C.M.R.; Machado, R.R.G.; Magawa, J.Y.; Daher, I.P.; Urbanski, A.H.; Schmitz, G.J.H.; Arcuri, H.A.; Ferreira, M.A.; Sasahara, G.L.; et al. Immunodominant antibody responses directed to SARS-CoV-2 hotspot mutation sites and risk of immune escape. Front. Immunol. 2023, 13, 7894. [Google Scholar] [CrossRef]
- Voysey, M.; Clemens, S.A.C.; Madhi, S.A.; Weckx, L.Y.; Folegatti, P.M.; Aley, P.K.; Angus, B.; Baillie, V.L.; Barnabas, S.L.; Bhorat, Q.E.; et al. Safety and Efficacy of the ChAdOx1 NCoV-19 Vaccine (AZD1222) against SARS-CoV-2: An Interim Analysis of Four Randomised Controlled Trials in Brazil, South Africa, and the UK. Lancet 2021, 397, 99–111. [Google Scholar] [CrossRef]
- Sahin, U.; Muik, A.; Vogler, I.; Derhovanessian, E.; Kranz, L.M.; Vormehr, M.; Quandt, J.; Bidmon, N.; Ulges, A.; Baum, A.; et al. BNT162b2 Vaccine Induces Neutralizing Antibodies and Poly-Specific T Cells in Humans. Nature 2021, 595, 572–577. [Google Scholar] [CrossRef]
- Castro, A.C.H.; Bezerra, Í.R.S.; Pascon, A.M.; Silva, G.H.; Philot, E.A.; Oliveira, V.L.; Mancini, R.S.N.; Schleder, G.R.; Castro, C.E.; Carvalho, L.R.S.; et al. Modular Label-Free Electrochemical Biosensor Loading Nature-Inspired Peptide toward the Widespread Use of COVID-19 Antibody Tests. ACS Nano 2022, 16, 14239–14253. [Google Scholar] [CrossRef] [PubMed]
- Elledge, S.K.; Zhou, X.X.; Byrnes, J.R.; Martinko, A.J.; Lui, I.; Pance, K.; Lim, S.A.; Glasgow, J.E.; Glasgow, A.A.; Turcios, K.; et al. Engineering Luminescent Biosensors for Point-of-Care SARS-CoV-2 Antibody Detection. Nat. Biotechnol. 2021, 39, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Basso, C.R.; Malossi, C.D.; Haisi, A.; de Albuquerque Pedrosa, V.; Barbosa, A.N.; Grotto, R.T.; Araujo Junior, J.P. Fast and Reliable Detection of SARS-CoV-2 Antibodies Based on Surface Plasmon Resonance. Anal. Methods 2021, 13, 3297–3306. [Google Scholar] [CrossRef]
- Cheng, C.H.; Peng, Y.C.; Lin, S.M.; Yatsuda, H.; Liu, S.H.; Liu, S.J.; Kuo, C.Y.; Wang, R.Y.L. Measurements of Anti-SARS-CoV-2 Antibody Levels after Vaccination Using a SH-SAW Biosensor. Biosensors 2022, 12, 599. [Google Scholar] [CrossRef]
- Schasfoort, R.B.M.; van Weperen, J.; van Amsterdam, M.; Parisot, J.; Hendriks, J.; Koerselman, M.; Karperien, M.; Mentink, A.; Bennink, M.; Krabbe, H.; et al. Presence and Strength of Binding of IgM, IgG and IgA Antibodies against SARS-CoV-2 during CoViD-19 Infection. Biosens. Bioelectron. 2021, 183, 113165. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Li, Y.; Luo, C.; Chen, Y.; Touil, N.; Annaz, H.-E.; Zeng, S.; Dang, T.; Liang, J.; Hu, W.; et al. Novel Nanostructure-Coupled Biosensor Platform for One-Step High-Throughput Quantification of Serum Neutralizing Antibody after COVID-19 Vaccination. Biosens. Bioelectron. 2022, 199, 113868. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Zhang, T.; Luo, T.; Luo, X.; Yan, F.; Tang, W.; Liu, J. Bipolar Silica Nanochannel Array Confined Electrochemiluminescence for Ultrasensitive Detection of SARS-CoV-2 Antibody. Biosens. Bioelectron. 2022, 215, 114563. [Google Scholar] [CrossRef]
- Rahmati, Z.; Roushani, M.; Hosseini, H.; Choobin, H. An Electrochemical Immunosensor Using SARS-CoV-2 Spike Protein-Nickel Hydroxide Nanoparticles Bio-Conjugate Modified SPCE for Ultrasensitive Detection of SARS-CoV-2 Antibodies. Microchem. J. 2021, 170, 106718. [Google Scholar] [CrossRef]
