Wearable Smart Bandage-Based Bio-Sensors
Abstract
:1. Introduction
2. The Evolution of Bandages
3. Bandage Design
4. Functional Bandages
4.1. Next-Generation Smart Wearable Bandages
4.2. Categorization of Smart Wearable Bandages
5. Passive Smart Bandages
6. Active Smart Bandages
7. Bandage Manufacturing
8. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ometov, A.; Shubina, V.; Klus, L.; Skibinska, J.; Saafi, S.; Pascacio, P.; Flueratoru, L.; Quezada-Gaibor, D.; Chukhno, N.; Chukhno, O.; et al. A Survey on Wearable Technology: History, State-of-the-Art and Current Challenges. Comput. Netw. 2021, 193, 108074. [Google Scholar] [CrossRef]
- Devine, J.K.; Schwartz, L.P.; Hursh, S.R. Technical, Regulatory, Economic, and Trust Issues Preventing Successful Integration of Sensors into the Mainstream Consumer Wearables Market. Sensors 2022, 22, 2731. [Google Scholar] [CrossRef] [PubMed]
- Sen, C.K. Human Wound and Its Burden: Updated 2020 Compendium of Estimates. Adv. Wound Care 2021, 10, 281–292. [Google Scholar] [CrossRef]
- Insights, F.B. Wound Care Global Market Analysis, Insights and Forecast, 2022–2029, Fortune Business Insights. Available online: https://www.fortunebusinessinsights.com/wound-care-market-103268 (accessed on 25 January 2023).
- Yadav, D.; Mann, S.; Balyan, A. Waste management model for COVID-19: Recommendations for future threats. Int. J. Environ. Sci. Technol. 2022, 1–14. [Google Scholar] [CrossRef]
- Andooz, A.; Eqbalpour, M.; Kowsari, E.; Ramakrishna, S.; Cheshmeh, Z.A. A comprehensive review on pyrolysis of E-waste and its sustainability. J. Clean. Prod. 2022, 333, 130191. [Google Scholar] [CrossRef]
- Keller, R.L.; Muir, K.; Roth, F.; Jattke, M.; Stucki, M. From bandages to buildings: Identifying the environmental hotspots of hospitals. J. Clean. Prod. 2021, 319, 128479. [Google Scholar] [CrossRef]
- Forrest, R.D. Early history of wound treatment. J. R. Soc. Med. 1982, 75, 198–205. [Google Scholar] [CrossRef]
- Majno, G. The Healing Hand Man and Wound in the Ancient World; Harvard University Press: Cambridge, MA, USA, 1975; p. 600. [Google Scholar]
- War and Medicine: A Brief History of the Military’s Contribution to Wound Care Through World War I. In Advances in Wound Care; Mary Ann Liebert, Inc.: New Rochelle, NY, USA, 2010; Volume 1, pp. 3–7.
- Apostolakis, E.; Apostolaki, G.; Apostolaki, M.; Chorti, M. The reported thoracic injuries in Homer’s Iliad. J. Cardiothorac. Surg. 2010, 5, 114. [Google Scholar] [CrossRef] [Green Version]
- Thomas, D.S. Surgical Dressings and Wound Management; Medetec Publications: Jönköping, Sweden, 2010; p. 720. Available online: http://www.medetec.co.uk/files/surgical-dressings-and-wound-management.html (accessed on 1 March 2023).
- Jones, V.; Grey, J.E.; Harding, K.G. Wound dressings. BMJ 2006, 332, 777–780. [Google Scholar] [CrossRef] [PubMed]
- Szycher, M.; Lee, S.J. Modern Wound Dressings: A Systematic Approach to Wound Healing. J. Biomater. Appl. 1992, 7, 142–213. [Google Scholar] [CrossRef]
- Mummy Bandage from Tutankhamun’s Embalming Cache. Available online: https://www.metmuseum.org/art/collection/search/548838 (accessed on 1 March 2023).
- Samonis, G.; Koutserimpas, C.; Rantou, M.-I.; Karamanou, M.; Stefanakis, M. Outpatient Clinic in Ancient Greece. Maedica 2021, 16, 700–706. [Google Scholar] [PubMed]
- Institute, J. 130 Years of Medical Education at Johnson & Johnson. Available online: https://jnjinstitute.com/sites/default/files/2018-08/170905_JJI_MedEd-Desktop.pdf (accessed on 2 March 2023).
- Pollock, R.A. Triage and management of the injured in world war I: The diuturnity of antoine de page and a belgian colleague. Craniomaxillofac. Trauma Reconstr. 2008, 1, 63–70. [Google Scholar] [CrossRef] [Green Version]
- Venables, K.M. Surgery on the battlefield: Mobile surgical units in the Second World War and the memoirs they produced. J. Med. Biogr. 2021, 09677720211012190. [Google Scholar] [CrossRef] [PubMed]
- Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial hydrogels for biomedical applications. Heliyon 2020, 6, e03719. [Google Scholar] [CrossRef]
- Jeong, W.; Lee, S.; Choi, H.; Bae, J.; Lee, S.-H.; Ma, Y.; Yoo, S.; Ha, J.-H.; Hong, J.-I.; Park, S.; et al. Washable, stretchable, and reusable core–shell metal nanowire network-based electronics on a breathable polymer nanomesh substrate. Mater. Today 2022, 61, 30–39. [Google Scholar] [CrossRef]
- Shah, J.B. The history of wound care. J. Am. Coll. Certif. Wound Spec. 2011, 3, 65–66. [Google Scholar] [CrossRef] [Green Version]
- Ahern, K. The 1888 Johnson & Johnson Manual That Changed Surgery for the Better. Available online: https://www.jnj.com/our-heritage/how-johnson-johnson-helped-change-the-history-of-sterile-surgery (accessed on 25 January 2023).
- Injuries in World War I. Available online: https://www.worldwar1centennial.org/index.php/injuries-in-world-war-i.html (accessed on 25 January 2023).
