Biophysical Sensors Based on Triboelectric Nanogenerators
Abstract
:1. Introduction
2. Working Principles of TENGs
3. Current Progress in TENG-Based Biophysical Sensors and Their Medical Application
3.1. Current Progress in TENG-Based Biophysical Sensors
3.1.1. Structure Design
3.1.2. Materials Selection
3.1.3. Surface Modification
3.2. Medical Application of Wearable TENG-Based Biophysical Sensing System
3.2.1. Respiratory Status Monitoring
3.2.2. Cardiovascular Disease Monitoring and Treatment
3.2.3. Human Rehabilitation
3.2.4. Application of Textile TENG-Based Biophysical Sensing Systems
3.2.5. Other Potential Applications for the Wearable TENG-Based Biophysical Sensing System
3.3. Application of Implantable TENG for Biophysical Sensing System
3.3.1. Cardiac Pacemaker
3.3.2. Neural Prosthesis
3.3.3. Cell Maturation
3.3.4. Other Implantable Applications
3.4. Application of TENGs Drives the Third-Party Systems
3.4.1. Cancer Therapy
3.4.2. TENG-Based Electrotherapy
3.4.3. Other TENG-Driven Systems
4. Summary and Perspectives
4.1. Improvement in Durability and Reliability
4.2. Enhancement in Output Performance
4.3. Durability
4.4. Stability
4.5. Degradability
4.6. Intelligence
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tapas, K.; Jinhyoung, P. Highly Sensitive Self-Powered Biomedical Applications Using Triboelectric Nanogenerator. Micromachines 2022, 13, 2065. [Google Scholar]
- Meihua, C.; Yuankai, Z.; Jinyi, L.; Lijie, L.; Yan, Z. Triboelectric nanogenerator and artificial intelligence to promote precision medicine for cancer. Nano Energy 2022, 92, 106783. [Google Scholar]
- Yuhong, X.; Weixiong, Y.; Xiaohui, L.; Yanfei, Y.; Jianping, L.; Jianming, W.; Tinghai, C.; Lin, W.Z. Triboelectric Nanogenerator for Ocean Wave Graded Energy Harvesting and Condition Monitoring. ACS Nano 2021, 15, 16368–16375. [Google Scholar]
- Yuxiang, W.; Yusheng, L.; Yang, Z.; Wei, R.; Yansong, G.; Jiangtao, X.; Li, W.; Xuecheng, Q.; Ying, L.; Guodong, X.; et al. A multi-mode triboelectric nanogenerator for energy harvesting and biomedical monitoring. Nano Energy 2022, 92, 106715. [Google Scholar]
- Lanxin, Y.; Zhihao, M.; Yun, T.; Bo, M.; Zhengchun, P. Progress on Self-Powered Wearable and Implantable Systems Driven by Nanogenerators. Micromachines 2021, 12, 666. [Google Scholar]
- Liu, Y.; Ping, J.; Ying, Y. Recent Progress in 2D-Nanomaterial-Based Triboelectric Nanogenerators. Adv. Funct. Mater. 2021, 31, 2009994. [Google Scholar] [CrossRef]
- Li, T.; Pan, P.; Yang, Z.; Yang, X. Research on PDMS TENG of laser etch 3D structure. J. Mater. Sci. 2022, 57, 6723–6733. [Google Scholar] [CrossRef]
- Kwon, J.-H.; Jeong, J.; Lee, Y.; Biswas, S.; Park, J.-K.; Lee, S.; Lee, D.-W.; Lee, S.; Bae, J.-H.; Kim, H. Importance of Architectural Asymmetry for Improved Triboelectric Nanogenerators with 3D Spacer Fabrics. Macromol. Res. 2021, 29, 443–447. [Google Scholar] [CrossRef]