- Naresh, V.; Lee, N. A Review on Biosensors and Recent Development of Nanostructured Materials-Enabled Biosensors. Sensors 2021, 21, 1109. [Google Scholar] [CrossRef]
- Nunez, F.A.; Castro, A.C.H.; de Oliveira, V.L.; Lima, A.C.; Oliveira, J.R.; de Medeiros, G.X.; Sasahara, G.L.; Santos, K.S.; Lanfredi, A.J.C.; Alves, W.A. Electrochemical Immunosensors Based on Zinc Oxide Nanorods for Detection of Antibodies Against SARS-CoV-2 Spike Protein in Convalescent and Vaccinated Individuals. ACS Biomater. Sci. Eng. 2023, 9, 458–473. [Google Scholar] [CrossRef] [PubMed]
- Sadarangani, M.; Marchant, A.; Kollmann, T.R. Immunological mechanisms of vaccine-induced protection against COVID-19 in humans. Nat. Rev. Immunol. 2021, 21, 475–484. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Jesus, J.; Pontes-de-Carvalho, L.C.; Melo, S.M.B.; Alcântara-Neves, N.M.; Dutra, R.F. A Gold Nanoparticle Piezoelectric Immunosensor Using a Recombinant Antigen for Detecting Leishmania Infantum Antibodies in Canine Serum. Biochem. Eng. J. 2016, 110, 43–50. [Google Scholar] [CrossRef]
- Silva, P.M.S.; Lima, A.L.R.; Silva, B.V.M.; Coelho, L.C.B.B.; Dutra, R.F.; Correia, M.T.S. Cratylia Mollis Lectin Nanoelectrode for Differential Diagnostic of Prostate Cancer and Benign Prostatic Hyperplasia Based on Label-Free Detection. Biosens. Bioelectron. 2016, 85, 171–177. [Google Scholar] [CrossRef]
- Ferreira, P.A.B.; Araujo, M.C.M.; Prado, C.M.; de Lima, R.A.; Rodríguez, B.A.G.; Dutra, R.F. An Ultrasensitive Cystatin C Renal Failure Immunosensor Based on a PPy/CNT Electrochemical Capacitor Grafted on Interdigitated Electrode. Colloids Surf. B Biointerfaces 2020, 189, 110834. [Google Scholar] [CrossRef]
- Moore, E.J.; Kreuzer, M.P.; Pravda, M.; Guilbault, G.G. Development of a Rapid Single-Drop Analysis Biosensor for Screening of Phenanthrene in Water Samples. Electroanalysis 2004, 16, 1653–1659. [Google Scholar] [CrossRef]
- Almeida, R.M.; Ferrari, V.C.; Souza, J.S.; Souza, F.L.; Alves, W.A. Tailoring a Zinc Oxide Nanorod Surface by Adding an Earth-Abundant Cocatalyst for Induced Sunlight Water Oxidation. ChemPhysChem 2020, 21, 476–483. [Google Scholar] [CrossRef]
- Bogomolova, A.; Komarova, E.; Reber, K.; Gerasimov, T.; Yavuz, O.; Bhatt, S.; Aldissi, M. Challenges of Electrochemical Impedance Spectroscopy in Protein Biosensing. Anal. Chem. 2009, 81, 3944–3949. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical Impedance Spectroscopy (EIS): Principles, Construction, and Biosensing Applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.M.; Minn, D.; Lim, J.; Lee, K.-D.; Jo, D.H.; Choe, K.-W.; Kim, M.J.; Kim, J.M.; Kim, K.N. Comparison of Antibody Response Elicited by ChAdOx1 and BNT162b2 COVID-19 Vaccine. J. Korean Med. Sci. 2021, 36, 1–13. [Google Scholar] [CrossRef]
- Jantarabenjakul, W.; Chantasrisawad, N.; Puthanakit, T.; Wacharapluesadee, S.; Hirankarn, N.; Ruenjaiman, V.; Paitoonpong, L.; Suwanpimolkul, G.; Torvorapanit, P.; Pradit, R.; et al. Short-Term Immune Response after Inactivated SARS-CoV-2 (CoronaVac®, Sinovac) and ChAdOx1 NCoV-19 (Vaxzevria®, Oxford-AstraZeneca) Vaccinations in Health Care Workers. Asian Pac. J. Allergy Immunol. 2022, 40, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Mok, C.K.P.; Cohen, C.A.; Cheng, S.M.S.; Chen, C.; Kwok, K.O.; Yiu, K.; Chan, T.O.; Bull, M.; Ling, K.C.; Dai, Z.; et al. Comparison of the Immunogenicity of BNT162b2 and CoronaVac COVID-19 Vaccines in Hong Kong. Respirology 2022, 27, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, P.; Curtis, N. Factors That Influence the Immune Response to Vaccination. Clin. Microbiol. Rev. 2019, 32, e00084-18. [Google Scholar] [CrossRef] [Green Version]