- Jones, A.M.; San Miguel, L. Are modern wound dressings a clinical and cost-effective alternative to the use of gauze? J. Wound Care 2006, 15, 65–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helling, T.S.; McNabney, W.K. The role of amputation in the management of battlefield casualties: A history of two millennia. J. Trauma 2000, 49, 930–939. [Google Scholar] [CrossRef]
- Bloom, H. ‘Cellophane’ Dressing for Second-Degree Burns. Lancet 1945, 246, 559. [Google Scholar] [CrossRef]
- Bull, J.P.; Squire, J.R.; Topley, E. Experiments with occlusive dressings of a new plastic. Lancet 1948, 2, 213–215. [Google Scholar] [CrossRef]
- Winter, G.D. Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 1962, 193, 293–294. [Google Scholar] [CrossRef] [PubMed]
- Piskozub, Z.T. The efficiency of wound dressing materials as a barrier to secondary bacterial contamination. Br. J. Plast. Surg. 1968, 21, 387–401. [Google Scholar] [CrossRef]
- Lawrence, J.C. What materials for dressings? Injury 1982, 13, 500–512. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Zhang, L.; Duan, S.; Jing, S.; Jiang, H.; Li, C. Highly Stretchable Conductors Integrated with a Conductive Carbon Nanotube/Graphene Network and 3D Porous Poly(dimethylsiloxane). Adv. Funct. Mater. 2014, 24, 7548–7556. [Google Scholar] [CrossRef]
- Liao, C.; Zhang, M.; Yao, M.Y.; Hua, T.; Li, L.; Yan, F. Flexible Organic Electronics in Biology: Materials and Devices. Adv. Mater. 2015, 27, 7493–7527. [Google Scholar] [CrossRef]
- Mostafalu, P.; Tamayol, A.; Rahimi, R.; Ochoa, M.; Khalilpour, A.; Kiaee, G.; Yazdi, I.K.; Bagherifard, S.; Dokmeci, M.R.; Ziaie, B.; et al. Smart Bandage for Monitoring and Treatment of Chronic Wounds. Small 2018, 14, e1703509. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, W.K.; Sofokleous, P.; Day, R.; Stride, E.; Edirisinghe, M. A portable device for in situ deposition of bioproducts. Bioinspired Biomim. Nanobiomater. 2014, 3, 94–105. [Google Scholar] [CrossRef]
- Ongarora, B.G. Recent technological advances in the management of chronic wounds: A literature review. Health Sci. Rep. 2022, 5, e641. [Google Scholar] [CrossRef] [PubMed]
- Gurtner, G.C.; Werner, S.; Barrandon, Y.; Longaker, M.T. Wound repair and regeneration. Nature 2008, 453, 314–321. [Google Scholar] [CrossRef]
- Sun, B.K.; Siprashvili, Z.; Khavari, P.A. Advances in skin grafting and treatment of cutaneous wounds. Science 2014, 346, 941–945. [Google Scholar] [CrossRef]
- Tarnuzzer, R.W.; Schultz, G.S. Biochemical analysis of acute and chronic wound environments. Wound Repair. Regen. 1996, 4, 321–325. [Google Scholar] [CrossRef]
- Clark, R.A.F. Overview and General Considerations of Wound Repair. In The Molecular and Cellular Biology of Wound Repair; Springer: Boston, MA, USA, 1998; pp. 3–33. [Google Scholar]
- Dowsett, C.; Newton, H. Wound bed preparation: TIME in practice. Wounds UK 2005, 1, 58–70. [Google Scholar]
- Vanwijck, R. Surgical biology of wound healing. Bull. Mem. Acad. R. Med. Belg. 2001, 156, 175–184, discussion 185. [Google Scholar] [PubMed]
- Degreef, H.J. How to heal a wound fast. Derm. Clin. 1998, 16, 365–375. [Google Scholar] [CrossRef]
- Hunt, T.K.; Hopf, H.; Hussain, Z. Physiology of wound healing. Adv. Ski. Wound Care 2000, 13, 6–11. [Google Scholar] [CrossRef]
- Rivera, A.E.; Spencer, J.M. Clinical aspects of full-thickness wound healing. Clin. Derm. 2007, 25, 39–48. [Google Scholar] [CrossRef]
- Strecker-McGraw, M.K.; Jones, T.R.; Baer, D.G. Soft tissue wounds and principles of healing. Emerg. Med. Clin. N. Am. 2007, 25, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Jake Eldridge, S.M.T.E.; 3M Health Care. A Guide to Manufacturing Microfluidic Device Key Components. 3M. Available online: https://multimedia.3m.com/mws/media/1716307O/3m-medtech-a-guide-to-manufacturing-microfluidic-device-key-components.pdf (accessed on 1 March 2023).
- Brumberg, V.; Astrelina, T.; Malivanova, T.; Samoilov, A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021, 9, 1235. [Google Scholar] [CrossRef]
- Jones, V.J. The use of gauze: Will it ever change? Int. Wound J. 2006, 3, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Cockbill, S.M.; Turner, T.D. The development of wound management products. In Chronic Wound Care: A Clinical Source Book for Healthcare Professionals, 4th ed.; Krasner, D.L., Rodeheaver, G.T., Sibbald, R.G., Eds.; HMP Communications: Malvern, PA, USA, 2007; pp. 233–248. [Google Scholar]
- Sood, A.; Granick, M.S.; Tomaselli, N.L. Wound Dressings and Comparative Effectiveness Data. Adv. Wound Care 2014, 3, 511–529. [Google Scholar] [CrossRef] [Green Version]
- Weller, C.D.; Team, V.; Sussman, G. First-Line Interactive Wound Dressing Update: A Comprehensive Review of the Evidence. Front. Pharm. 2020, 11, 155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doillon, C.J.; Silver, F.H. Collagen-based wound dressing: Effects of hyaluronic acid and fibronectin on wound healing. Biomaterials 1986, 7, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Thomas, S. Hydrocolloids. J. Wound Care 1992, 1, 27–30. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Harding, K.G.; Moore, K. Alginates from wound dressings activate human macrophages to secrete tumour necrosis factor-alpha. Biomaterials 2000, 21, 1797–1802. [Google Scholar] [CrossRef]
- Nielsen, J.T.; Fogh, K. Clinical utility of foam dressings in wound management: A review. Chronic Wound Care Manag. Res. 2015, 2, 31–38. [Google Scholar]
- Deseadch, O. Wound fluid management in wound care: The role of a hydroconductive dressing. Wounds 2013, 25, 7–14. [Google Scholar]
- Brown, A.; Yorke, M. Drawtex: Breaking the vicious circle of cellular and molecular imbalances. Br. J. Community Nurs. 2013, 18, S42–S49. [Google Scholar] [CrossRef]
- Russell, L.; Amanda, E. Drawtex: A unique dressing that can be tailor-made to fit wounds. Br. J. Nurs. 1999, 8, 1022–1026. [Google Scholar] [CrossRef] [Green Version]
- Ortiz, R.T.; Moffatt, L.T.; Robson, M.C.; Jordan, M.H.; Shupp, J.W. In Vivo and In Vitro Evaluation of the Properties of Drawtex LevaFiber Wound Dressing in an Infected Burn Wound Model. Ostomy-Wound Manag. 2012, 21, 3. [Google Scholar]