- Huang, L.-B.; Han, J.-C.; Chen, S.; Sun, Z.; Dai, X.; Ge, P.; Zhao, C.-H.; Zheng, Q.-Q.; Sun, F.-C.; Hao, J. 4D-printed self-recovered triboelectric nanogenerator for energy harvesting and self-powered sensor. Nano Energy 2021, 84, 105873. [Google Scholar] [CrossRef]
- Akshpreet, K.; Ankur, G.; Cuifeng, Y.; Mohsen, R.; Gaurav, S. Wearable Human Motion Monitoring Using Vertical Contact Separation Mode Triboelectric Nanogenerator. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1225, 012031. [Google Scholar]
- Tat, T.; Libanori, A.; Au, C.; Yau, A.; Chen, J. Advances in triboelectric nanogenerators for biomedical sensing. Biosens. Bioelectron. 2020, 171, 112714. [Google Scholar] [CrossRef]
- Sobianin, I.; Psoma, S.D.; Tourlidakis, A. Recent Advances in Energy Harvesting from the Human Body for Biomedical Applications. Energies 2022, 15, 7959. [Google Scholar] [CrossRef]
- Li, J.; Long, Y.; Yang, F.; Wang, X. Respiration-driven triboelectric nanogenerators for biomedical applications. EcoMat 2020, 2, 12045. [Google Scholar] [CrossRef]
- Bagherzadeh, R.; Abrishami, S.; Shirali, A.; Rajabzadeh, A.R. Wearable and flexible electrodes in nanogenerators for energy harvesting, tactile sensors, and electronic textiles: Novel materials, recent advances, and future perspectives. Mater. Today Sustain. 2022, 20, 100233. [Google Scholar] [CrossRef]
- Sophia, S.; Xiao, X.; Xiao, X.; Jun, C. Wearable triboelectric nanogenerators for heart rate monitoring. Chem. Commun. 2021, 57, 5847–5988. [Google Scholar]
- Al-Suhaimi, E.A.; Aljafary, M.A.; Alfareed, T.M.; Alshuyeh, H.A.; Alhamid, G.M.; Sonbol, B.; Almofleh, A.; Alkulaifi, F.M.; Altwayan, R.K.; Alharbi, J.N.; et al. Nanogenerator-Based Sensors for Energy Harvesting From Cardiac Contraction. Front. Energy Res. 2022, 10, 900534. [Google Scholar] [CrossRef]
- Ahmed, A.; Hassan, I.; Elkady, M.F.; Radhi, A.; Jeong, C.K.; Selvaganapathy, P.R.; Zu, J.W.; Ren, S.; Wang, Q.; Kaner, R.B. Integrated Triboelectric Nanogenerators in the Era of the Internet of Things. Adv. Sci. 2019, 6, 1802230. [Google Scholar] [CrossRef]
- Austin, C.; Cameron, U.; Xiao, X.; Xiao, X.; Jun, C. Self-powered environmental monitoring via a triboelectric nanogenerator. Nano Energy 2022, 98, 107282. [Google Scholar]
- Yuanjie, S.; Guorui, C.; Chunxu, C.; Qichen, G.; Guangzhong, X.; Mingliang, Y.; Huiling, T.; Yadong, J.; Jun, C. Self-Powered Respiration Monitoring Enabled By a Triboelectric Nanogenerator. Adv. Mater. 2021, 33, 2101262. [Google Scholar]
- Yiding, S.; Nan, W.; Chaosheng, H.; Lin, W.Z.; Ya, Y. Soft triboelectric nanogenerators for mechanical energy scavenging and self-powered sensors. Nano Energy 2021, 84, 105919. [Google Scholar]
- Minglu, Z.; Zhiran, Y.; Bin, Y.; Chengkuo, L. Making use of nanoenergy from human—Nanogenerator and self-powered sensor enabled sustainable wireless IoT sensory systems. Nano Today 2021, 36, 101016. [Google Scholar]
- Sardo, F.R.; Rayegani, A.; Nazar, A.M.; Balaghiinaloo, M.; Saberian, M.; Mohsan, S.A.H.; Alsharif, M.H.; Cho, H.S. Recent Progress of Triboelectric Nanogenerators for Biomedical Sensors: From Design to Application. Biosensors 2022, 12, 697. [Google Scholar] [CrossRef]
