Robust Detection of Cancer Markers in Human Serums Using All-Dielectric Metasurface Biosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. All-Dielectric Metasurface Biosensors
2.2. Biomolecules and Reagents
2.3. MF Protocols and FL Detection
3. Results
3.1. Detections of Individual Cancer Markers
3.1.1. PSA
3.1.2. CEA
3.2. Coexisting Target Detections
4. Discussion
5. Conclusions
6. Patents
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Baynes, J.W.; Dominiczak, M.H. Medical Biochemistry, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2014; Chapter 4. [Google Scholar]
- Clinical Information. Available online: https://www.ncc.go.jp/jp/ncch/division/clinical_trial/info/clinical_trial/professional/kijunchi_ichiran_2108.pdf (accessed on 14 February 2023).
- Morote, J.; Raventós, C.X.; Lorente, J.A.; Lopez-Pacios, M.A.; Encabo, G.; de Torres, I.; Andreu, J. Measurement of free PSA in the diagnosis and staging of prostate cancer. Int. J. Cancer 1997, 71, 756–759. [Google Scholar] [CrossRef]
- Takehara, K.; Takehara, Y.; Ueyama, S.; Kobayashi, T. A case of stercoral colitis with marked elevation of serum carcinoembryonic antigen. Clin. Case Rep. 2020, 8, 734–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ushigome, M.; Shimada, H.; Miura, Y.; Yoshida, K.; Kaneko, T.; Koda, T.; Nagashima, Y.; Suzuki, T.; Kagami, S.; Funahashi, K. Changing pattern of tumor markers in recurrent colorectal cancer patients before surgery to recurrence: Serum p53 antibodies, CA19-9 and CEA. Int. J. Clin. Oncol. 2020, 25, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Shu, H.; Wen, W.; Xiong, H.; Zhang, X.; Wang, S. Novel electrochemical aptamer biosensor based on gold nanoparticles signal amplification for the detection of carcinoembryonic antigen. Electrochem. Commun. 2013, 37, 15–19. [Google Scholar] [CrossRef]
- Tang, C.K.; Vaze, A.; Rusling, J.F. Paper-based electrochemical immunoassay for rapid, inexpensive cancer biomarker protein detection. Anal. Methods 2014, 6, 8878–8881. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Chu, C.; Shen, L.; Deng, W.; Yan, M.; Ge, S.; Yu, J.; Song, X. An ultrasensitive electrochemical immunosensor based on the catalytical activity of MoS2-Au composite using Ag nanospheres as labels. Sens. Actuat. B Chem. 2015, 206, 30–36. [Google Scholar] [CrossRef]
- Li, X.; Yu, M.; Chen, Z.; Lin, X.; Wu, Q. A sensor for detection of carcinoembryonic antigen based on the polyaniline-Au nanoparticles and gap-based interdigitated electrode. Sens. Actuat. B Chem. 2017, 239, 874–882. [Google Scholar] [CrossRef]
- Miao, P.; Jiang, Y.; Wang, Y.; Yin, J.; Tang, Y. An electrochemical approach capable of prostate specific antigen assay in human serum based on exonuclease-aided target recycling amplification. Sens. Actuat. B Chem. 2018, 257, 1021–1026. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Chen, H.; Xu, H.; Wang, W.; Bai, L. Sensitive and simultaneous detection of tumor markers assisted by novel functional polymer brush/Au nanoparticles composite. Sens. Actuat. B Chem. 2018, 258, 998–1007. [Google Scholar] [CrossRef]
- Wang, Q.L.; Cui, H.F.; Song, X.; Fan, S.F.; Chen, L.L.; Li, M.M.; Li, Z.Y. A label-free and lectin-based sandwich aptasensor for detection of carcinoembryonic antigen. Sens. Actuat. B Chem. 2018, 260, 48–54. [Google Scholar] [CrossRef]
