Recent Advances in Multiplexed Wearable Sensor Platforms for Real-Time Monitoring Lifetime Stress: A Review
Abstract
:1. Introduction
2. Physiological Effects of Stress
2.1. Physiological Response Path Caused by Stress
2.2. Physiological Biomarkers Related to Stress
3. Multiplexed Sensor Systems for Stress Monitoring
3.1. Multiplexed Physical Sensor Systems
3.2. Multiplexed Physical–Chemical Sensor Systems
3.3. Multiplexed Chemical Sensor Systems
4. Conclusions and Future Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cannon, W.B. The Wisdom of the Body, Revised and Enlarged ed.; W. W. Norton: New York, NY, USA, 1939. [Google Scholar]
- Selye, H. A Syndrome Produced by Diverse Nocuous Agents. Nature 1936, 138, 32. [Google Scholar] [CrossRef] [Green Version]
- Selye, H. The Physiology and Pathology of Exposure to Stress; Acta, Inc.: Oxford, UK, 1950; pp. xx, 203, 822. [Google Scholar]
- Chrousos, G.P. Stress and Disorders of the Stress System. Nat. Rev. Endocrinol. 2009, 5, 374–381. [Google Scholar] [CrossRef] [PubMed]
- Prince, M.; Patel, V.; Saxena, S.; Maj, M.; Maselko, J.; Phillips, M.R.; Rahman, A. No Health without Mental Health. Lancet 2007, 370, 859–877. [Google Scholar] [CrossRef] [PubMed]
- Segerstrom, S.C.; Miller, G.E. Psychological Stress and the Human Immune System: A Meta-Analytic Study of 30 Years of Inquiry. Psychol. Bull. 2004, 130, 601–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kivimäki, M.; Steptoe, A. Effects of Stress on the Development and Progression of Cardiovascular Disease. Nat. Rev. Cardiol. 2018, 15, 215–229. [Google Scholar] [CrossRef]
- Chrousos, G.P.; Gold, P.W. The Concepts of Stress and Stress System Disorders. Overview of Physical and Behavioral Homeostasis. JAMA 1992, 267, 1244–1252. [Google Scholar] [CrossRef]
- Koh, K.B.; Park, J.K.; Kim, C.H.; Cho, S. Development of the Stress Response Inventory and Its Application in Clinical Practice. Psychosom. Med. 2001, 63, 668–678. [Google Scholar] [CrossRef]
- Beck, A.T.; Epstein, N.; Brown, G.; Steer, R.A. An Inventory for Measuring Clinical Anxiety: Psychometric Properties. J. Consult. Clin. Psychol. 1988, 56, 893–897. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A Global Measure of Perceived Stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Polit, D.F. Getting Serious about Test–Retest Reliability: A Critique of Retest Research and Some Recommendations. Qual. Life Res. 2014, 23, 1713–1720. [Google Scholar] [CrossRef]
- Cook, D.A.; Beckman, T.J. Current Concepts in Validity and Reliability for Psychometric Instruments: Theory and Application. Am. J. Med. 2006, 119, 166.e7–166.e16. [Google Scholar] [CrossRef]
- Boonnithi, S.; Phongsuphap, S. Comparison of Heart Rate Variability Measures for Mental Stress Detection. In Proceedings of the 2011 Computing in Cardiology, Hangzhou, China, 18–21 September 2011; pp. 85–88. [Google Scholar]
- McFarland, R.A. Relationship of Skin Temperature Changes to the Emotions Accompanying Music. Biofeedback Self-Regul. 1985, 10, 255–267. [Google Scholar] [CrossRef]
- Lee, M.; Yang, G.; Lee, H.-K.; Bang, S. Development Stress Monitoring System Based on Personal Digital Assistant (PDA). In Proceedings of the 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 1, pp. 2364–2367. [Google Scholar]
- Marazziti, D.; Di Muro, A.; Castrogiovanni, P. Psychological Stress and Body Temperature Changes in Humans. Physiol. Behav. 1992, 52, 393–395. [Google Scholar] [CrossRef]
- Rimm-Kaufman, S.E.; Kagan, J. The Psychological Significance of Changes in Skin Temperature. Motiv. Emot. 1996, 20, 63–78. [Google Scholar] [CrossRef]
- Kinnamon, D.; Ghanta, R.; Lin, K.-C.; Muthukumar, S.; Prasad, S. Portable Biosensor for Monitoring Cortisol in Low-Volume Perspired Human Sweat. Sci. Rep. 2017, 7, 13312. [Google Scholar] [CrossRef] [Green Version]