- Perumal, C.J.; Robson, M. CASE REPORT Use of a Hydroconductive Dressing to Treat a Traumatic Avulsive Injury of the Face. Eplasty 2012, 12, e32. [Google Scholar]
- Silva, J.M.; Pereira, C.V.; Mano, F.; Silva, E.; Castro, V.I.B.; Sá-Nogueira, I.; Reis, R.L.; Paiva, A.; Matias, A.A.; Duarte, A.R.C. Therapeutic Role of Deep Eutectic Solvents Based on Menthol and Saturated Fatty Acids on Wound Healing. ACS Appl. Bio Mater. 2019, 2, 4346–4355. [Google Scholar] [CrossRef]
- Darkovich, S.L.; Brown-Etris, M.; Spencer, M. Biofilm hydrogel dressing: A clinical evaluation in the treatment of pressure sores. Ostomy Wound Manag. 1990, 29, 47–60. [Google Scholar]
- Kaya, A.Z.; Turani, N.; Akyüz, M. The effectiveness of a hydrogel dressing compared with standard management of pressure ulcers. J. Wound Care 2005, 14, 42–44. [Google Scholar] [CrossRef] [PubMed]
- Helary, C.; Abed, A.; Mosser, G.; Louedec, L.; Letourneur, D.; Coradin, T.; Giraud-Guille, M.M.; Meddahi-Pellé, A. Evaluation of dense collagen matrices as medicated wound dressing for the treatment of cutaneous chronic wounds. Biomater. Sci. 2015, 3, 373–382. [Google Scholar] [CrossRef] [PubMed]
- Willard, J.J.; Drexler, J.W.; Das, A.; Roy, S.; Shilo, S.; Shoseyov, O.; Powell, H.M. Plant-derived human collagen scaffolds for skin tissue engineering. Tissue Eng. Part A 2013, 19, 1507–1518. [Google Scholar] [CrossRef] [PubMed]
- Khil, M.S.; Cha, D.I.; Kim, H.Y.; Kim, I.S.; Bhattarai, N. Electrospun nanofibrous polyurethane membrane as wound dressing. J. Biomed. Mater. Res. B Appl. Biomater. 2003, 67, 675–679. [Google Scholar] [CrossRef] [PubMed]
- Purna, S.K.; Babu, M. Collagen based dressings–A review. Burns 2000, 26, 54–62. [Google Scholar] [CrossRef]
- Dhivya, S.; Padma, V.V.; Santhini, E. Wound dressings—A review. Biomedicine 2015, 5, 22. [Google Scholar] [CrossRef]
- Britto, E.J.; Nezwek, T.A.; Popowicz, P.; Robins, M. Wound Dressings. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Lin, S.Y.; Chen, K.S.; Run-Chu, L. Design and evaluation of drug-loaded wound dressing having thermoresponsive, adhesive, absorptive and easy peeling properties. Biomaterials 2001, 22, 2999–3004. [Google Scholar] [CrossRef]
- Eaglstein, W.H. Moist wound healing with occlusive dressings: A clinical focus. Derm. Surg. 2001, 27, 175–181. [Google Scholar] [CrossRef]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral. Biol. Craniofac. Res. 2016, 6, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Zulqarnain, M.; Cantatore, E. Analog and Mixed Signal Circuit Design Techniques in Flexible Unipolar a-IGZO TFT Technology: Challenges and Recent Trends. IEEE Open. J. Circuits Syst. 2021, 2, 743–756. [Google Scholar] [CrossRef]
- Laurano, R.; Boffito, M.; Ciardelli, G.; Chiono, V. Wound dressing products: A translational investigation from the bench to the market. Eng. Regen. 2022, 3, 182–200. [Google Scholar] [CrossRef]
- Qin, J.; Chen, F.; Wu, P.; Sun, G. Recent Advances in Bioengineered Scaffolds for Cutaneous Wound Healing. Front. Bioeng. Biotechnol. 2022, 10, 841583. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Zhang, M.; Yu, D.G. Electrospun Medicated Nanofibers for Wound Healing: Review. Membranes 2021, 11, 770. [Google Scholar] [CrossRef] [PubMed]
- Rezvani Ghomi, E.; Lakshminarayanan, R.; Vijila, C.; Verma, N.; Chinnappan, A.; Esmaeely Neisiany, R.; Amuthavalli, K.; Poh, Z.S.; Wong, B.; Dubey, N.; et al. Electrospun Aligned PCL/Gelatin Scaffolds Mimicking the Skin ECM for Effective Antimicrobial Wound Dressings. Adv. Fiber Mater. 2022, 5, 235–251. [Google Scholar] [CrossRef]
- Adamu, B.F.; Gao, J.; Jhatial, A.K.; Kumelachew, D.M. A review of medicinal plant-based bioactive electrospun nano fibrous wound dressings. Mater. Des. 2021, 209, 109942. [Google Scholar] [CrossRef]
- Laurano, R.; Boffito, M.; Abrami, M.; Grassi, M.; Zoso, A.; Chiono, V.; Ciardelli, G. Dual stimuli-responsive polyurethane-based hydrogels as smart drug delivery carriers for the advanced treatment of chronic skin wounds. Bioact. Mater. 2021, 6, 3013–3024. [Google Scholar] [CrossRef]
- Lee, H.; Choi, T.K.; Lee, Y.B.; Cho, H.R.; Ghaffari, R.; Wang, L.; Choi, H.J.; Chung, T.D.; Lu, N.; Hyeon, T.; et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nat. Nanotechnol. 2016, 11, 566–572. [Google Scholar] [CrossRef] [PubMed]
- Oh, S.; Cho, J.I.; Lee, B.H.; Seo, S.; Lee, J.H.; Choo, H.; Heo, K.; Lee, S.Y.; Park, J.H. Flexible artificial Si-In-Zn-O/ion gel synapse and its application to sensory-neuromorphic system for sign language translation. Sci. Adv. 2021, 7, eabg9450. [Google Scholar] [CrossRef] [PubMed]
- Pang, Q.; Lou, D.; Li, S.; Wang, G.; Qiao, B.; Dong, S.; Ma, L.; Gao, C.; Wu, Z. Smart Flexible Electronics-Integrated Wound Dressing for Real-Time Monitoring and On-Demand Treatment of Infected Wounds. Adv. Sci. 2020, 7, 1902673. [Google Scholar] [CrossRef]
- Iovene, A.; Zhao, Y.; Wang, S.; Amoako, K. Bioactive Polymeric Materials for the Advancement of Regenerative Medicine. J. Funct. Biomater. 2021, 12, 14. [Google Scholar] [CrossRef]
- Islam, M.M.; Shahruzzaman, M.; Biswas, S.; Nurus Sakib, M.; Rashid, T.U. Chitosan based bioactive materials in tissue engineering applications-A review. Bioact. Mater. 2020, 5, 164–183. [Google Scholar] [CrossRef]
- Eberlein, T.; Haemmerle, G.; Signer, M.; Gruber Moesenbacher, U.; Traber, J.; Mittlboeck, M.; Abel, M.; Strohal, R. Comparison of PHMB-containing dressing and silver dressings in patients with critically colonised or locally infected wounds. J. Wound Care 2012, 21, 12–20. [Google Scholar] [CrossRef] [Green Version]
- Derry, S.; Wiffen, P.J.; Kalso, E.A.; Bell, R.F.; Aldington, D.; Phillips, T.; Gaskell, H.; Moore, R.A. Topical analgesics for acute and chronic pain in adults—An overview of Cochrane Reviews. Cochrane Database Syst. Rev. 2017, 5, Cd008609. [Google Scholar] [CrossRef]
- Wearable Technology Market Size, Share & Trends Analysis Report by Product (Head & Eyewear, Wristwear), by Application (Consumer Electronics, Healthcare), by Region (Asia Pacific, Europe), and Segment Forecasts, 2023–2030. Available online: https://www.grandviewresearch.com/industry-analysis/wearable-technology-market (accessed on 10 December 2022).
