A Charge-Transfer-Induced Strategy for Enantioselective Discrimination by Potential-Regulated Surface-Enhanced Raman Scattering Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Instruments and Characterization
2.3. Preparation of PATP Functionalized Au NPs Substrates
2.4. Constructing of Chirality-Label-Free Enantiomeric Discrimination Systems
2.5. SERS Measurement
2.6. Electrochemical SERS Measurement
3. Results and Discussion
3.1. Characterization of the Achiral Au/PATP Substrates and Au/PATP/Enantiomer Discrimination Systems
3.2. SERS Reproducibility and Discrimination Performance of the Achiral Au/PATP Substrates
3.3. Electrochemical SERS Enantioselective Discrimination for the Au/PATP/Enantiomer Discrimination System
3.4. Electrochemical Potential-Regulated SERS Enantioselective Discrimination for Other Aromatic and Aliphatic Enantiomers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, Y.; Kim, R.M.; Im, S.W.; Balamurugan, M.; Nam, K.T. Plasmonic metamaterials for chiral sensing applications. Nanoscale 2020, 12, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.Y.; Quan, K.J.; Pei, D.; Liu, J.F.; Di, D.L. The development of biphasic chiral recognition in chiral separation. Chirality 2018, 30, 974–981. [Google Scholar] [CrossRef]
- Basheer, A.A. Chemical chiral pollution: Impact on the society and scienceand need of the regulations in the 21st century. Chirality 2018, 30, 402–406. [Google Scholar] [CrossRef]
- Pu, L. Enantioselective Fluorescent Recognition of Free Amino Acids: Challenges and Opportunities. Angew. Chem. Int. Ed. 2020, 59, 21814–21828. [Google Scholar] [CrossRef]
- Zor, E.; Bingol, H.; Ersoz, M. Chiral sensors. TRAC-Trend Anal. Chem. 2019, 121, 115662. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Y.; Li, G. A complex imprinted polymer membrane combined with solid phase fluorescence detection for selective analysis of l-phenylalanine in water-abundant samples. Anal. Methods 2013, 5, 4680–4686. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.; Wang, Q.; Fan, X. Chiral separation of phenyllactic acid by helical structure from spring dextrin. J. Incl. Phenom. Macrocycl. Chem. 2015, 82, 515–521. [Google Scholar] [CrossRef]
- Fischer, A.K.; Rampertab, S.D.; Mullin, G.E. Nutritional Support: Adults, Enteral. Encyclopedia of Human Nutrition, 3rd ed.; Elsevier: Amsterdam, Netherlands, 2013; pp. 258–263. [Google Scholar]
- Raee, E.; Liu, B.; Yang, Y.; Namani, T.; Cui, Y.; Sahai, N.; Li, X.; Liu, T. Side Group of Hydrophobic Amino Acids Controls Chiral Discrimination among Chiral Counterions and Metal−Organic Cages. Nano Lett. 2022, 22, 4421–4428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yin, J.; Yoon, J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chem. Rev. 2014, 114, 4918–4959. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Kingsford, O.J.; Yi, Y.; Wong, K.Y. Review—Recent advances in electrochemical chiral recognition. J. Electrochem. Soc. 2019, 166, H205–H217. [Google Scholar] [CrossRef]
- Wu, F.; Tian, Y.; Luan, X.; Lv, X.; Li, F.; Xu, G.; Niu, W. Synthesis of chiral au nanocrystals with precise homochiral facets for enantioselective surface chemistry. Nano Lett. 2022, 22, 2915–2922. [Google Scholar] [CrossRef]
- Wu, D.; Ma, C.; Fan, G.C.; Pan, F.; Tao, Y.; Kong, Y. Recent advances of the ionic chiral selectors for chiral resolution by chromatography, spectroscopy and electrochemistry. J. Sep. Sci. 2022, 45, 325–337. [Google Scholar] [CrossRef]
- Keiderling, T.A. Structure of condensed phase peptides: Insights from vibrational circular dichroism and Raman optical activity techniques. Chem. Rev. 2020, 120, 3381–3419. [Google Scholar] [CrossRef]