- Torrente-Rodríguez, R.M.; Tu, J.; Yang, Y.; Min, J.; Wang, M.; Song, Y.; Yu, Y.; Xu, C.; Ye, C.; IsHak, W.W.; et al. Investigation of Cortisol Dynamics in Human Sweat Using a Graphene-Based Wireless MHealth System. Matter 2020, 2, 921–937. [Google Scholar] [CrossRef]
- Ganguly, A.; Lin, K.C.; Muthukumar, S.; Prasad, S. Autonomous, Real-Time Monitoring Electrochemical Aptasensor for Circadian Tracking of Cortisol Hormone in Sub-Microliter Volumes of Passively Eluted Human Sweat. ACS Sens. 2021, 6, 63–72. [Google Scholar] [CrossRef]
- Inder, W.J.; Dimeski, G.; Russell, A. Measurement of Salivary Cortisol in 2012—Laboratory Techniques and Clinical Indications. Clin. Endocrinol. 2012, 77, 645–651. [Google Scholar] [CrossRef]
- Hong, Y.J.; Lee, H.; Kim, J.; Lee, M.; Choi, H.J.; Hyeon, T.; Kim, D.-H. Multifunctional Wearable System That Integrates Sweat-Based Sensing and Vital-Sign Monitoring to Estimate Pre-/Post-Exercise Glucose Levels. Adv. Funct. Mater. 2018, 28, 1805754. [Google Scholar] [CrossRef]
- Chrousos, G.P. The Role of Stress and the Hypothalamic-Pituitary-Adrenal Axis in the Pathogenesis of the Metabolic Syndrome: Neuro-Endocrine and Target Tissue-Related Causes. Int. J. Obes. Relat. Metab. Disord. 2000, 24 (Suppl. S2), S50–S55. [Google Scholar] [CrossRef] [Green Version]
- Russell, G.M.; Durant, C.; Ataya, A.; Papastathi, C.; Bhake, R.; Woltersdorf, W.; Lightman, S. Subcutaneous Pulsatile Glucocorticoid Replacement Therapy. Clin. Endocrinol. 2014, 81, 289–293. [Google Scholar] [CrossRef] [Green Version]
- Samson, C.; Koh, A. Stress Monitoring and Recent Advancements in Wearable Biosensors. Front. Bioeng. Biotechnol. 2020, 8, 1037. [Google Scholar] [CrossRef] [PubMed]
- Nagamine, K.; Tokito, S. Organic-Transistor-Based Biosensors Interfaced with Human Skin for Non-Invasive Perspiration Analysis. Sens. Actuators B Chem. 2021, 349, 130778. [Google Scholar] [CrossRef]
- Churcher, N.K.M.; Upasham, S.; Rice, P.; Bhadsavle, S.; Prasad, S. Development of a Flexible, Sweat-Based Neuropeptide Y Detection Platform. RSC Adv. 2020, 10, 23173–23186. [Google Scholar] [CrossRef] [PubMed]
- Pearlmutter, P.; DeRose, G.; Samson, C.; Linehan, N.; Cen, Y.; Begdache, L.; Won, D.; Koh, A. Sweat and Saliva Cortisol Response to Stress and Nutrition Factors. Sci. Rep. 2020, 10, 19050. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Lin, M.; Yin, L.; De la Paz, E.; Pei, K.; Sonsa-Ard, T.; de Loyola Silva, A.N.; Khorshed, A.A.; Zhang, F.; Tostado, N.; et al. An Epidermal Patch for the Simultaneous Monitoring of Haemodynamic and Metabolic Biomarkers. Nat. Biomed. Eng. 2021, 5, 737–748. [Google Scholar] [CrossRef]
- Ulrich-Lai, Y.M.; Herman, J.P. Neural Regulation of Endocrine and Autonomic Stress Responses. Nat. Rev. Neurosci. 2009, 10, 397–409. [Google Scholar] [CrossRef] [Green Version]
- Deussing, J.M.; Chen, A. The Corticotropin-Releasing Factor Family: Physiology of the Stress Response. Physiol. Rev. 2018, 98, 2225–2286. [Google Scholar] [CrossRef]
- Cannon, W.B. Bodily Changes in Pain, Hunger, Fear and Rage; Appleton: Oxford, UK, 1929; p. 404. [Google Scholar]
- Jansen, A.S.P.; Van Nguyen, X.; Karpitskiy, V.; Mettenleiter, T.C.; Loewy, A.D. Central Command Neurons of the Sympathetic Nervous System: Basis of the Fight-or-Flight Response. Science 1995, 270, 644–646. [Google Scholar] [CrossRef]
- Eddie Gabry, K.; Chrousos, G.; Gold, P.W. The Hypothalamic-Pituitary-Adrenal (HPA) Axis: A Major Mediator of the Adaptive Responses to Stress. In NeuroImmune Biology; Berczi, I., Szentivanyi, A., Eds.; The Immune-Neuroendocrine Circuitry History and Progress; Elsevier: Amsterdam, The Netherlands, 2003; Volume 3, pp. 379–414. [Google Scholar]
- Charmandari, E.; Kino, T.; Souvatzoglou, E.; Chrousos, G.P. Pediatric Stress: Hormonal Mediators and Human Development. HRP 2003, 59, 161–179. [Google Scholar] [CrossRef] [Green Version]
- Denver, R.J. Stress Hormones Mediate Environment-Genotype Interactions during Amphibian Development. Gen. Comp. Endocrinol. 2009, 164, 20–31. [Google Scholar] [CrossRef]