- Cheng, T.; Gao, Q.; Wang, Z.L. The Current Development and Future Outlook of Triboelectric Nanogenerators: A Survey of Literature. Adv. Mater. Technol. 2019, 4, 1800588. [Google Scholar] [CrossRef]
- Chen, X.; Ren, Z.; Han, M.; Wan, J.; Zhang, H. Hybrid energy cells based on triboelectric nanogenerator: From principle to system. Nano Energy 2020, 75, 104980. [Google Scholar] [CrossRef]
- Dharmasena RD, I.G.; Jayawardena KD, G.I.; Mills, C.A.; Deane JH, B.; Anguita, J.V.; Dorey, R.A.; Silva SR, P. Triboelectric nanogenerators: Providing a fundamental framework. Energy Environ. Sci. 2017, 10, 1801–1811. [Google Scholar] [CrossRef]
- Caixia, L.; Yongsheng, Z.; Fengxin, S.; Changjun, J.; Tianming, Z.; Yupeng, M.; Haidong, Y. Research Progress on Triboelectric Nanogenerator for Sports Applications. Energies 2022, 15, 5807. [Google Scholar]
- Yuan, B.; Hongqing, F.; Zhou, L. Theory and applications of high-voltage triboelectric nanogenerators. Cell Rep. Phys. Sci. 2022, 3, 101108. [Google Scholar]
- Zhang, H.; Yao, L.; Quan, L.; Zheng, X. Theories for triboelectric nanogenerators: A comprehensive review. Nanotechnol. Rev. 2020, 9, 610–625. [Google Scholar] [CrossRef]
- Peng, J.; Kang, S.D.; Snyder, G.J. Optimization principles and the figure of merit for triboelectric generators. Sci. Adv. 2017, 3, 8576. [Google Scholar] [CrossRef]
- Dzhardimalieva, G.I.; Yadav, B.C.; Uflyand, I.E.; González, C.M.O.; Kharisov, B.I.; Kharissova, O.V.; García, B.O. A review on the polymers with shape memory assisted self-healing properties for triboelectric nanogenerators. J. Mater. Res. 2021, 36, 1225–1240. [Google Scholar] [CrossRef]
- Wenjian, L.; Yutao, P.; Chi, Z.; Prakash, K.A.G. Bioinspired designs and biomimetic applications of triboelectric nanogenerators. Nano Energy 2021, 84, 105865. [Google Scholar]
- Songlin, Z.; Michael, B.; Xiao, X.; Guorui, C.; Ardo, N.; Jun, C. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887. [Google Scholar]
- Jin, C.; Kia, D.S.; Jones, M.; Towfighian, S. On the contact behavior of micro-/nano-structured interface used in vertical-contact-mode triboelectric nanogenerators. Nano Energy 2016, 27, 68–77. [Google Scholar] [CrossRef]
- Mi, Y.; Lu, Y.; Shi, Y.; Zhao, Z.; Wang, X.; Meng, J.; Cao, X.; Wang, N. Biodegradable Polymers in Triboelectric Nanogenerators. Polymers 2022, 15, 222. [Google Scholar] [CrossRef] [PubMed]
- Oguntoye, M.; Johnson, M.; Pratt, L.; Pesika, N.S. Triboelectricity Generation from Vertically Aligned Carbon Nanotube Arrays. ACS Appl. Mater. Interfaces 2016, 8, 27454–27457. [Google Scholar] [CrossRef]
- Zhike, X.; PeiYong, F.; Xin, J.; Heng, L.; HaoYang, M.; Yuejun, L. Design and Optimization Principles of Cylindrical Sliding Triboelectric Nanogenerators. Micromachines 2021, 12, 567. [Google Scholar]
- Dun, L.; Fu, B.J.; Lan, C.Y.; Ke, L.G.; Sheng, Z.X. Unidirectional-current triboelectric nanogenerator based on periodical lateral-cantilevers. Nano Energy 2020, 74, 104770. [Google Scholar]