- Yavas, O.; Svedendahl, M.; Dobosz, P.; Sanz, V.; Quidant, R. On-a-chip Biosensing Based on All-Dielectric Nanoresonators. Nano Lett. 2017, 17, 4421–4426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Tao, F.; Zhu, J.; Lin, S.; Wang, Z.; Wang, X.; Ou, J.Y.; Li, Y.; Liu, Q.H. Portable tumor biosensing of serum by plasmonic biochips in combination with nanoimprint and microfluid. Nanophotonics 2019, 8, 307–316. [Google Scholar] [CrossRef]
- Akama, K.; Iwanaga, N.; Yamawaki, K.; Okuda, M.; Jain, K.; Ueno, H.; Soga, N.; Minagawa, Y.; Noji, H. Wash- and Amplification-Free Digital Immunoassay Based on Single-Particle Motion Analysis. ACS Nano 2019, 13, 13116–13126. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Wang, Z.; Lin, S.; Jiang, S.; Liu, X.; Guo, S. Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens. Bioelectron. 2020, 150, 111905. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, T.; Pourhassan-Moghaddam, M.; Shirdel, B.; Baradaran, B.; Morales-Narváez, E.; Golmohammadi, H. On-Site Detection of Carcinoembryonic Antigen in Human Serum. Biosensors 2021, 11, 392. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, M. All-Dielectric Metasurface Fluorescence Biosensors for High-Sensitivity Antibody/Antigen Detection. ACS Nano 2020, 14, 17458–17467. [Google Scholar] [CrossRef]
- Iwanaga, M. High-Sensitivity High-Throughput Detection of Nucleic-Acid Targets on Metasurface Fluorescence Biosensors. Biosensors 2021, 11, 33. [Google Scholar] [CrossRef]
- Iwanaga, M. Rapid Detection of Attomolar SARS-CoV-2 Nucleic Acids in All-Dielectric Metasurface Biosensors. Biosensors 2022, 12, 987. [Google Scholar] [CrossRef]
- Iwanaga, M.; Tangkawsakul, W. Two-Way Detection of COVID-19 Spike Protein and Antibody Using All-Dielectric Metasurface Fluorescence Sensors. Biosensors 2022, 12, 981. [Google Scholar] [CrossRef]
- Iwanaga, M. Highly sensitive wide-range target fluorescence biosensors of high-emittance metasurfaces. Biosens. Bioelectron. 2021, 190, 113423. [Google Scholar] [CrossRef]
- Iwanaga, M. All-Dielectric Metasurfaces with High-Fluorescence-Enhancing Capability. Appl. Sci. 2018, 8, 1328. [Google Scholar] [CrossRef] [Green Version]
- Choi, B.; Iwanaga, M.; Miyazaki, H.T.; Sugimoto, Y.; Ohtake, A.; Sakoda, K. Overcoming metal-induced fluorescence quenching on plasmo-photonic metasurfaces coated by a self-assembled monolayer. Chem. Commun. 2015, 51, 11470–11473. [Google Scholar] [CrossRef]
- Iwanaga, M.; Choi, B.; Miyazaki, H.T.; Sugimoto, Y. The artificial control of enhanced optical processes in fluorescent molecules on high-emittance metasurfaces. Nanoscale 2016, 8, 11099–11107. [Google Scholar] [CrossRef] [Green Version]
- Iwanaga, M. Plasmonic Resonators: Fundamentals, Advances, and Applications; Pan Stanford Publishing: Singapore, 2016. [Google Scholar] [CrossRef]
- Choi, B.; Iwanaga, M.; Ochiai, T.; Miyazaki, H.T.; Sugimoto, Y.; Sakoda, K. Subnanomolar fluorescent-molecule sensing by guided resonances on nanoimprinted silicon-on-insulator substrates. Appl. Phys. Lett. 2014, 105, 201106. [Google Scholar] [CrossRef]
- ImageJ Official Site. Available online: https://imagej.nih.gov/ij/ (accessed on 22 February 2023).