- de Kloet, E.R.; Joëls, M.; Holsboer, F. Stress and the Brain: From Adaptation to Disease. Nat. Rev. Neurosci. 2005, 6, 463–475. [Google Scholar] [CrossRef]
- Sunwoo, S.H.; Lee, J.S.; Bae, S.; Shin, Y.J.; Kim, C.S.; Joo, S.Y.; Choi, H.S.; Suh, M.; Kim, S.W.; Choi, Y.J.; et al. Chronic and Acute Stress Monitoring by Electrophysiological Signals from Adrenal Gland. Proc. Natl. Acad. Sci. USA 2019, 116, 1146–1151. [Google Scholar] [CrossRef] [Green Version]
- Gannouni, S.; Aledaily, A.; Belwafi, K.; Aboalsamh, H. Emotion Detection Using Electroencephalography Signals and a Zero-Time Windowing-Based Epoch Estimation and Relevant Electrode Identification. Sci. Rep. 2021, 11, 7071. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Frounchi, J.; Amiri, M. Wavelet-Based Emotion Recognition System Using EEG Signal. Neural Comput. Appl. 2017, 28, 1985–1990. [Google Scholar] [CrossRef]
- Arpaia, P.; Moccaldi, N.; Prevete, R.; Sannino, I.; Tedesco, A. A Wearable EEG Instrument for Real-Time Frontal Asymmetry Monitoring in Worker Stress Analysis. IEEE Trans. Instrum. Meas. 2020, 69, 8335–8343. [Google Scholar] [CrossRef]
- Katmah, R.; Al-Shargie, F.; Tariq, U.; Babiloni, F.; Al-Mughairbi, F.; Al-Nashash, H. A Review on Mental Stress Assessment Methods Using EEG Signals. Sensors 2021, 21, 5043. [Google Scholar] [CrossRef]
- Perez-Valero, E.; Vaquero-Blasco, M.A.; Lopez-Gordo, M.A.; Morillas, C. Quantitative Assessment of Stress Through EEG During a Virtual Reality Stress-Relax Session. Front. Comput. Neurosci. 2021, 15, 684423. [Google Scholar] [CrossRef]
- Wu, W.; Pirbhulal, S.; Zhang, H.; Mukhopadhyay, S.C. Quantitative Assessment for Self-Tracking of Acute Stress Based on Triangulation Principle in a Wearable Sensor System. IEEE J. Biomed. Health Inform. 2019, 23, 703–713. [Google Scholar] [CrossRef]
- Dalmeida, K.M.; Masala, G.L. HRV Features as Viable Physiological Markers for Stress Detection Using Wearable Devices. Sensors 2021, 21, 2873. [Google Scholar] [CrossRef]
- Arquilla, K.; Webb, A.K.; Anderson, A.P. Utility of the Full ECG Waveform for Stress Classification. Sensors 2022, 22, 7034. [Google Scholar] [CrossRef] [PubMed]
- Orguc, S.; Khurana, H.S.; Stankovic, K.M.; Leel, H.S.; Chandrakasan, A.P. EMG-Based Real Time Facial Gesture Recognition for Stress Monitoring. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 2651–2654. [Google Scholar]
- Wijsman, J.; Grundlehner, B.; Penders, J.; Hermens, H. Trapezius Muscle EMG as Predictor of Mental Stress. ACM Trans. Embed. Comput. Syst. 2013, 12, 1–20. [Google Scholar] [CrossRef]
- Setz, C.; Arnrich, B.; Schumm, J.; La Marca, R.; Tröster, G.; Ehlert, U. Discriminating Stress From Cognitive Load Using a Wearable EDA Device. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Bakker, J.; Pechenizkiy, M.; Sidorova, N. What’s Your Current Stress Level? Detection of Stress Patterns from GSR Sensor Data. In Proceedings of the 2011 IEEE 11th International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2011; pp. 573–580. [Google Scholar]
- Vavrinsky, E.; Stopjakova, V.; Kopani, M.; Kosnacova, H. The Concept of Advanced Multi-Sensor Monitoring of Human Stress. Sensors 2021, 21, 3499. [Google Scholar] [CrossRef] [PubMed]
- Vinkers, C.H.; Penning, R.; Hellhammer, J.; Verster, J.C.; Klaessens, J.H.G.M.; Olivier, B.; Kalkman, C.J. The Effect of Stress on Core and Peripheral Body Temperature in Humans. Stress 2013, 16, 520–530. [Google Scholar] [CrossRef]
- Herborn, K.A.; Graves, J.L.; Jerem, P.; Evans, N.P.; Nager, R.; McCafferty, D.J.; McKeegan, D.E.F. Skin Temperature Reveals the Intensity of Acute Stress. Physiol. Behav. 2015, 152, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, P.; Murugappan, M.; Yaacob, S. Descriptive Analysis of Skin Temperature Variability of Sympathetic Nervous System Activity in Stress. J. Phys. Ther. Sci. 2012, 24, 1341–1344. [Google Scholar] [CrossRef] [Green Version]