- Ling, Y.; An, T.; Yap, L.W.; Zhu, B.; Gong, S.; Cheng, W. Disruptive, Soft, Wearable Sensors. Adv. Mater. 2020, 32, 1904664. [Google Scholar] [CrossRef]
- Malik, M.; Camm, A.J.; Huikuri, H.; Lombardi, F.; Schmidt, G.; Schwartz, P.J.; Zabel, M. Electronic gadgets and their health-related claims. Int. J. Cardiol. 2018, 258, 163–164. [Google Scholar] [CrossRef]
- Abt, G.; Bray, J.; Benson, A.C. The validity and inter-device variability of the Apple Watch™ for measuring maximal heart rate. J. Sports Sci. 2018, 36, 1447–1452. [Google Scholar] [CrossRef]
- Dooley, E.E.; Golaszewski, N.M.; Bartholomew, J.B. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices. JMIR Mhealth Uhealth 2017, 5, e34. [Google Scholar] [CrossRef]
- Khakurel, J.; Pöysä, S.; Porras, J. The Use of Wearable Devices in the Workplace—A Systematic Literature Review. Proceedings of Smart Objects and Technologies for Social Good, Cham, Switzerland, 30 November–1 December 2016; Gaggi, O., Manzoni, P., Palazzi, C., Bujari, A., Marquez-Barja, J.M., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 284–294. [Google Scholar]
- Ozkan-Yildirim, S.; Pancar, T. Smart Wearable Technology for Health Tracking: What Are the Factors that Affect Their Use? In IoT in Healthcare and Ambient Assisted Living; Marques, G., Bhoi, A.K., Albuquerque, V.H.C.d., Hareesha, K.S., Eds.; Springer: Singapore, 2021; pp. 165–199. [Google Scholar]
- Moore, G.E. Cramming more components onto integrated circuits, Reprinted from Electronics, volume 38, number 8, April 19, 1965, pp.114 ff. IEEE Solid-State Circuits Newsl. 2006, 20, 33–35. [Google Scholar] [CrossRef]
- Lyu, Q.; Gong, S.; Yin, J.; Dyson, J.M.; Cheng, W. Soft Wearable Healthcare Materials and Devices. Adv. Healthc. Mater. 2021, 10, 2100577. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.-W.; Yeo, W.-H.; Akhtar, A.; Norton, J.J.S.; Kwack, Y.-J.; Li, S.; Jung, S.-Y.; Su, Y.; Lee, W.; Xia, J.; et al. Materials and Optimized Designs for Human-Machine Interfaces Via Epidermal Electronics. Adv. Mater. 2013, 25, 6839–6846. [Google Scholar] [CrossRef]
- Styrene-Ethylene-Butylene-Styrene Based Thermoplastic Elastomer—SEBS TPE 45A. Available online: https://www.azom.com/article.aspx?ArticleID=873 (accessed on 25 January 2023).
- Yeo, W.-H.; Kim, Y.-S.; Lee, J.; Ameen, A.; Shi, L.; Li, M.; Wang, S.; Ma, R.; Jin, S.H.; Kang, Z.; et al. Multifunctional Epidermal Electronics Printed Directly Onto the Skin. Adv. Mater. 2013, 25, 2773–2778. [Google Scholar] [CrossRef]
- Jeong, J.W.; McCall, J.G.; Shin, G.; Zhang, Y.; Al-Hasani, R.; Kim, M.; Li, S.; Sim, J.Y.; Jang, K.I.; Shi, Y.; et al. Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics. Cell 2015, 162, 662–674. [Google Scholar] [CrossRef] [Green Version]
- Masayuki Okamoto, M.N. AkiyamaKiyoe Shigetomi Acrylic Adhesive Composition and Acrylic Adhesive Tape. EP2551320A1, 10 May 2017. Available online: https://patents.google.com/patent/EP2551320A1/en (accessed on 1 March 2023).