- Wasim, A.; Qian, C.; Guangbo, X.; Jian, F. A review of single electrode triboelectric nanogenerators. Nano Energy 2023, 106, 108043. [Google Scholar]
- Navjot, K.; Jitendra, B.; Vinay, P.; Pushpendra, S.; Keerti, R.; Kaushik, P. Effective energy harvesting from a single electrode based triboelectric nanogenerator. Sci. Rep. 2016, 6, 38835. [Google Scholar]
- Zhang, Z.; Bai, Y.; Xu, L.; Zhao, M.; Shi, M.; Wang, Z.L.; Lu, X. Triboelectric nanogenerators with simultaneous outputs in both single-electrode mode and freestanding-triboelectric-layer mode. Nano Energy 2019, 66, 104169. [Google Scholar] [CrossRef]
- Niu, S.; Liu, Y.; Chen, X.; Wang, S.; Zhou, Y.S.; Lin, L.; Xie, Y.; Wang, Z.L. Theory of freestanding triboelectric-layer-based nanogenerators. Nano Energy 2015, 12, 760–774. [Google Scholar] [CrossRef]
- Haobin, W.; Mengdi, H.; Yu, S.; Haixia, Z. Design, manufacturing and applications of wearable triboelectric nanogenerators. Nano Energy 2021, 81, 1055627. [Google Scholar]
- Yuankai, Z.; Maoliang, S.; Xin, C.; Yicheng, S.; Lijie, L.; Yan, Z. Triboelectric nanogenerator based self-powered sensor for artificial intelligence. Nano Energy 2021, 84, 105887. [Google Scholar]
- Xiao, X.; Xiao, X.; Ardo, N.; Alberto, L.; Yunsheng, F.; Xiyao, L.; Jun, C. Triboelectric Nanogenerators for Self-Powered Wound Healing. Adv. Healthc. Mater. 2021, 10, 2100975. [Google Scholar] [CrossRef]
- Han, Y.; Wang, W.; Zou, J.; Li, Z.; Cao, X.; Xu, S. Self-powered energy conversion and energy storage system based on triboelectric nanogenerator. Nano Energy 2020, 76, 105008. [Google Scholar] [CrossRef]
- Gunawardhana, K.R.S.D.; Wanasekara, N.D.; Dharmasena, R.D.I.G. Towards Truly Wearable Systems: Optimizing and Scaling Up Wearable Triboelectric Nanogenerators. iScience 2020, 23, 101360. [Google Scholar] [CrossRef]
- Su, M.; Kim, B. Silk Fibroin-Carbon Nanotube Composites based Fiber Substrated Wearable Triboelectric Nanogenerator. ACS Appl. Nano Mater. 2020, 3, 9759–9770. [Google Scholar] [CrossRef]
- Pratap, A.; Gogurla, N.; Kim, S. Elastic and Skin-Contact Triboelectric Nanogenerators and Their Applicability in Energy Harvesting and Tactile Sensing. ACS Appl. Electron. Mater. 2022, 4, 1124–1131. [Google Scholar] [CrossRef]
- Ryu, H.; Park, H.M.; Kim, M.K.; Kim, B.; Myoung, H.S.; Kim, T.Y.; Yoon, H.J.; Kwak, S.S.; Kim, J.; Hwang, T.H.; et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 2021, 12, 4374. [Google Scholar] [CrossRef]
- Zequan, Z.; Yin, L.; Yajun, M.; Jiajing, M.; Xia, C.; Ning, W. Structural Flexibility in Triboelectric Nanogenerators: A Review on the Adaptive Design for Self-Powered Systems. Micromachines 2022, 13, 1586. [Google Scholar]
- Dassanayaka, D.G.; Alves, T.M.; Wanasekara, N.D.; Dharmasena, I.G.; Ventura, J. Recent Progresses in Wearable Triboelectric Nanogenerators. Adv. Funct. Mater. 2022, 32, 2205438. [Google Scholar] [CrossRef]