- Hill, A.V. The possible effects of the aggregation of the molecules of hæmoglobin on its dissociation curves. Proc. Physiol. Soc. 1910, 40, iv–vii. [Google Scholar]
- Neubig, R.R.; Spedding, M.; Kenakin, T.; Christopoulos, A. International Union of Pharmacology Committee on Receptor Nomenclature and Drug Classification. XXXVIII. Update on Terms and Symbols in Quantitative Pharmacology. Pharmacol. Rev. 2003, 55, 597–606. [Google Scholar] [CrossRef] [Green Version]
- Gesztelyi, R.; Zsuga, J.; Kemeny-Beke, A.; Varga, B.; Juhasz, B.; Tosaki, A. The Hill equation and the origin of quantitative pharmacology. Arch. Hist. Exact Sci. 2012, 66, 427–438. [Google Scholar] [CrossRef]
- Irrera, A.; Leonardi, A.A.; Di Franco, C.; Lo Faro, M.J.; Palazzo, G.; D’Andrea, C.; Manoli, K.; Franzò, G.; Musumeci, P.; Fazio, B.; et al. New Generation of Ultrasensitive Label-Free Optical Si Nanowire-Based Biosensors. ACS Photonics 2018, 5, 471–479. [Google Scholar] [CrossRef]
- Giljohann, D.A.; Mirkin, C.A. Drivers of biodiagnostic development. Nature 2009, 462, 461–464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, J.; Du, L.; Zou, L.; Zou, Y.; Hu, N.; Wang, P. An ultrasensitive electrochemical immunosensor for carcinoembryonic antigen detection based on staphylococcal protein A–Au nanoparticle modified gold electrode. Sens. Actuat. B Chem. 2014, 197, 220–227. [Google Scholar] [CrossRef]
- Tseng, M.L.; Jahani, Y.; Leitis, A.; Altug, H. Dielectric Metasurfaces Enabling Advanced Optical Biosensors. ACS Photonics 2021, 8, 47–60. [Google Scholar] [CrossRef]
- Wang, J.; Maier, S.A.; Tittl, A. Trends in Nanophotonics-Enabled Optofluidic Biosensors. Adv. Opt. Mater. 2022, 10, 2102366. [Google Scholar] [CrossRef]
- Qin, J.; Jiang, S.; Wang, Z.; Cheng, X.; Li, B.; Shi, Y.; Tsai, D.P.; Liu, A.Q.; Huang, W.; Zhu, W. Metasurface Micro/Nano-Optical Sensors: Principles and Applications. ACS Nano 2022, 16, 11598–11618. [Google Scholar] [CrossRef]
- Sun, S.; Wu, L.; Geng, Z.; Shum, P.P.; Ma, X.; Wang, J. Refractometric Imaging and Biodetection Empowered by Nanophotonics. Laser Photon. Rev. 2023. [Google Scholar] [CrossRef]
Target | Method | Feature | Dynamic Range | Buffer | Reference |
---|---|---|---|---|---|
(ng/mL) | |||||
PSA | EC | flow on paper | 0.063–0.25 | Serum | [7] |
PSA | EC | MoS-Au | 15–110 | Serum | [8] |
PSA | EC | Ag NP | 2–8 | Serum | [10] |
PSA | EC | polymer brush-Au NP | 1–100 | Serum | [11] |
PSA | microwell | digital FL | 0.002–0.2 | Serum | [15] |
PSA | AD-MSB | resonance shift | 1–8 | Serum | [13] |
PSA | AD-MSB | FL | 0.16–1000 | Serum | This work |
CEA | EC | aptamer | 100–140 | Serum | [6] |
CEA | EC | polyaniline-Au | 1–50 | Serum | [9] |
CEA | EC | aptamer | 5–40 | Serum | [12] |
CEA | gold PlC | resonance shift | 3–18 | Serum | [14] |
CEA | gold PlC | resonance shift | 10–87 | Serum | [16] |
CEA | gold NP | color change | 1–30 | Serum | [17] |
CEA | AD-MSB | FL | 0.002–25 | Serum | This work |
CEA | ELISA | Absorbance | 1–50 | NS | Figure A1b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwanaga, M. Robust Detection of Cancer Markers in Human Serums Using All-Dielectric Metasurface Biosensors. Biosensors 2023, 13, 377. https://doi.org/10.3390/bios13030377
Iwanaga M. Robust Detection of Cancer Markers in Human Serums Using All-Dielectric Metasurface Biosensors. Biosensors. 2023; 13(3):377. https://doi.org/10.3390/bios13030377
Chicago/Turabian StyleIwanaga, Masanobu. 2023. "Robust Detection of Cancer Markers in Human Serums Using All-Dielectric Metasurface Biosensors" Biosensors 13, no. 3: 377. https://doi.org/10.3390/bios13030377
APA StyleIwanaga, M. (2023). Robust Detection of Cancer Markers in Human Serums Using All-Dielectric Metasurface Biosensors. Biosensors, 13(3), 377. https://doi.org/10.3390/bios13030377