- Souza, J.S.; Carvalho, W.M.; Souza, F.L.; Ponce-De-Leon, C.; Bavykin, D.V.; Alves, W.A. Multihierarchical Electrodes Based on Titanate Nanotubes and Zinc Oxide Nanorods for Photoelectrochemical Water Splitting. J. Mater. Chem. A 2016, 4, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Cuazitl, A.; Vazquez-Zapien, G.J.; Sanchez-Brito, M.; Limon-Pacheco, J.H.; Guerrero-Ruiz, M.; Garibay-Gonzalez, F.; Delgado-Macuil, R.J.; de Jesus, M.G.G.; Corona-Perezgrovas, M.A.; Pereyra-Talamantes, A.; et al. ATR-FTIR Spectrum Analysis of Saliva Samples from COVID-19 Positive Patients. Sci. Rep. 2021, 11, 19980. [Google Scholar] [CrossRef]
- Jiang, M.; Dong, T.; Han, C.; Liu, L.; Zhang, T.; Kang, Q.; Wang, P.; Zhou, F. Regenerable and High-Throughput Surface Plasmon Resonance Assay for Rapid Screening of Anti-SARS-CoV-2 Antibody in Serum Samples. Anal. Chim. Acta 2022, 1208, 339830. [Google Scholar] [CrossRef] [PubMed]
- Funari, R.; Chu, K.Y.; Shen, A.Q. Detection of Antibodies against SARS-CoV-2 Spike Protein by Gold Nanospikes in an Opto-Microfluidic Chip. Biosens. Bioelectron. 2020, 169, 112578. [Google Scholar] [CrossRef] [PubMed]
- Yakoh, A.; Pimpitak, U.; Rengpipat, S.; Hirankarn, N.; Chailapakul, O.; Chaiyo, S. Paper-Based Electrochemical Biosensor for Diagnosing COVID-19: Detection of SARS-CoV-2 Antibodies and Antigen. Biosens. Bioelectron. 2021, 176, 112912. [Google Scholar] [CrossRef] [PubMed]
- Qu, J.; Chenier, M.; Zhang, Y.; Xu, C.Q. A Microflow Cytometry-Based Agglutination Immunoassay for Point-of-Care Quantitative Detection of SARS-CoV-2 IgM and IgG. Micromachines 2021, 12, 433. [Google Scholar] [CrossRef]
- Li, J.; Concellón, A.; Yoshinaga, K.; Nelson, Z.; He, Q.; Swager, T.M. Janus Emulsion Biosensors for Anti-SARS-CoV-2 Spike Antibody. ACS Cent. Sci. 2021, 7, 1166–1175. [Google Scholar] [CrossRef] [PubMed]
- Braz, B.A.; Hospinal-Santiani, M.; Martins, G.; Gogola, J.L.; Valenga, M.G.P.; Beirão, B.C.B.; Bergamini, M.F.; Marcolino-Junior, L.H.; Thomaz-Soccol, V.; Soccol, C.R. Gold-Binding Peptide as a Selective Layer for Electrochemical Detection of SARS-CoV-2 Antibodies. Talanta 2023, 257, 124348. [Google Scholar] [CrossRef]
- Braz, B.A.; Hospinal-Santiani, M.; Martins, G.; Pinto, C.S.; Zarbin, A.J.G.; Beirão, B.C.B.; Thomaz-Soccol, V.; Bergamini, M.F.; Marcolino-Junior, L.H.; Soccol, C.R. Graphene-Binding Peptide in Fusion with SARS-CoV-2 Antigen for Electrochemical Immunosensor Construction. Biosensors 2022, 12, 885. [Google Scholar] [CrossRef] [PubMed]
- Peng, R.; Pan, Y.; Li, Z.; Qin, Z.; Rini, J.M.; Liu, X. SPEEDS: A Portable Serological Testing Platform for Rapid Electrochemical Detection of SARS-CoV-2 Antibodies. Biosens. Bioelectron. 2022, 197, 113762. [Google Scholar] [CrossRef]