- Wang, G.; Liu, X.; Wang, Y.; Zheng, Z.; Zhu, Z.; Yin, Y.; Zhu, L.; Wang, X. Energy Harvesting and Sensing Integrated Woven Structure Kneepad Based on Triboelectric Nanogenerators. Adv. Mater. Technol. 2023, 8, 2200973. [Google Scholar] [CrossRef]
- Tian, X.; Hua, T. Antibacterial, Scalable Manufacturing, Skin-Attachable, and Eco-Friendly Fabric Triboelectric Nanogenerators for Self-Powered Sensing. ACS Sustain. Chem. Eng. 2021, 9, 13356–13366. [Google Scholar] [CrossRef]
- Fu, J.; Xia, K.; Xu, Z. A triboelectric nanogenerator based on human fingernail to harvest and sense body energy. Microelectron. Eng. 2020, 232, 111408. [Google Scholar] [CrossRef]
- Wu, W.; Guo, N.; Li, W.; Tang, C.; Zhang, Y.; Liu, H.; Chen, M. The vitro/vivo anti-corrosion effect of antibacterial irTENG on implantable magnesium alloys. Nano Energy 2022, 99, 107397. [Google Scholar] [CrossRef]
- Zequan, Z.; Yin, L.; Yajun, M.; Jiajing, M.; Xueqing, W.; Xia, C.; Ning, W. Adaptive Triboelectric Nanogenerators for Long-Term Self-Treatment: A Review. Biosensors 2022, 12, 1127. [Google Scholar]
- Mahmud, M.A.P.; Huda, N.; Farjana, S.H.; Asadnia, M.; Lang, C. Recent Advances in Nanogenerator-Driven Self-Powered Implantable Biomedical Devices. Adv. Energy Mater. 2018, 8, 1701210. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, W.; Liu, G.; Bu, T.; Xia, Y.; Xu, S.; Zhang, C.; Zhang, H. Self-powered artificial joint wear debris sensor based on triboelectric nanogenerator. Nano Energy 2021, 85, 105967. [Google Scholar] [CrossRef]
- Cheng, K.; Huang, Z.; Wang, P.; Sun, L.; Ghasemi, H.; Ardebili, H.; Karim, A. Antibacterial flexible triboelectric nanogenerator via capillary force lithography. J. Colloid. Interface Sci. 2023, 630, 611–622. [Google Scholar] [CrossRef]
- He, H.; Guo, J.; Illés, B.; Géczy, A.; Istók, B.; Hliva, V.; Török, D.; Kovács, J.G.; Harmati, I.; Molnár, K. Monitoring multi-respiratory indices via a smart nanofibrous mask filter based on a triboelectric nanogenerator. Nano Energy 2021, 89, 106418. [Google Scholar] [CrossRef]
- Min, J.; Yi, L.; Zhiyuan, Z.; Wenzhu, J. Advances in Smart Sensing and Medical Electronics by Self-Powered Sensors Based on Triboelectric Nanogenerators. Micromachines 2021, 12, 698. [Google Scholar]
- Congxi, H.; Guorui, C.; Ardo, N.; Jun, C. Advances in self-powered chemical sensing via a triboelectric nanogenerator. Nanoscale 2021, 13, 2065–2081. [Google Scholar]
- Walden, R.; Aazem, I.; Babu, A.; Pillai, S.C. Textile-Triboelectric nanogenerators (T-TENGs) for wearable energy harvesting devices. Chem. Eng. J. 2023, 451, 138741. [Google Scholar] [CrossRef]
- Qixin, L.; Hong, C.; Yuanming, Z.; Jiehui, X.; Xia, C.; Ning, W.; Zhonglin, W. Intelligent facemask based on triboelectric nanogenerator for respiratory monitoring. Nano Energy 2021, 91, 2065–2081. [Google Scholar]
- SangHwa, J.; Yongju, L.; Swarup, B.; Hyojeong, C.; Selim, H.; Minseo, K.; DongWook, L.; Sohee, L.; Hyeok, K.; JinHyuk, B. Washable Fabric Triboelectric Nanogenerators for Potential Application in Face Masks. Nanomaterials 2022, 12, 3152. [Google Scholar]