- Hellhammer, D.H.; Wüst, S.; Kudielka, B.M. Salivary Cortisol as a Biomarker in Stress Research. Psychoneuroendocrinology 2009, 34, 163–171. [Google Scholar] [CrossRef]
- Kaushik, A.; Vasudev, A.; Arya, S.K.; Pasha, S.K.; Bhansali, S. Recent Advances in Cortisol Sensing Technologies for Point-of-Care Application. Biosens. Bioelectron. 2014, 53, 499–512. [Google Scholar] [CrossRef]
- Sekar, M.; Sriramprabha, R.; Sekhar, P.K.; Bhansali, S.; Ponpandian, N.; Pandiaraj, M.; Viswanathan, C. Review—Towards Wearable Sensor Platforms for the Electrochemical Detection of Cortisol. J. Electrochem. Soc. 2020, 167, 067508. [Google Scholar] [CrossRef]
- An, J.E.; Kim, K.H.; Park, S.J.; Seo, S.E.; Kim, J.; Ha, S.; Bae, J.; Kwon, O.S. Wearable Cortisol Aptasensor for Simple and Rapid Real-Time Monitoring. ACS Sens. 2022, 7, 99–108. [Google Scholar] [CrossRef]
- Reilly, R.B.; Lee, T.C. Electrograms (ECG, EEG, EMG, EOG). Technol. Health Care 2010, 18, 443–458. [Google Scholar] [CrossRef]
- Szakonyi, B.; Vassányi, I.; Schumacher, E.; Kósa, I. Efficient Methods for Acute Stress Detection Using Heart Rate Variability Data from Ambient Assisted Living Sensors. BioMed. Eng. OnLine 2021, 20, 73. [Google Scholar] [CrossRef]
- Giannakakis, G.; Marias, K.; Tsiknakis, M. A Stress Recognition System Using HRV Parameters and Machine Learning Techniques. In Proceedings of the 2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW), Cambridge, UK, 3–6 September 2019; pp. 269–272. [Google Scholar]
- Christopoulos, G.I.; Uy, M.A.; Yap, W.J. The Body and the Brain: Measuring Skin Conductance Responses to Un-derstand the Emotional Experience. Organ. Res. Methods 2019, 22, 394–420. [Google Scholar] [CrossRef]
- Jacobs, S.C.; Friedman, R.; Parker, J.D.; Tofler, G.H.; Jimenez, A.H.; Muller, J.E.; Benson, H.; Stone, P.H. Use of Skin Conductance Changes during Mental Stress Testing as an Index of Autonomic Arousal in Cardiovascular Research. Am. Heart J. 1994, 128, 1170–1177. [Google Scholar] [CrossRef]
- Chang, C.-H.; Ko, H.-J.; Chang, K.-M. Cancellation of High-Frequency Noise in ECG Signals Using Adaptive Filter without External Reference. In Proceedings of the 2010 3rd International Conference on Biomedical Engineering and Informatics, Yantai, China, 16–18 October 2010; Volume 2, pp. 787–790. [Google Scholar]
- Kang, M.; Chai, K. Wearable Sensing Systems for Monitoring Mental Health. Sensors 2022, 22, 994. [Google Scholar] [CrossRef]
- Wagner, J.; Kim, J.; Andre, E. From Physiological Signals to Emotions: Implementing and Comparing Selected Methods for Feature Extraction and Classification. In Proceedings of the 2005 IEEE International Conference on Multimedia and Expo, Amsterdam, The Netherlands, 6–9 July 2005; pp. 940–943. [Google Scholar]
- Sun, F.-T.; Kuo, C.; Cheng, H.-T.; Buthpitiya, S.; Collins, P.; Griss, M. Activity-Aware Mental Stress Detection Using Physiological Sensors. In Mobile Computing, Applications, and Services, Proceedings of the Second International ICST Conference, MOBICASE 2010, Santa Clara, CA, USA, 25–28 October 2010; Gris, M., Yang, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 211–230. [Google Scholar]
- Minguillon, J.; Perez, E.; Lopez-Gordo, M.A.; Pelayo, F.; Sanchez-Carrion, M.J. Portable System for Real-Time Detection of Stress Level. Sensors 2018, 18, 2504. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.-B.; Meeseepong, M.; Trung, T.Q.; Kim, B.-Y.; Lee, N.-E. A Wearable Lab-on-a-Patch Platform with Stretchable Nanostructured Biosensor for Non-Invasive Immunodetection of Biomarker in Sweat. Biosens. Bioelectron. 2020, 156, 112133. [Google Scholar] [CrossRef]
- Marques-Deak, A.; Cizza, G.; Eskandari, F.; Torvik, S.; Christie, I.C.; Sternberg, E.M.; Phillips, T.M. Measurement of Cytokines in Sweat Patches and Plasma in Healthy Women: Validation in a Controlled Study. J. Immunol. Methods 2006, 315, 99–109. [Google Scholar] [CrossRef]