- Gottarelli, G.; Lena, S.; Masiero, S.; Pieraccini, S.; Spada, G.P. The use of circular dichroism spectroscopy for studying the chiral molecular self-assembly: An overview. Chirality 2008, 20, 471–485. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, Z.; Ji, W.; Tanaka, Y.; Sui, H.; Zhao, B.; Ozaki, Y. Enantioselective discrimination of alcohols by hydrogen bonding: A SERS study. Angew. Chem. Int. Ed. 2014, 53, 13866–13870. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, X.; Yu, Z.; Xu, Z.; Zhao, B.; Ozaki, Y. A chiral-label-free SERS strategy for the synchronous chiral discrimination and identification of small aromatic molecules. Angew. Chem. Int. Ed. 2020, 59, 19079–19086. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, I.; Lombardi, J.R. Enhanced Raman scattering with dielectrics. Chem. Rev. 2016, 116, 14921–14981. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, J.; Zhao, X.; Yang, C.; Ozaki, Y.; Xu, Z.; Zhao, B.; Yu, Z. A chiral signal-amplified sensor for enantioselective discrimination of amino acids based on charge transfer-induced SERS. Chem. Commun. 2019, 55, 9697–9700. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Freitag, M.; Martel, R.; Brus, L.; Avouris, P. Controlling energy-level alignments at carbon nanotube/Au contacts. Nano Lett. 2003, 3, 783–787. [Google Scholar] [CrossRef] [Green Version]
- Shu, C.; Li, C.Z.; He, H.X.; Bogozi, A.; Bunch, J.S.; Tao, N.J. Fractional conductance quantization in metallic nanoconstrictions under electrochemical potential control. Phys. Rev. Lett. 2000, 84, 5196–5199. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, K.; Fujimoto, N.; Uosaki, K. Nanoscale optical and mechanical manipulation of molecular alignment in metal−molecule−metal structures. J. Phys. Chem. C 2014, 118, 21550–21557. [Google Scholar] [CrossRef]
- Lombardi, J.R.; Birke, R.L. A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 2009, 42, 734–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jauffred, L.; Samadi, A.; Klingberg, H.; Bendix, P.M.; Oddershede, L.B. Plasmonic heating of nanostructures. Chem. Rev. 2019, 119, 8087–8130. [Google Scholar] [CrossRef]
- Amendola, V.; Pilot, R.; Frasconi, M.; Maragò, O.M.; Iatì, M.A. Surface plasmon resonance in gold nanoparticles: A review. J. Phys.: Condens. Matter. 2017, 29, 203002. [Google Scholar] [CrossRef] [PubMed]
- Govorov, A.O.; Zhang, H.; Demir, H.V.; Gun’ko, Y.K. Photogeneration of hot plasmonic electrons with metal nanocrystals: Quantum description and potential applications. Nano Today 2014, 9, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Mosier-Boss, P.A. Review of SERS Substrates for chemical sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, S.; Guo, X.; Wang, H.; Yang, T.; Wen, Y.; Yang, H. Functionalized Au nanoparticles for label-free Raman determination of ppb level benzopyrene in edible oil. Sensor Actuat. B-Chem. 2015, 212, 200–206. [Google Scholar] [CrossRef]
- Theerthagiri, J.; Lee, S.J.; Karuppasamy, K.; Park, J.; Yu, Y.; Aruna Kumari, M.L.; Chandrasekaran, S.; Kim, H.S.; Choi, M.Y. Fabrication strategies and surface tuning of hierarchical goldnanostructures for electrochemical detection and removal of toxic pollutants. J. Hazard. Mater. 2021, 420, 126648. [Google Scholar] [CrossRef]
- Arenas, J.F.; Fernández, D.J.; Soto, J.; López-Tocón, I.; Otero, J.C. Role of the electrode potential in the charge-transfer mechanism of surface-enhanced Raman scattering. J. Phys. Chem. B 2003, 107, 13143–13149. [Google Scholar] [CrossRef]
- Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature Phys. Sci. 1973, 241, 20–22. [Google Scholar] [CrossRef]
- Yao, C.; Xu, X.; Wang, J.; Shi, L.; Li, L. Low-temperature, solution-processed hole selective layers for polymer solar cells. ACS Appl. Mater. Interfaces 2013, 5, 1100–1107. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, X.; Fan, Q.; Zhang, X.; Zheng, J. Charge transfer between metal nanoparticles interconnected with a functionalized molecule probed by surface-enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 2006, 45, 3970–3973. [Google Scholar] [CrossRef]