- Tao, W.; Shuyao, L.; Xingling, T.; Qi, Y.; Xingling, W.; Yao, C.; Fengjiao, H.; Hexing, L.; Xiangyu, C.; Zhenfeng, B. Fully biodegradable water-soluble triboelectric nanogenerator for human physiological monitoring. Nano Energy 2022, 93, 106787. [Google Scholar]
- Niu, Q.; Wei, H.; Hsiao, B.S.; Zhang, Y. Biodegradable silk fibroin-based bio-piezoelectric/triboelectric nanogenerators as self-powered electronic devices. Nano Energy 2022, 96, 107101. [Google Scholar] [CrossRef]
- Van Leeuwen, M.T.; Steven, L.; Howard, G.; R, B.M.; Kate, W.; Sallie-Anne, P.; Lee, H.; Vajdic, C.M. Cardiovascular toxicity of targeted therapies for cancer: A protocol for an overview of systematic reviews. BMJ Open 2018, 8, 021064. [Google Scholar]
- Danna, Z.; Jingting, Z.; Zetong, C.; Jingjiao, W.; Rui, M.; Xujing, Z.; Yufei, Z.; Xue, W.; Xiansi, W.; Lixin, L.; et al. Eco-friendly in-situ gap generation of no-spacer triboelectric nanogenerator for monitoring cardiovascular activities. Nano Energy 2021, 90, 106580. [Google Scholar]
- Jia, C.; Zhu, Y.; Sun, F.; Wen, Y.; Wang, Q.; Li, Y.; Mao, Y.; Zhao, C. Gas-Supported Triboelectric Nanogenerator Based on In Situ Gap-Generation Method for Biomechanical Energy Harvesting and Wearable Motion Monitoring. Sustainability 2022, 14, 14422. [Google Scholar] [CrossRef]
- Ruoxing, W.; Liwen, M.; Yukai, B.; Han, L.; Tuo, J.; Yijun, S.; Jiahua, Z.; Wenzhuo, W. Holistically Engineered Polymer-Polymer and Polymer-Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for High-Performance Triboelectric Devices in Self-Powered Wearable Cardiovascular Monitorings. Adv. Mater. 2020, 32, 2002878. [Google Scholar]
- Dan, Y.; Yufeng, N.; Xinxin, K.; Shuyao, L.; Xiangyu, C.; Liqun, Z.; Lin, W.Z. Self-Healing and Elastic Triboelectric Nanogenerators for Muscle Motion Monitoring and Photothermal Treatment. ACS Nano 2021, 15, 14653–14661. [Google Scholar]
- Khan, A.; Ginnaram, S.; Wu, C.-H.; Lu, H.-W.; Pu, Y.-F.; Wu, J.I.; Gupta, D.; Lai, Y.-C.; Lin, H.-C. Fully self-healable, highly stretchable, and anti-freezing supramolecular gels for energy-harvesting triboelectric nanogenerator and self-powered wearable electronics. Nano Energy 2021, 90, 106525. [Google Scholar] [CrossRef]
- Jing, X.; Li, H.; Mi, H.-Y.; Feng, P.-Y.; Tao, X.; Liu, Y.; Liu, C.; Shen, C. Enhancing the Performance of a Stretchable and Transparent Triboelectric Nanogenerator by Optimizing the Hydrogel Ionic Electrode Property. ACS Appl. Mater. Interfaces 2020, 12, 23474–23483. [Google Scholar] [CrossRef]
- Divij, B.; Kyoung-Soub, L.; Khan, N.M.U.; Hyung-Soon, P. Triboelectric nanogenerator integrated origami gravity support device for shoulder rehabilitation using exercise gaming. Nano Energy 2022, 97, 107179. [Google Scholar]
- Shanshan, A.; Xianjie, P.; Shiyi, Z.; Yihan, W.; Gui, L.; Pengcheng, X.; Yangsong, Z.; Chenguo, H. Deep Learning Enabled Neck Motion Detection Using a Triboelectric Nanogenerator. ACS Nano 2022, 16, 9359–9367. [Google Scholar]