- Noushad, S.; Ahmed, S.; Ansari, B.; Mustafa, U.-H.; Saleem, Y.; Hazrat, H. Physiological Biomarkers of Chronic Stress: A Systematic Review. Int. J. Health Sci. 2021, 15, 46–59. [Google Scholar]
- Enman, N.M.; Sabban, E.L.; McGonigle, P.; Van Bockstaele, E.J. Targeting the Neuropeptide Y System in Stress-Related Psychiatric Disorders. Neurobiol. Stress 2015, 1, 33–43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Can, Y.S.; Arnrich, B.; Ersoy, C. Stress Detection in Daily Life Scenarios Using Smart Phones and Wearable Sensors: A Survey. J. Biomed. Inform. 2019, 92, 103139. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Zagoory-Sharon, O.; Feldman, R.; Lewis, J.G.; Weller, A. Measuring Cortisol in Human Psychobiological Studies. Physiol. Behav. 2007, 90, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Moonen, E.J.M.; Haakma, J.R.; Peri, E.; Pelssers, E.; Mischi, M.; den Toonder, J.M.J. Wearable Sweat Sensing for Prolonged, Semicontinuous, and Nonobtrusive Health Monitoring. VIEW 2020, 1, 20200077. [Google Scholar] [CrossRef]
- Yu, H.; Sun, J. Sweat Detection Theory and Fluid Driven Methods: A Review. Nanotechnol. Precis. Eng. 2020, 3, 126–140. [Google Scholar] [CrossRef]
- McMullen, R.L.; Gillece, T.; Lu, G.; Laura, D.; Chen, S. Influence of Various Environmental Parameters on Sweat Gland Activity. J. Cosmet. Sci. 2013, 64, 243–260. [Google Scholar]
- McCormick, C.M.; Lewis, E.; Somley, B.; Kahan, T.A. Individual Differences in Cortisol Levels and Performance on a Test of Executive Function in Men and Women. Physiol. Behav. 2007, 91, 87–94. [Google Scholar] [CrossRef]
- He, R.; Liu, H.; Niu, Y.; Zhang, H.; Genin, G.M.; Xu, F. Flexible Miniaturized Sensor Technologies for Long-Term Physiological Monitoring. Npj Flex. Electron. 2022, 6, 1–11. [Google Scholar] [CrossRef]
- Aspiotis, V.; Miltiadous, A.; Kalafatakis, K.; Tzimourta, K.D.; Giannakeas, N.; Tsipouras, M.G.; Peschos, D.; Glavas, E.; Tzallas, A.T. Assessing Electroencephalography as a Stress Indicator: A VR High-Altitude Scenario Monitored through EEG and ECG. Sensors 2022, 22, 5792. [Google Scholar] [CrossRef]
- Umer, W. Simultaneous Monitoring of Physical and Mental Stress for Construction Tasks Using Physiological Measures. J. Build. Eng. 2022, 46, 103777. [Google Scholar] [CrossRef]
- Kim, H.; Kim, Y.-S.; Mahmood, M.; Kwon, S.; Zavanelli, N.; Kim, H.S.; Rim, Y.S.; Epps, F.; Yeo, W.-H. Fully Integrated, Stretchable, Wireless Skin-Conformal Bioelectronics for Continuous Stress Monitoring in Daily Life. Adv. Sci. 2020, 7, 2000810. [Google Scholar] [CrossRef]
- Rosa, B.M.G.; Yang, G.Z. A Flexible Wearable Device for Measurement of Cardiac, Electrodermal, and Motion Parameters in Mental Healthcare Applications. IEEE J. Biomed. Health Inf. 2019, 23, 2276–2285. [Google Scholar] [CrossRef]
- Zeng, Z.; Huang, Z.; Leng, K.; Han, W.; Niu, H.; Yu, Y.; Ling, Q.; Liu, J.; Wu, Z.; Zang, J. Nonintrusive Monitoring of Mental Fatigue Status Using Epidermal Electronic Systems and Machine-Learning Algorithms. ACS Sens. 2020, 5, 1305–1313. [Google Scholar] [CrossRef]
- Yoon, S.; Sim, J.K.; Cho, Y.-H. A Flexible and Wearable Human Stress Monitoring Patch. Sci. Rep. 2016, 6, 23468. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-S.; Mahmood, M.; Lee, Y.; Kim, N.K.; Kwon, S.; Herbert, R.; Kim, D.; Cho, H.C.; Yeo, W.-H. All-in-One, Wireless, Stretchable Hybrid Electronics for Smart, Connected, and Ambulatory Physiological Monitoring. Adv. Sci. 2019, 6, 1900939. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.-S.; Kim, J.; Chicas, R.; Xiuhtecutli, N.; Matthews, J.; Zavanelli, N.; Kwon, S.; Lee, S.H.; Hertzberg, V.S.; Yeo, W.-H. Soft Wireless Bioelectronics Designed for Real-Time, Continuous Health Monitoring of Farmworkers. Adv. Healthc. Mater. 2022, 11, 2200170. [Google Scholar] [CrossRef]