- Mukhopadhyay, S.C.; Suryadevara, N.K.; Nag, A. Wearable Sensors for Healthcare: Fabrication to Application. Sensors 2022, 22, 5137. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Trotsyuk, A.A.; Niu, S.; Henn, D.; Chen, K.; Shih, C.C.; Larson, M.R.; Mermin-Bunnell, A.M.; Mittal, S.; Lai, J.C.; et al. Wireless, closed-loop, smart bandage with integrated sensors and stimulators for advanced wound care and accelerated healing. Nat. Biotechnol. 2022. [Google Scholar] [CrossRef]
- Hauke, A.; Simmers, P.; Ojha, Y.R.; Cameron, B.D.; Ballweg, R.; Zhang, T.; Twine, N.; Brothers, M.; Gomez, E.; Heikenfeld, J. Complete validation of a continuous and blood-correlated sweat biosensing device with integrated sweat stimulation. Lab. Chip 2018, 18, 3750–3759. [Google Scholar] [CrossRef]
- Depner, C.M.; Cheng, P.C.; Devine, J.K.; Khosla, S.; de Zambotti, M.; Robillard, R.; Vakulin, A.; Drummond, S.P.A. Wearable technologies for developing sleep and circadian biomarkers: A summary of workshop discussions. Sleep 2020, 43, zsz254. [Google Scholar] [CrossRef] [Green Version]
- Fuller, D.; Colwell, E.; Low, J.; Orychock, K.; Tobin, M.A.; Simango, B.; Buote, R.; Van Heerden, D.; Luan, H.; Cullen, K.; et al. Reliability and Validity of Commercially Available Wearable Devices for Measuring Steps, Energy Expenditure, and Heart Rate: Systematic Review. JMIR Mhealth Uhealth 2020, 8, e18694. [Google Scholar] [CrossRef]
- Angelucci, A.; Cavicchioli, M.; Cintorrino, I.A.; Lauricella, G.; Rossi, C.; Strati, S.; Aliverti, A. Smart Textiles and Sensorized Garments for Physiological Monitoring: A Review of Available Solutions and Techniques. Sensors 2021, 21, 814. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, S.; Wang, S.J.; Yang, X.; Ling, Y.; Yap, L.W.; Dong, D.; Simon, G.P.; Cheng, W. Standing Enokitake-like Nanowire Films for Highly Stretchable Elastronics. ACS Nano 2018, 12, 9742–9749. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Singh, R.; Li, M.; Li, G.; Rui, M.; Marques, C.; Zhang, B.; Kumar, S. Plasmonic sensor based on offset-splicing and waist-expanded taper using multicore fiber for detection of Aflatoxins B1 in critical sectors. Opt. Express 2023, 31, 4783. [Google Scholar] [CrossRef] [PubMed]
- Qin, J.; Wang, W.; Gao, L.; Yao, S.Q. Emerging biosensing and transducing techniques for potential applications in point-of-care diagnostics. Chem. Sci. 2022, 13, 2857–2876. [Google Scholar] [CrossRef]
- Singh, R.; Sharma, A.; Saji, J.; Umapathi, A.; Kumar, S.; Daima, H. Smart nanomaterials for cancer diagnosis and treatment. Nano Converg. 2022, 9, 21. [Google Scholar] [CrossRef]
- Yao, S.; Ren, P.; Song, R.; Liu, Y.; Huang, Q.; Dong, J.; O’Connor, B.T.; Zhu, Y. Nanomaterial-Enabled Flexible and Stretchable Sensing Systems: Processing, Integration, and Applications. Adv. Mater. 2020, 32, 1902343. [Google Scholar] [CrossRef]
- Olmedo-Aguirre, J.O.; Reyes-Campos, J.; Alor-Hernández, G.; Machorro-Cano, I.; Rodríguez-Mazahua, L.; Sánchez-Cervantes, J.L. Remote Healthcare for Elderly People Using Wearables: A Review. Biosensors 2022, 12, 73. [Google Scholar] [CrossRef]
- Topno, N.R.; Sundriyal, P.; Bhattacharya, S. Fabrication of an efficient Electrode/Organic Interface for Flexible Sensors. Mater. Today Proc. 2019, 16, 1469–1474. [Google Scholar] [CrossRef]
- Afsarimanesh, N.; Nag, A.; Sarkar, S.; Sabet, G.S.; Han, T.; Mukhopadhyay, S.C. A review on fabrication, characterization and implementation of wearable strain sensors. Sens. Actuators A Phys. 2020, 315, 112355. [Google Scholar] [CrossRef]
- Ray, T.R.; Choi, J.; Bandodkar, A.J.; Krishnan, S.; Gutruf, P.; Tian, L.; Ghaffari, R.; Rogers, J.A. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem. Rev. 2019, 119, 5461–5533. [Google Scholar] [CrossRef]
- Yokus, M.A.; Daniele, M.A. Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: A systems perspective. Biosens. Bioelectron. 2021, 184, 113249. [Google Scholar] [CrossRef]
- Ghaffari, R.; Rogers, J.A.; Ray, T.R. Recent progress, challenges, and opportunities for wearable biochemical sensors for sweat analysis. Sens. Actuators B Chem. 2021, 332, 129447. [Google Scholar] [CrossRef] [PubMed]
- Kassal, P.; Kim, J.; Kumar, R.; de Araujo, W.R.; Steinberg, I.M.; Steinberg, M.D.; Wang, J. Smart bandage with wireless connectivity for uric acid biosensing as an indicator of wound status. Electrochem. Commun. 2015, 56, 6–10. [Google Scholar] [CrossRef]
- Park, H.; Park, W.; Lee, C.H. Electrochemically active materials and wearable biosensors for the in situ analysis of body fluids for human healthcare. NPG Asia Mater. 2021, 13, 23. [Google Scholar] [CrossRef]
- Khoshmanesh, F.; Thurgood, P.; Pirogova, E.; Nahavandi, S.; Baratchi, S. Wearable sensors: At the frontier of personalised health monitoring, smart prosthetics and assistive technologies. Biosens. Bioelectron. 2021, 176, 112946. [Google Scholar] [CrossRef]
- Peng, B.; Zhao, F.; Ping, J.; Ying, Y. Recent Advances in Nanomaterial-Enabled Wearable Sensors: Material Synthesis, Sensor Design, and Personal Health Monitoring. Small 2020, 16, 2002681. [Google Scholar] [CrossRef]