- Xi, Y. A flexible triboelectric nanogenerator based on soft foam for rehabilitation monitor after foot surgery. Mater. Technol. 2022, 37, 1959191. [Google Scholar]
- Bingjin, W.; Gaocai, L.; Qianqian, Z.; Weifang, L.; Wencan, K.; Wenbin, H.; Yiming, Z.; Xianlin, Z.; Xuhui, S.; Zhen, W.; et al. Bone Repairment via Mechanosensation of Piezo1 Using Wearable Pulsed Triboelectric Nanogenerator. Small 2022, 18, 2201056. [Google Scholar]
- Zamanpour, F.; Shooshtari, L.; Gholami, M.; Mohammadpour, R.; Sasanpour, P.; Taghavinia, N. Transparent and flexible touch on/off switch based on BaTiO3/silicone polymer triboelectric nanogenerator. Nano Energy 2022, 103, 107796. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Balamurugan, T.S.T.; Chang, C.-Y.; Hsu, C.-Y.; Fang, C.-Y.; Liu, Y.-S.; Ho, L.-F. Ultrahigh power output and durable flexible all-polymer triboelectric nanogenerators enabled by rational surface engineering. J. Mater. Chem. A 2023, 1–3. [Google Scholar] [CrossRef]
- Wang, W.; Yu, A.; Zhai, J.; Wang, Z.L. Recent Progress of Functional Fiber and Textile Triboelectric Nanogenerators: Towards Electricity Power Generation and Intelligent Sensing. Adv. Fiber Mater. 2021, 3, 394–412. [Google Scholar] [CrossRef]
- Ying, Q.; Wanglin, Z.; Yanhua, L.; Jiamin, Z.; Jinxia, Y.; Mingchao, C.; Xiangjiang, M.; Guoli, D.; Chenchen, C.; Shuangfei, W.; et al. Cellulosic gel-based triboelectric nanogenerators for energy harvesting and emerging applications. Nano Energy 2023, 106, 108079. [Google Scholar]
- Zhu, J.; Zhu, P.; Yang, Q.; Chen, T.; Wang, J.; Li, J. A fully stretchable textile-based triboelectric nanogenerator for human motion monitoring. Mater. Lett. 2020, 280, 128568. [Google Scholar] [CrossRef]
- Lee, C.; Heo, M.; Park, H.; Joo, H.; Seung, W.; Lee, J.-H. Electrostatic discharge prevention system via body potential control based on a triboelectric nanogenerator. Nano Energy 2022, 103, 107834. [Google Scholar] [CrossRef]
- Wang, N.; Wang, X.X.; Yan, K.; Song, W.; Fan, Z.; Yu, M.; Long, Y.Z. Anisotropic Triboelectric Nanogenerator Based on Ordered Electrospinning. ACS Appl. Mater. Interfaces 2020, 12, 46205–46211. [Google Scholar] [CrossRef] [PubMed]
- Niu, Q.; Huang, L.; Lv, S.; Shao, H.; Fan, S.; Zhang, Y. Pulse-driven bio-triboelectric nanogenerator based on silk nanoribbons. Nano Energy 2020, 74, 104837. [Google Scholar] [CrossRef]
- Mi, Z.; Mingkun, H.; Hao, Z.; Cong, X.; Yang, A.; Rusen, Z.; Zeyu, J.; Haodong, Q.; Shibo, Z.; Song, L.; et al. Contact Separation Triboelectric Nanogenerator Based Neural Interfacing for Effective Sciatic Nerve Restoration. Adv. Funct. Mater. 2022, 32, 2200269. [Google Scholar]
- Iftach, S.; Shay, D.; Keshet, T.; Yael, L.; Amir, A.; Maoz, B.M. Restoring Tactile Sensation Using a Triboelectric Nanogenerator. ACS Nano 2021, 15, 11087–11098. [Google Scholar]
- Luming, Z.; Zhongbao, G.; Wei, L.; Chunlan, W.; Dan, L.; Shengyu, C.; Siwei, L.; Zhou, L.; Changyong, W.; Jin, Z. Promoting maturation and contractile function of neonatal rat cardiomyocytes by self-powered implantable triboelectric nanogenerator. Nano Energy 2022, 103, 107798. [Google Scholar]