- Gao, W.; Emaminejad, S.; Nyein, H.Y.Y.; Challa, S.; Chen, K.; Peck, A.; Fahad, H.M.; Ota, H.; Shiraki, H.; Kiriya, D.; et al. Fully Integrated Wearable Sensor Arrays for Multiplexed in Situ Perspiration Analysis. Nature 2016, 529, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Nakata, S.; Arie, T.; Akita, S.; Takei, K. Wearable, Flexible, and Multifunctional Healthcare Device with an ISFET Chemical Sensor for Simultaneous Sweat PH and Skin Temperature Monitoring. ACS Sens. 2017, 2, 443–448. [Google Scholar] [CrossRef]
- Imani, S.; Bandodkar, A.J.; Mohan, A.M.V.; Kumar, R.; Yu, S.; Wang, J.; Mercier, P.P. A Wearable Chemical–Electrophysiological Hybrid Biosensing System for Real-Time Health and Fitness Monitoring. Nat. Commun. 2016, 7, 11650. [Google Scholar] [CrossRef] [Green Version]
- Gil, B.; Anastasova, S.; Yang, G.Z. A Smart Wireless Ear-Worn Device for Cardiovascular and Sweat Parameter Monitoring During Physical Exercise: Design and Performance Results. Sensors 2019, 19, 1616. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.; Song, C.; Hong, Y.S.; Kim, M.; Cho, H.R.; Kang, T.; Shin, K.; Choi, S.H.; Hyeon, T.; Kim, D.-H. Wearable/Disposable Sweat-Based Glucose Monitoring Device with Multistage Transdermal Drug Delivery Module. Sci. Adv. 2017, 3, e1601314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shirzaei Sani, E.; Xu, C.; Wang, C.; Song, Y.; Min, J.; Tu, J.; Solomon, S.A.; Li, J.; Banks, J.L.; Armstrong, D.G.; et al. A Stretchable Wireless Wearable Bioelectronic System for Multiplexed Monitoring and Combination Treatment of Infected Chronic Wounds. Sci. Adv. 2023, 9, eadf7388. [Google Scholar] [CrossRef] [PubMed]
- Pali, M.; Jagannath, B.; Lin, K.-C.; Sankhala, D.; Upasham, S.; Muthukumar, S.; Prasad, S. Tracking Metabolic Responses Based on Macronutrient Consumption: A Comprehensive Study to Continuously Monitor and Quantify Dual Markers (Cortisol and Glucose) in Human Sweat Using WATCH Sensor. Bioeng. Transl. Med. 2021, 6, e10241. [Google Scholar] [CrossRef] [PubMed]
- Martín, A.; Kim, J.; Kurniawan, J.F.; Sempionatto, J.R.; Moreto, J.R.; Tang, G.; Campbell, A.S.; Shin, A.; Lee, M.Y.; Liu, X.; et al. Epidermal Microfluidic Electrochemical Detection System: Enhanced Sweat Sampling and Metabolite Detection. ACS Sens. 2017, 2, 1860–1868. [Google Scholar] [CrossRef]
- Koh, A.; Kang, D.; Xue, Y.; Lee, S.; Pielak, R.M.; Kim, J.; Hwang, T.; Min, S.; Banks, A.; Bastien, P.; et al. A Soft, Wearable Microfluidic Device for the Capture, Storage, and Colorimetric Sensing of Sweat. Sci. Transl. Med. 2016, 8, 366ra165. [Google Scholar] [CrossRef] [Green Version]
- Mugo, S.M.; Lu, W.; Wood, M.; Lemieux, S. Wearable Microneedle Dual Electrochemical Sensor for Simultaneous PH and Cortisol Detection in Sweat. Electrochem. Sci. Adv. 2022, 2, e2100039. [Google Scholar] [CrossRef]
- Oh, S.Y.; Hong, S.Y.; Jeong, Y.R.; Yun, J.; Park, H.; Jin, S.W.; Lee, G.; Oh, J.H.; Lee, H.; Lee, S.-S.; et al. Skin-Attachable, Stretchable Electrochemical Sweat Sensor for Glucose and PH Detection. ACS Appl. Mater. Interfaces 2018, 10, 13729–13740. [Google Scholar] [CrossRef]
- Singh, N.K.; Chung, S.; Chang, A.-Y.; Wang, J.; Hall, D.A. A Non-Invasive Wearable Stress Patch for Real-Time Cortisol Monitoring Using a Pseudoknot-Assisted Aptamer. Biosens. Bioelectron. 2023, 227, 115097. [Google Scholar] [CrossRef]
- Tzevelekakis, K.; Stefanidi, Z.; Margetis, G. Real-Time Stress Level Feedback from Raw Ecg Signals for Personalised, Context-Aware Applications Using Lightweight Convolutional Neural Network Architectures. Sensors 2021, 21, 7802. [Google Scholar] [CrossRef]
- Lundberg, U.; Kadefors, R.; Melin, B.; Palmerud, G.; Hassmen, P.; Engstrom, M.; Dohns, I.E. Psychophysiological Stress and EMG Activity of the Trapezius Muscle. Int. J. Behav. Med. 1994, 1, 354–370. [Google Scholar] [CrossRef]
- Nicolò, A.; Massaroni, C.; Schena, E.; Sacchetti, M. The Importance of Respiratory Rate Monitoring: From Healthcare to Sport and Exercise. Sensors 2020, 20, 6396. [Google Scholar] [CrossRef]