- Zijlstra, P.; Paulo, P.M.R.; Orrit, M. Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. Nat. Nanotechnol. 2012, 7, 379–382. [Google Scholar] [CrossRef] [Green Version]
- Osawa, M.; Matsuda, N.; Yoshii, K.; Uchida, I. Charge transfer resonance Raman process in surface-enhanced Raman scattering from p-aminothiophenol adsorbed on silver: Herzberg-Teller contribution. J. Phys. Chem. 1994, 98, 12702–12707. [Google Scholar] [CrossRef]
- Wang, Y.; Ji, W.; Yu, Z.; Li, R.; Wang, X.; Song, W.; Ruan, W.; Zhao, B.; Ozaki, Y. Contribution of hydrogen bonding to charge transfer induced surface-enhanced Raman scattering of an intermolecular system comprising p-aminothiophenol and benzoic acid. Phys. Chem. Chem. Phys. 2014, 16, 3153–3161. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, C.; Yang, J.; Zhao, B.; Lombardi, J.R. Nanoparticle metal-semiconductor charge transfer in ZnO/PATP/Ag assemblies by surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2008, 112, 6093–6098. [Google Scholar] [CrossRef]
- Mao, Z.; Song, W.; Xue, X.; Ji, W.; Li, Z.; Chen, L.; Mao, H.; Lv, H.; Wang, X.; Lombardi, J.R.; et al. Interfacial charge-transfer effects in semiconductor−molecule−metal structures: Influence of contact variation. J. Phys. Chem. C 2012, 116, 14701–14710. [Google Scholar] [CrossRef]
- Ikeda, K.; Kimura, A.; Uosaki, K. Electrochemical SERS observation of molecular adsorbates on Ru/Pt-modified Au (111) surfaces using sphere-plane type gap-mode plasmon excitation. J. Electroanal. Chem. 2017, 800, 151–155. [Google Scholar] [CrossRef]
- Lombardi, J.R.; Birke, R.L. Excitation profiles and the continuum in SERS: Identification of fano line shapes. J. Phys. Chem. C 2010, 114, 7812–7815. [Google Scholar] [CrossRef]
- Saxena, S.K.; Yogi, P.; Mishra, S.; Rai, H.M.; Mishra, V.; Warshi, M.K.; Roy, S.; Mondal, P.; Sagdeo, P.R.; Kumar, R. Amplification or cancellation of Fano resonance and quantum confinement induced asymmetries in Raman line-shapes. Phys. Chem. Chem. Phys. 2017, 19, 31788–31795. [Google Scholar] [CrossRef]
- Hu, J.; Tanabe, M.; Sato, J.; Uosaki, K.; Ikeda, K. Effects of atomic geometry and electronic structure of platinum surfaces on molecular adsorbates studied by gap-mode SERS. J. Am. Chem. Soc. 2014, 136, 10299–10307. [Google Scholar] [CrossRef] [PubMed]
- Ansah, I.B.; Aranda, D.; Jung, H.S.; Park, S.G.; Kang, M.; Otero, J.C.; Kim, D.H. Dual synergistic modulation of photo-induced electron transfer processes between molecules and gold nanopillars for ultrasensitive plasmon-enhanced Raman scattering. J. Mater. Chem. C 2021, 9, 8842–8848. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Liu, Y.; Ren, C.; Ma, R.; Xu, Z.; Zhao, B. A Charge-Transfer-Induced Strategy for Enantioselective Discrimination by Potential-Regulated Surface-Enhanced Raman Scattering Spectroscopy. Biosensors 2023, 13, 471. https://doi.org/10.3390/bios13040471
Wang Y, Liu Y, Ren C, Ma R, Xu Z, Zhao B. A Charge-Transfer-Induced Strategy for Enantioselective Discrimination by Potential-Regulated Surface-Enhanced Raman Scattering Spectroscopy. Biosensors. 2023; 13(4):471. https://doi.org/10.3390/bios13040471
Chicago/Turabian StyleWang, Yue, Yucong Liu, Chunyu Ren, Ruofei Ma, Zhangrun Xu, and Bing Zhao. 2023. "A Charge-Transfer-Induced Strategy for Enantioselective Discrimination by Potential-Regulated Surface-Enhanced Raman Scattering Spectroscopy" Biosensors 13, no. 4: 471. https://doi.org/10.3390/bios13040471
APA StyleWang, Y., Liu, Y., Ren, C., Ma, R., Xu, Z., & Zhao, B. (2023). A Charge-Transfer-Induced Strategy for Enantioselective Discrimination by Potential-Regulated Surface-Enhanced Raman Scattering Spectroscopy. Biosensors, 13(4), 471. https://doi.org/10.3390/bios13040471