- Wang, P.; Casner, R.G.; Nair, M.S.; Wang, M.; Yu, J.; Cerutti, G.; Liu, L.; Kwong, P.D.; Huang, Y.; Shapiro, L.; et al. Increased Resistance of SARS-CoV-2 Variant P.1 to Antibody Neutralization. Cell Host Microbe 2021, 29, 747–751. [Google Scholar] [CrossRef]
- van Gils, M.J.; Lavell, A.; van der Straten, K.; Appelman, B.; Bontjer, I.; Poniman, M.; Burger, J.A.; Oomen, M.; Bouhuijs, J.H.; van Vught, L.A.; et al. Antibody Responses against SARS-CoV-2 Variants Induced by Four Different SARS-CoV-2 Vaccines in Health Care Workers in the Netherlands: A Prospective Cohort Study. PLoS Med. 2022, 19, e1003991. [Google Scholar] [CrossRef]
- Hoffmann, M.; Arora, P.; Groß, R.; Seidel, A.; Hörnich, B.F.; Hahn, A.S.; Krüger, N.; Graichen, L.; Hofmann-Winkler, H.; Kempf, A.; et al. SARS-CoV-2 Variants B.1.351 and P.1 Escape from Neutralizing Antibodies. Cell 2021, 184, 2384–2393.e12. [Google Scholar] [CrossRef] [PubMed]
- Zou, K.H.; O’Malley, A.J.; Mauri, L. Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models. Circulation 2007, 115, 654–657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Biorecognition Element | Test Type | Quantitative Range | LOD | References |
---|---|---|---|---|
WT S protein | SPR | 0–100 μg·mL−1 | 50 ng·mL−1 | [31] |
WT S protein peptide | OPOCT biosensor | 0.012–1 μg·mL−1 | 12.5 ng·mL−1 | [32] |
WT S protein RBD | Paper-based biosensor | 1–1000 ng·mL−1 | 0.96 ng·mL−1 | [33] |
WT S protein | Microflow Cytometry | 0–1 mg·mL−1 | 100 ng·mL−1 | [34] |
WT S protein RBD | Fluorescence Microscopy | 200 ng·mL−1 | [35] | |
WT S Protein peptide | DPV technique | 0.075–15 μg·mL−1 | 75 ng·mL−1 | [36] |
WT S protein peptide | DPV technique | 0.08–5.2 μg·mL−1 | 0.77 μg·mL−1 | [37] |
WT S protein RBD | Chronoamperometry method | 0.01–60 μg·mL−1 | 10.1 ng·mL−1 | [38] |
WT S protein | Impedimetric measurements | 200–1200 ng·mL−1 | 19.96 ng·mL−1 | [16] |
P.1 S protein | Impedimetric measurements | 200–1200 ng·mL−1 | 52.55 ng·mL −1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunez, F.A.; Castro, A.C.H.; Daher, I.P.; Cunha-Neto, E.; Kalil, J.; Boscardin, S.B.; Lanfredi, A.J.C.; Oliveira, V.L.d.; Alves, W.A. ZnO-Based Electrochemical Immunosensor to Assess Vaccine-Induced Antibody-Mediated Immunity against Wild-Type and Gamma SARS-CoV-2 Strains. Biosensors 2023, 13, 371. https://doi.org/10.3390/bios13030371
Nunez FA, Castro ACH, Daher IP, Cunha-Neto E, Kalil J, Boscardin SB, Lanfredi AJC, Oliveira VLd, Alves WA. ZnO-Based Electrochemical Immunosensor to Assess Vaccine-Induced Antibody-Mediated Immunity against Wild-Type and Gamma SARS-CoV-2 Strains. Biosensors. 2023; 13(3):371. https://doi.org/10.3390/bios13030371
Chicago/Turabian StyleNunez, Freddy A., Ana C. H. Castro, Isabela P. Daher, Edecio Cunha-Neto, Jorge Kalil, Silvia B. Boscardin, Alexandre J. C. Lanfredi, Vivian L. de Oliveira, and Wendel A. Alves. 2023. "ZnO-Based Electrochemical Immunosensor to Assess Vaccine-Induced Antibody-Mediated Immunity against Wild-Type and Gamma SARS-CoV-2 Strains" Biosensors 13, no. 3: 371. https://doi.org/10.3390/bios13030371
APA StyleNunez, F. A., Castro, A. C. H., Daher, I. P., Cunha-Neto, E., Kalil, J., Boscardin, S. B., Lanfredi, A. J. C., Oliveira, V. L. d., & Alves, W. A. (2023). ZnO-Based Electrochemical Immunosensor to Assess Vaccine-Induced Antibody-Mediated Immunity against Wild-Type and Gamma SARS-CoV-2 Strains. Biosensors, 13(3), 371. https://doi.org/10.3390/bios13030371