- Gandhi, S.; Shojaei Baghini, M.; Mukherji, S. Mental Stress Assessment—A Comparison between HRV Based and Respiration Based Techniques. In Proceedings of the 2015 Computing in Cardiology Conference (CinC), Nice, France, 6–9 September 2015; pp. 1029–1032. [Google Scholar]
- Han, H.J.; Labbaf, S.; Borelli, J.L.; Dutt, N.; Rahmani, A.M. Objective Stress Monitoring Based on Wearable Sensors in Everyday Settings. J. Med. Eng. Technol. 2020, 44, 177–189. [Google Scholar] [CrossRef]
- Choi, J.; Gutierrez-Osuna, R. Removal of Respiratory Influences From Heart Rate Variability in Stress Monitoring. IEEE Sens. J. 2011, 11, 2649–2656. [Google Scholar] [CrossRef]
- Parlak, O. Portable and Wearable Real-Time Stress Monitoring: A Critical Review. Sens. Actuators Rep. 2021, 3, 100036. [Google Scholar] [CrossRef]
- Ma, Y.; Qiang, T.; Gao, M.; Liang, J.; Jiang, Y. Quantitative, Temperature-Calibrated and Real-Time Glucose Biosensor Based on Symmetrical-Meandering-Type Resistor and Intertwined Capacitor Structure. Biosensors 2021, 11, 484. [Google Scholar] [CrossRef]
- Keum, K.; Lee, G.; Lee, H.; Yun, J.; Park, H.; Hong, S.Y.; Song, C.; Kim, J.W.; Ha, J.S. Wire-Shaped Supercapacitors with Organic Electrolytes Fabricated via Layer-by-Layer Assembly. ACS Appl. Mater. Interfaces 2018, 10, 26248–26257. [Google Scholar] [CrossRef]
- Chen, C.-M.; Anastasova, S.; Zhang, K.; Rosa, B.G.; Lo, B.P.L.; Assender, H.E.; Yang, G.-Z. Towards Wearable and Flexible Sensors and Circuits Integration for Stress Monitoring. IEEE J. Biomed. Health Inform. 2020, 24, 2208–2215. [Google Scholar] [CrossRef]
- Parlak, O.; Keene, S.T.; Marais, A.; Curto, V.F.; Salleo, A. Molecularly Selective Nanoporous Membrane-Based Wearable Organic Electrochemical Device for Noninvasive Cortisol Sensing. Sci. Adv. 2018, 4, eaar2904. [Google Scholar] [CrossRef] [Green Version]
- Joseph, J.J.; Golden, S.H. Cortisol Dysregulation: The Bidirectional Link between Stress, Depression, and Type 2 Diabetes Mellitus. Ann. N. Y. Acad. Sci. 2017, 1391, 20–34. [Google Scholar] [CrossRef] [Green Version]
- Nirupama, R.; Rajaraman, B.; Hn, Y. Stress and Glucose Metabolism: A Review. Imaging J. Clin. Med. Sci. 2018, 5, 8–12. [Google Scholar]
- Cui, B.; Luo, Y.; Tian, P.; Peng, F.; Lu, J.; Yang, Y.; Su, Q.; Liu, B.; Yu, J.; Luo, X.; et al. Stress-Induced Epinephrine Enhances Lactate Dehydrogenase A and Promotes Breast Cancer Stem-like Cells. J. Clin. Investig. 2019, 129, 1030–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, T.; Songkakul, T.; Knisely, C.T.; Yokus, M.A.; Daniele, M.A.; Dickey, M.D.; Bozkurt, A.; Velev, O.D. Wireless Wearable Electrochemical Sensing Platform with Zero-Power Osmotic Sweat Extraction for Continuous Lactate Monitoring. ACS Sens. 2022, 7, 2037–2048. [Google Scholar] [CrossRef] [PubMed]
- Ingaramo, R.A.; Santana, M. P-230: Exaggerated Blood Pressure Reaction to Mental Stress and Target Organ Damage. Am. J. Hypertens. 2005, 18, 89A. [Google Scholar] [CrossRef] [Green Version]
Variety of Signals (Abbr.) | Pathways (Signal Type) | Measured Locations | Analytical Methods | References |
---|---|---|---|---|
Electroencephalogram (EEG) | ANS (Physical) | Brain | Not standardized | [40,41,42,43,44] |
Electrocardiogram (ECG), Respiration rate (RR) | Heart | Changes in R–R intervals in the QRS complex | [45,46,47] | |
Electromyogram (EMG) | Muscle | Not standardized | [48,49] | |
Electrodermal activity (EDA) | Skin | Changes in Amplitude and phase | [50,51,52] | |
Skin temperature (ST) | Skin | Changes in temperature | [53,54,55] | |
Cortisol | HPA axis (Chemical) | Body Fluid | Changes in cortisol concentration | [56,57,58,59] |
Combinations of Multiplexed Sensor Systems | Combinations of Biomarkers | Characteristics | Ref. | ||||
---|---|---|---|---|---|---|---|
Location | Working Principles | Real-Time Monitoring * | Stress Monitoring * | Performance | |||