- Gao, Y.; Yu, L.; Yeo, J.C.; Lim, C.T. Wearable Sensors: Flexible Hybrid Sensors for Health Monitoring: Materials and Mechanisms to Render Wearability. Adv. Mater. 2020, 32, 2070117. [Google Scholar] [CrossRef] [Green Version]
- Wang, K.; Yap, L.W.; Gong, S.; Wang, R.; Wang, S.J.; Cheng, W. Nanowire-Based Soft Wearable Human–Machine Interfaces for Future Virtual and Augmented Reality Applications. Adv. Funct. Mater. 2021, 31, 2008347. [Google Scholar] [CrossRef]
- Escobedo, P.; Bhattacharjee, M.; Nikbakhtnasrabadi, F.; Dahiya, R. Smart Bandage With Wireless Strain and Temperature Sensors and Batteryless NFC Tag. IEEE Internet Things J. 2021, 8, 5093–5100. [Google Scholar] [CrossRef]
- Zhang, H.; He, R.; Niu, Y.; Han, F.; Li, J.; Zhang, X.; Xu, F. Graphene-enabled wearable sensors for healthcare monitoring. Biosens. Bioelectron. 2022, 197, 113777. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, L.; Ren, G.; Zhang, L.; Sheng, H.; Zhu, Y.; Wang, H.; Lu, G.; Yu, H.-D.; Huang, W. Smart band-aid: Multifunctional and wearable electronic device for self-powered motion monitoring and human-machine interaction. Nano Energy 2022, 92, 106840. [Google Scholar] [CrossRef]
- Gong, S.; Yap, L.W.; Zhang, Y.; He, J.; Yin, J.; Marzbanrad, F.; Kaye, D.M.; Cheng, W. A gold nanowire-integrated soft wearable system for dynamic continuous non-invasive cardiac monitoring. Biosens. Bioelectron. 2022, 205, 114072. [Google Scholar] [CrossRef]
- Gong, S.; Schwalb, W.; Wang, Y.; Chen, Y.; Tang, Y.; Si, J.; Shirinzadeh, B.; Cheng, W. A wearable and highly sensitive pressure sensor with ultrathin gold nanowires. Nat. Commun. 2014, 5, 3132. [Google Scholar] [CrossRef] [Green Version]
- Gong, S.; Yap, L.W.; Zhu, B.; Zhai, Q.; Liu, Y.; Lyu, Q.; Wang, K.; Yang, M.; Ling, Y.; Lai, D.T.H.; et al. Local Crack-Programmed Gold Nanowire Electronic Skin Tattoos for In-Plane Multisensor Integration. Adv. Mater. 2019, 31, 1903789. [Google Scholar] [CrossRef]
- Wang, R.; Zhai, Q.; Zhao, Y.; An, T.; Gong, S.; Guo, Z.; Shi, Q.; Yong, Z.; Cheng, W. Stretchable gold fiber-based wearable electrochemical sensor toward pH monitoring. J. Mater. Chem. B 2020, 8, 3655–3660. [Google Scholar] [CrossRef]
- Choi, S.; Han, S.I.; Jung, D.; Hwang, H.J.; Lim, C.; Bae, S.; Park, O.K.; Tschabrunn, C.M.; Lee, M.; Bae, S.Y.; et al. Highly conductive, stretchable and biocompatible Ag-Au core-sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 2018, 13, 1048–1056. [Google Scholar] [CrossRef]
- Ho, M.D.; Ling, Y.; Yap, L.W.; Wang, Y.; Dong, D.; Zhao, Y.; Cheng, W. Percolating Network of Ultrathin Gold Nanowires and Silver Nanowires toward “Invisible” Wearable Sensors for Detecting Emotional Expression and Apexcardiogram. Adv. Funct. Mater. 2017, 27, 1700845. [Google Scholar] [CrossRef]
- Dizon-Paradis, R.; Kalavakonda, R.R.; Chakraborty, P.; Bhunia, S. Pasteables: A Flexible and Smart “Stick-and-Peel’’ Wearable Platform for Fitness & Athletics. IEEE Consum. Electron. Mag. 2022; Early Access. [Google Scholar] [CrossRef]
- Heikenfeld, J.; Jajack, A.; Rogers, J.; Gutruf, P.; Tian, L.; Pan, T.; Li, R.; Khine, M.; Kim, J.; Wang, J.; et al. Wearable sensors: Modalities, challenges, and prospects. Lab. Chip 2018, 18, 217–248. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.B.; Zhang, Y.; Won, S.M.; Bandodkar, A.J.; Sekine, Y.; Xue, Y.; Koo, J.; Harshman, S.W.; Martin, J.A.; Park, J.M.; et al. Super-Absorbent Polymer Valves and Colorimetric Chemistries for Time-Sequenced Discrete Sampling and Chloride Analysis of Sweat via Skin-Mounted Soft Microfluidics. Small 2018, 14, 1703334. [Google Scholar] [CrossRef]
- He, F.; Li, K.; Lv, X.; Zeng, Q.; Zhu, Y.; Li, X.; Deng, Y. Flexible biochemical sensors for point-of-care management of diseases: A review. Microchim. Acta 2022, 189, 380. [Google Scholar] [CrossRef]
- Bandodkar, A.J.; Molinnus, D.; Mirza, O.; Guinovart, T.; Windmiller, J.R.; Valdés-Ramírez, G.; Andrade, F.J.; Schöning, M.J.; Wang, J. Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 2014, 54, 603–609. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhai, Q.; Dong, D.; An, T.; Gong, S.; Shi, Q.; Cheng, W. Highly Stretchable and Strain-Insensitive Fiber-Based Wearable Electrochemical Biosensor to Monitor Glucose in the Sweat. Anal. Chem. 2019, 91, 6569–6576. [Google Scholar] [CrossRef] [PubMed]
- Zhai, Q.; Yap, L.W.; Wang, R.; Gong, S.; Guo, Z.; Liu, Y.; Lyu, Q.; Wang, J.; Simon, G.P.; Cheng, W. Vertically Aligned Gold Nanowires as Stretchable and Wearable Epidermal Ion-Selective Electrode for Noninvasive Multiplexed Sweat Analysis. Anal. Chem. 2020, 92, 4647–4655. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Zhai, Q.; An, T.; Gong, S.; Cheng, W. Stretchable gold fiber-based wearable textile electrochemical biosensor for lactate monitoring in sweat. Talanta 2021, 222, 121484. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.; Chiu, P.Y.; Chen, C.F. Paper-based analytical devices for point-of-care blood tests. Biomicrofluidics 2021, 15, 041303. [Google Scholar] [CrossRef]