- Guang, Y.; Lei, K.; Cuicui, L.; Sihong, C.; Qian, W.; Junzhe, Y.; Yin, L.; Jun, L.; Kangning, Z.; Weina, X.; et al. A self-powered implantable and bioresorbable electrostimulation device for biofeedback bone fracture healing. Proc. Natl. Acad. Sci. USA 2021, 118, 2100772118. [Google Scholar]
- Cheng, B.; Ma, J.; Li, G.; Bai, S.; Xu, Q.; Cui, X.; Cheng, L.; Qin, Y.; Wang, Z.L. Mechanically Asymmetrical Triboelectric Nanogenerator for Self-Powered Monitoring of In Vivo Microscale Weak Movement. Adv. Energy Mater. 2020, 10, 2000827. [Google Scholar] [CrossRef]
- Qu, C.; Wenjing, D.; Jingjin, H.; Li, C.; Gen, R.P.; Yang, X. Enhancing Drug Utilization Efficiency via Dish-Structured Triboelectric Nanogenerator. Front. Bioeng. Biotechnol. 2022, 10, 950146. [Google Scholar]
- Chu, B.; Qin, X.; Zhu, Q.; Wang, H.; Wen, Z.; Sun, X.; He, Y.; Lee, S.-T. Triboelectric current stimulation alleviates in vitro cell migration and in vivo tumor metastasis. Nano Energy 2022, 100, 107471. [Google Scholar] [CrossRef]
- Xuelian, W.; Yunhang, W.; Botao, T.; Enyang, Z.; Baocheng, W.; Hong, S.; Lehua, Y.; Ying, Y.; Lin, W.Z.; Zhiyi, W. Triboelectric nanogenerators stimulated electroacupuncture (EA) treatment for promoting the functional recovery after spinal cord injury. Mater. Today 2022, 60, 41–51. [Google Scholar]
- Fan, L.; Ze, Y.; Rui, Y.; Hui, L.; Jia, C.; Ming, G. Bulk Electroporation for Intracellular Delivery Directly Driven by Mechanical Stimulus. ACS Nano 2022, 16, 19363–19372. [Google Scholar]
- Congyu, W.; Peng, W.; Junhuan, C.; Liyang, Z.; Dun, Z.; Yi, W.; Shiyun, A. Self-powered biosensing system driven by triboelectric nanogenerator for specific detection of Gram-positive bacteria. Nano Energy 2022, 93, 106828. [Google Scholar]
- Kequan, X.; Jianzhang, L.; Wentao, L.; Pengcheng, J.; Zhiguo, H.; Yan, W.; Fengzhong, Q.; Zhiwei, X.; Lizhong, W.; Xuchu, R.; et al. A self-powered bridge health monitoring system driven by elastic origami triboelectric nanogenerator. Nano Energy 2023, 105, 107974. [Google Scholar]
- Xinmeng, Z.; Haoqiang, H.; Weinan, Z.; Zulu, H.; Xiang, L.; Jia, L.; Gaixia, X.; Chengbin, Y. Self-powered triboelectric nanogenerator driven nanowires electrode array system for the urine sterilization. Nano Energy 2022, 96, 107111. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Z.; Cao, X.; Wang, N. Biophysical Sensors Based on Triboelectric Nanogenerators. Biosensors 2023, 13, 423. https://doi.org/10.3390/bios13040423
Ma Z, Cao X, Wang N. Biophysical Sensors Based on Triboelectric Nanogenerators. Biosensors. 2023; 13(4):423. https://doi.org/10.3390/bios13040423
Chicago/Turabian StyleMa, Zimeng, Xia Cao, and Ning Wang. 2023. "Biophysical Sensors Based on Triboelectric Nanogenerators" Biosensors 13, no. 4: 423. https://doi.org/10.3390/bios13040423
APA StyleMa, Z., Cao, X., & Wang, N. (2023). Biophysical Sensors Based on Triboelectric Nanogenerators. Biosensors, 13(4), 423. https://doi.org/10.3390/bios13040423