Physical sensors | GSR–ST | Wrist, shoulder | Calibration | O | O | GSR; SNR of 8.45 while walking ST; N/A | [83] |
ECG–GSR–ST | Chest | Validation | O | O | Overall, accuracy around 89% of human condition analysis | [84] | |
ECG–RR–GSR | Chest, palm | Validation | O | O | Overall, accuracy up to 89% of stress level detection | [85] | |
HRV–GSR–ST | Wrist | Validation | O | △ | ST; sensitivity of 0.31 Ω/°C GSR; sensitivity of 0.28 μV/0.02 μS | [86] | |
HR–RR | Chest | Validation | O | △ | HR; accuracy of 97.6% (compared to single sensor) RR; accuracy of 93.8% (compared to single sensor) | [87] | |
ECG–HR–ST | Chest | Validation | O | △ | ECG; SNR of >20 dB HR; accuracy of 89% (compared to single sensor) ST; N/A | [88] | |
Physical-chemical sensors | ST–Glucose–Lactate | Forehead, wrist | Calibration | △ (Stabilized within 1 min) | △ | ST; sensitivity of 0.18 %/°C Glucose; sensitivity of 2.35 nA/µM Lactate; sensitivity of 220 nA/mM | [89] |
ST–pH | Neck | Calibration | O | △ | pH; sensitivity of 51.2 mV/pH ST; sensitivity of 0.85%/°C | [90] | |
ECG–Lactate | Chest | Correlation | O | △ | Lactate; sensitivity of 96 nA/mM ECG; N/A | [91] | |
ECG–Lactate–pH | Ear | Correlation | O | △ | pH; sensitivity of 50 mV/pH Lactate; sensitivity of 0.8 µA/mM ECG; SNR of 18 dB | [92] | |
ST–PPG–Glucose | Forehead | Calibration Correlation | O | △ | N/A | [23] | |
BP–HR–Glucose–Lactate | Neck | Correlation | O | △ | BP, HR; N/A Glucose; >100 mg/dL Lactate; N/A | [30] | |
ST–Humidity–Glucose–pH | Wrist | Calibration | O | △ | N/A | [93] | |
ST–pH–Ammonium–Glucose–Lactate–Uric acid | N/A (only conducting animal-level studies) | Calibration Correlation | O | △ | ST; sensitivity of 0.21%/°C pH; sensitivity of 59.7 mV/pH Ammonium; sensitivity of 59.7 mV/decade Glucose; sensitivity of 16.34 nA/mM Lactate; sensitivity of 41.44 nA/mM Uric acid; sensitivity of 189.60 nA/mM | [94] | |
Chemical sensors | Cortisol–Glucose | Arm | Correlation | O | △ | Cortisol; sensitive in the range of 1–11 ng/mL Glucose; sensitive in the range of 1–10 mg/dl | [95] |
Glucose–Lactate | Arm and Lower back | Correlation | △ (reservoir was filled within 8 min from starting exercise) | △ | Glucose; LOD of 50 μM Lactate; N/A | [96] | |
pH–Lactate-Glucose–Creatinine | Lower back and volar forearm | Correlation | O (<1 min) | △ | Glucose; LOD of 200 μM | [97] | |
Cortisol–pH | Brow | Correlation | O (<1 min) | △ | pH; LOD of 2 Cortisol; LOD of 1.4 ± 0.3 ng/mL | [98] | |
Glucose–pH | Arm | Correlation | △ (sufficient sweat after 20 min) | △ | Glucose; sensitivity of 10.89 μA/mM∙ pH; sensitivity of 71.44 mV/pH | [99] | |
Cortisol–pH | Arm | Calibration | △ (reservoir was filled within 20 min from starting exercise) | △ | pH; sensitivity of 69 mV/pH Cortisol; sensitive in the range of 1 pM to 1 uM, LOD of 0.2 pM | [100] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, H.; Song, J.; Kim, S.; Lee, S.; Park, Y.; Lee, S.; Lee, S.; Kim, J. Recent Advances in Multiplexed Wearable Sensor Platforms for Real-Time Monitoring Lifetime Stress: A Review. Biosensors 2023, 13, 470. https://doi.org/10.3390/bios13040470
Kim H, Song J, Kim S, Lee S, Park Y, Lee S, Lee S, Kim J. Recent Advances in Multiplexed Wearable Sensor Platforms for Real-Time Monitoring Lifetime Stress: A Review. Biosensors. 2023; 13(4):470. https://doi.org/10.3390/bios13040470
Chicago/Turabian StyleKim, Heena, Jaeyoon Song, Sehyeon Kim, Suyoung Lee, Yejin Park, Seungjun Lee, Seunghee Lee, and Jinsik Kim. 2023. "Recent Advances in Multiplexed Wearable Sensor Platforms for Real-Time Monitoring Lifetime Stress: A Review" Biosensors 13, no. 4: 470. https://doi.org/10.3390/bios13040470
APA StyleKim, H., Song, J., Kim, S., Lee, S., Park, Y., Lee, S., Lee, S., & Kim, J. (2023). Recent Advances in Multiplexed Wearable Sensor Platforms for Real-Time Monitoring Lifetime Stress: A Review. Biosensors, 13(4), 470. https://doi.org/10.3390/bios13040470