- Shang, T.; Zhang, J.Y.; Thomas, A.; Arnold, M.A.; Vetter, B.N.; Heinemann, L.; Klonoff, D.C. Products for Monitoring Glucose Levels in the Human Body With Noninvasive Optical, Noninvasive Fluid Sampling, or Minimally Invasive Technologies. J. Diabetes Sci. Technol. 2022, 16, 168–214. [Google Scholar] [CrossRef]
- Farooqui, M.F.; Shamim, A. Low Cost Inkjet Printed Smart Bandage for Wireless Monitoring of Chronic Wounds. Sci. Rep. 2016, 6, 28949. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, Z.; Zhou, P.; Zhang, Y.; Liu, Y.; Xu, Y.; Gu, Y.; Qin, S.; Haick, H.; Wang, Y. Toward a new generation of permeable skin electronics. Nanoscale 2023, 15, 3051–3078. [Google Scholar] [CrossRef]
- Shimura, T.; Sato, S.; Zalar, P.; Matsuhisa, N. Engineering the Comfort-of-Wear for Next Generation Wearables. Adv. Electron. Mater. 2022, 2200512. [Google Scholar] [CrossRef]
- Arakawa, T.; Dao, D.V.; Mitsubayashi, K. Biosensors and Chemical Sensors for Healthcare Monitoring: A Review. IEEJ Trans. Electr. Electron. Eng. 2022, 17, 626–636. [Google Scholar] [CrossRef]
- Yuan, M.; Luo, F.; Wang, Z.; Yu, J.; Li, H.; Chen, X. Smart wearable band-aid integrated with high-performance micro-supercapacitor, humidity and pressure sensor for multifunctional monitoring. Chem. Eng. J. 2023, 453, 139898. [Google Scholar] [CrossRef]
- Raj, S.K.; Babu, M.R.; Vishwas, S.; Chaitanya, M.V.N.L.; Harish, V.; Gupta, G.; Chellappan, D.K.; Dua, K.; Singh, S.K. An overview of recent advances in insulin delivery and wearable technology for effective management of diabetes. J. Drug. Deliv. Sci. Technol. 2022, 75, 103728. [Google Scholar] [CrossRef]
- Kesavadev, J.; Saboo, B.; Krishna, M.B.; Krishnan, G. Evolution of Insulin Delivery Devices: From Syringes, Pens, and Pumps to DIY Artificial Pancreas. Diabetes 2020, 11, 1251–1269. [Google Scholar] [CrossRef]
- Prabhakar, D.; Sreekanth, J.; Jayaveera, K.N. Transdermal Drug Delivery Patches: A Review. Int. J. Biol. Pharm. Allied Sci. 2013, 3. [Google Scholar] [CrossRef]
- Kurmi, B.D.; Tekchandani, P.; Paliwal, R.; Paliwal, S.R. Transdermal Drug Delivery: Opportunities and Challenges for Controlled Delivery of Therapeutic Agents Using Nanocarriers. Curr. Drug. Metab. 2017, 18, 481–495. [Google Scholar] [CrossRef]
- Davis, D.A.; Martins, P.P.; Zamloot, M.S.; Kucera, S.A.; Williams, R.O., 3rd; Smyth, H.D.C.; Warnken, Z.N. Complex Drug Delivery Systems: Controlling Transdermal Permeation Rates with Multiple Active Pharmaceutical Ingredients. AAPS PharmSciTech 2020, 21, 165. [Google Scholar] [CrossRef]
- Kumar, S.; Wang, Z.; Zhang, W.; Liu, X.; Li, M.; Li, G.; Zhang, B.; Singh, R. Optically Active Nanomaterials and Its Biosensing Applications—A Review. Biosensors 2023, 13, 85. [Google Scholar] [CrossRef]
- Zheng, K.; Tong, Y.; Zhang, S.; He, R.; Xiao, L.; Iqbal, Z.; Zhang, Y.; Gao, J.; Zhang, L.; Jiang, L.; et al. Flexible Bicolorimetric Polyacrylamide/Chitosan Hydrogels for Smart Real-Time Monitoring and Promotion of Wound Healing. Adv. Funct. Mater. 2021, 31, 2102599. [Google Scholar] [CrossRef]
- Ruckdashel, R.R.; Venkataraman, D.; Park, J.H. Smart textiles: A toolkit to fashion the future. J. Appl. Phys. 2021, 129, 130903. [Google Scholar] [CrossRef]
- Ehtesabi, H.; Kalji, S.O.; Movsesian, L. Smartphone-based wound dressings: A mini-review. Heliyon 2022, 8, e09876. [Google Scholar] [CrossRef]
- Manikkath, J.; Subramony, J.A. Toward closed-loop drug delivery: Integrating wearable technologies with transdermal drug delivery systems. Adv. Drug. Deliv. Rev. 2021, 179, 113997. [Google Scholar] [CrossRef]
- Rani Raju, N.; Silina, E.; Stupin, V.; Manturova, N.; Chidambaram, S.B.; Achar, R.R. Multifunctional and Smart Wound Dressings—A Review on Recent Research Advancements in Skin Regenerative Medicine. Pharmaceutics 2022, 14, 1574. [Google Scholar]
- Lim, C.; Hong, Y.J.; Jung, J.; Shin, Y.; Sunwoo, S.H.; Baik, S.; Park, O.K.; Choi, S.H.; Hyeon, T.; Kim, J.H.; et al. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. Sci. Adv. 2021, 7, eabd3716. [Google Scholar] [CrossRef] [PubMed]
- Sunwoo, S.-H.; Han, S.I.; Joo, H.; Cha, G.D.; Kim, D.; Choi, S.H.; Hyeon, T.; Kim, D.-H. Advances in Soft Bioelectronics for Brain Research and Clinical Neuroengineering. Matter 2020, 3, 1923–1947. [Google Scholar] [CrossRef]
- Xu, G.; Lu, Y.; Cheng, C.; Li, X.; Xu, J.; Liu, Z.; Liu, J.; Liu, G.; Shi, Z.; Chen, Z.; et al. Battery-Free and Wireless Smart Wound Dressing for Wound Infection Monitoring and Electrically Controlled On-Demand Drug Delivery. Adv. Funct. Mater. 2021, 31, 2100852. [Google Scholar] [CrossRef]
- Gao, Z.-F.; Su, C.-M.; Wang, C.; Zhang, Y.-L.; Wang, C.-H.; Yan, H.-H.; Hou, G. Antibacterial and hemostatic bilayered electrospun nanofibrous wound dressings based on quaternized silicone and quaternized chitosan for wound healing. Eur. Polym. J. 2021, 159, 110733. [Google Scholar] [CrossRef]
- Zeng, A.Z. Global sourcing: Process and design for efficient management. Supply Chain. Manag. 2003, 8, 367–379. [Google Scholar] [CrossRef]
- 3M. Find a Converter. Available online: https://www.3m.com/3M/en_US/medical-device-components-us/lets-work-together/where-to-buy/ (accessed on 25 January 2023).
- Tsegay, F.; Elsherif, M.; Butt, H. Smart 3D Printed Hydrogel Skin Wound Bandages: A Review. Polymers 2022, 14, 1012. [Google Scholar] [CrossRef] [PubMed]
- Pita-López, M.L.; Fletes-Vargas, G.; Espinosa-Andrews, H.; Rodríguez-Rodríguez, R. Physically cross-linked chitosan-based hydrogels for tissue engineering applications: A state-of-the-art review. Eur. Polym. J. 2021, 145, 110176. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, R.; Espinosa-Andrews, H.; Velasquillo-Martínez, C.; García-Carvajal, Z.Y. Composite hydrogels based on gelatin, chitosan and polyvinyl alcohol to biomedical applications: A review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1–20. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.; Niazi, M.; Ramakrishna, S. The evolution of wound dressings: From traditional to smart dressings. Polym. Adv. Technol. 2023, 34, 520–530. [Google Scholar] [CrossRef]
- Rezvani Ghomi, E.; Khosravi, F.; Neisiany, R.E.; Shakiba, M.; Zare, M.; Lakshminarayanan, R.; Chellappan, V.; Abdouss, M.; Ramakrishna, S. Advances in electrospinning of aligned nanofiber scaffolds used for wound dressings. Curr. Opin. Biomed. Eng. 2022, 22, 100393. [Google Scholar] [CrossRef]
- Adeli, H.; Khorasani, M.T.; Parvazinia, M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: Fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay. Int. J. Biol. Macromol. 2019, 122, 238–254. [Google Scholar] [CrossRef] [PubMed]
- Kalasin, S.; Sangnuang, P.; Surareungchai, W. Intelligent Wearable Sensors Interconnected with Advanced Wound Dressing Bandages for Contactless Chronic Skin Monitoring: Artificial Intelligence for Predicting Tissue Regeneration. Anal. Chem. 2022, 94, 6842–6852. [Google Scholar] [CrossRef] [PubMed]
- Charlene, V.; Del, R.; Dylan, C.; John, S.; John, W.; Jonathan, K.; Kris, G.; Nate, J.A.; Nathaniel, D.A.; Steve, A.; et al. The Engineer’s Guide to Wearables: Lessons Learned from Design Mishaps. 3M. Available online: https://multimedia.3m.com/mws/media/1778887O/the-engineers-guide-to-wearables-lessons-learned-from-design-mishaps.pdf (accessed on 25 January 2023).
- Technologies, M.M.M. From Mind to Market How to Transition from Concept to Commercialization While Being Mindful of Timing Constraints. 3M. Available online: https://multimedia.3m.com/mws/media/1880150O (accessed on 25 January 2023).
- ISO. SO 10993-18:2020/Amd 1:2022 Biological evaluation of medical devices. In Part. 18: Chemical Characterization of Medical Device Materials within a Risk Management Process—Amendment 1: Determination of the Uncertainty Factor; ISO: Geneva, Switzerland, 2022; p. 4. [Google Scholar]
Bandage Type | Advantages | Disadvantages | Highlights for Manufacturing | References |
---|---|---|---|---|
Gauzes |
|
| Excellent for holding sensors in place at any interface of the body. | [12,25,51,52] |
|
| The structure may change with fluid absorbed or evaporated from the bandage | ||
|
| Widely used and very economical | ||
Hydro-conductive |
|
| Excellent absorption for biochemical sensors | [51,52] |
| The frequency of replacement makes it an expensive option for mass production | |||
Foam |
|
| Excellent for both biophysical and biochemical sensors | [12,14,52] |
| Little to no structural changes with absorption (depends on foam density), | |||
|
| Requires an adhesive layer to eliminate artefacts associated with motion | ||
| ||||
Hydrogel |
|
| Not very economical due to secondary dressings and manufacturing costs | [12,48,52,53,54,55] |
|
| Excellent absorption with no extreme structural changes makes it an excellent base for biochemical sensors | ||
| ||||
|
| |||
Hydrocolloid |
|
| Excellent absorption but with extreme structural transformations as a result | [12,52,54] |
|
| |||
| ||||
Transparent Film |
|
| Good structural consistency for biophysical sensors | [12,51,52] |
| Excellent conformity to the epidermis layer | |||
|
| Proven mass production process with a clear scale-up process | ||
| ||||
|
Product | Chemical Composition | Elastic Modulus | Adhesive Force (N) | Thickness (μm) | Reference |
---|---|---|---|---|---|
Human skin | N/A | 10–500 kPa | N/A | 50–1500 | [97] |
TPE 45A | SEBS | 0.02 Gpa | N/A | N/A | [98] |
EcoFlex | Silicon elastomer | 69 kPa | 0.24 | 5–25 | [99] |
Spray-on-bandage (3M) | Acrylate terpolymer, Polyphenylmethylsiloxane, Hexamethyldisiloxane | 85 MPa | 0.98 | 1 | [99] |
Tegaderm film (3M) | Acrylate terpolymer, Polyurethane, Polyester, Silicone film | 12 MPa | 1.02 | 35 | [99] |
Silicon tape (3M) | Silicone adhesive, Acrylate polymer, Thermoplastic, polyester | 127 MPa | 1.37 | 330 | [99] |
PDMS | silicon elastomer | 2 MPa | 0.22 | 5–25 | [97] |
PET | Bis(2-hydroxyethyl) terephthalate | 2.5 GPa | N/A | 2.5–6 | [100] |
Acrylic adhesive | Methacrylic polymer | 17 kPa | 16 | 12–60 | [101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Levin, A.; Gong, S.; Cheng, W. Wearable Smart Bandage-Based Bio-Sensors. Biosensors 2023, 13, 462. https://doi.org/10.3390/bios13040462
Levin A, Gong S, Cheng W. Wearable Smart Bandage-Based Bio-Sensors. Biosensors. 2023; 13(4):462. https://doi.org/10.3390/bios13040462
Chicago/Turabian StyleLevin, Arie, Shu Gong, and Wenlong Cheng. 2023. "Wearable Smart Bandage-Based Bio-Sensors" Biosensors 13, no. 4: 462. https://doi.org/10.3390/bios13040462
APA StyleLevin, A., Gong, S., & Cheng, W. (2023). Wearable Smart Bandage-Based Bio-Sensors. Biosensors, 13(4), 462. https://doi.org/10.3390/bios13040462