An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Instruments
2.2. Reagents
2.3. Anodic Pretreatments of SPCEs
2.4. Preparation of OPA Sensors
2.5. Response Time of Hydrogel-Modified SPCEs
2.6. Function and Performance of Hydrogel-Modified SPCEs
2.7. Determination of Cidex-OPA by Commercial OPA Test (Indicator) Strips
3. Results
3.1. Cyclic Voltammetric Characterization
3.2. Acidic Effect on Odixation of the OPA-Glycine-NAC Isoindole
3.3. Optimization of the Glycine and NAC Concentration to OPA
3.4. Response Stability of the OPA-Glycine-NAC Isoindole
3.5. Precision Improvement by Anodic Pre-Treatment of SPCEs
3.6. Response Time of the Hydrogel-Modified Electrochemical Strips
3.7. Comparison between the OPA Sensor and Amperometry with Bare SPCEs in a Batch Test
3.8. Performance Verification by Comparison with Cidex-OPA and Reference OPA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Favero, M.S.; Bond, W.W. Chemical Disinfection of Medical and Surgical Materials. In Disinfection, Sterilization, and Preservation; Block, S.S., Ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2001; pp. 881–918. [Google Scholar]
- Carlomagno, L.; Huebner, V.D.; Matthews, H.R. Rapid Separation of Phosphoamino Acids Including the Phosphohistidines by Isocratic High-Performance Liquid Chromatography of the Orthophthalaldehyde Derivatives. Anal. Biochem. 1985, 149, 344–348. [Google Scholar] [CrossRef] [PubMed]
- Blundell, G.; Brydon, W.G. High Performance Liquid Chromatography of Plasma Aminoacids Using Orthophthalaldehyde Derivatisation. Clin. Chim. Acta 1987, 170, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Walsh, S.E.; Maillard, J.-Y.; Russell, A.D. Ortho-Phthalaldehyde: A Possible Alternative to Glutaraldehyde for High Level Disinfection. J. Appl. Microbiol. 1999, 86, 1039–1046. [Google Scholar] [CrossRef] [PubMed]
- Alfa, M.J.; Sitter, D.L. In-Hospital Evaluation of Orthophthalaldehyde as a High Level Disinfectant for Flexible Endoscopes. J. Hosp. Infect. 1994, 26, 15–26. [Google Scholar] [CrossRef]
- Roberts, C.G.; Chan-Myers, H. Mycobactericidal Activity of Dilute Ortho-Phthalaldehyde Solutions. In Proceedings of the Abstracts of Environmental and General Applied Microbiology, Q-265, ASM 98th General Meeting, Atlanta, GA, USA, 17–21 May 1998; pp. 464–465. [Google Scholar]
- Gregory, A.W.; Schaalje, G.B.; Smart, J.D.; Robison, R.A. The Mycobactericidal Efficacy of Ortho-Phthalaldehyde and the Comparative Resistances of Mycobacterium Bovis, Mycobacterium Terrae, and Mycobacterium Chelonae. Infect. Control Hosp. Epidemiol. 1999, 20, 324–330. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.L. The Correct Use of Glutaraldehyde in the Healthcare Environment. Gastroenterol. Nurs. 1995, 18, 142–145. [Google Scholar] [CrossRef]
- Pisaniello, D.L.; Gun, R.T.; Tkaczuk, M.N.; Nitshcke, M.; Crea, J. Glutaraldehyde Exposures and Symptoms among Endoscopy Nurses in South Australia. Appl. Occup. Environ. Hyg. 1997, 12, 171–177. [Google Scholar] [CrossRef]
- Ballantyne, B.; Jordan, S.L. Toxicological, Medical and Industrial Hygiene Aspects of Glutaraldehyde with Particular Reference to Its Biocidal Use in Cold Sterilization Procedures. J. Appl. Toxicol. 2001, 21, 131–151. [Google Scholar] [CrossRef]
- Ballantyne, B.; Berman, B. Dermal Sensitizing Potential of Glutaraldehyde: A Review and Recent Observations. J. Toxicol.-Cutan. Ocul. Toxicol. 1984, 3, 251–262. [Google Scholar] [CrossRef]
- Ballantyne, B.; Myers, R.C. The Acute Toxicity and Primary Irritancy of Glutaraldehyde Solutions. Vet. Hum. Toxicol. 2001, 43, 193–202. [Google Scholar]
- Walsh, S.E.; Maillard, J.Y.; Russell, A.D.; Hann, A.C. Possible Mechanisms for the Relative Efficacies of Ortho-Phthalaldehyde and Glutaraldehyde against Glutaraldehyde-Resistant Mycobacterium Chelonae. J. Appl. Microbiol. 2001, 91, 80–92. [Google Scholar] [CrossRef]
- Chung, J.; Sepunaru, L.; Plaxco, K.W. On the disinfection of electrochemical aptamer-based sensors. ECS Sens. Plus 2022, 1, 011604. [Google Scholar] [CrossRef] [PubMed]
- Cooke, R.P.D.; Goddard, S.V.; Whymant-Morris, A.; Sherwood, J.; Chatterly, R. An Evaluation of Cidex OPA (0.55% ortho-Phthalaldehyde) as an Alternative to 2% Glutaraldehyde for High-Level Disinfection of Endoscopes. J. Hosp. Infect. 2003, 54, 226–231. [Google Scholar] [CrossRef] [PubMed]
- Johns Hopkins Medicine USA, Reliability Assured with CIDEX® Solution Test Strips. 2022. Available online: https://www.hopkinsmedicine.org/hse/forms/cidexopa/TestStrip.pdf (accessed on 9 March 2022).
- Rutala, W.A.; Weber, D.J. Disinfection and Sterilization: An Overview. Am. J. Infect. Control 2013, 41, S2–S5. [Google Scholar] [CrossRef] [PubMed]
- Bowden, K.; El-Kaissi, F.A.; Ranson, R.J. Intramolecular Catalysis. Part 5. The Intramolecular Cannizzaro Reaction of o-Phthalaldehyde and [α,α′-2H2]-o-Phthalaldehyde. J. Chem. Soc. Perkin Trans. II 1990, 12, 2089–2092. [Google Scholar] [CrossRef]
- Ogden, G.; Foldi, P. Amino Acid Analysis: An Overview of Current Methods. LC-GC 1987, 5, 28–38. [Google Scholar]
- Concha-Herrera, V.; Torres-Lapasi, J.R.; Garca-Alvarez-Coque, M.C. Chromatographic Determination of Thiols after Pre-Column Derivatization with o-Phthalaldehyde and Ioleucine. J. Liq. Chromatogr. Relat. Technol. 2005, 27, 1593–1609. [Google Scholar] [CrossRef]
- Roth, M. Fluorescence Reaction for Amino Acids. Anal. Chem. 1971, 43, 880–882. [Google Scholar] [CrossRef]
- Shea, D.; MacCrehan, W.A. Determination of Hydrophilic Thiols in Sediment Porewater Using Ion-pair Liquid Chromatography Coupled to Electrochemical Detection. Anal. Chem. 1988, 60, 1449–1454. [Google Scholar] [CrossRef]
- Bertrand-Harb, C.; Nicolas, M.G.; Dalgalarraondo, M.; Chobert, J.M. Determination of Alkylation Degree by Three Colorimetric Methods and Amino-Acid Analysis. A Comparative Study. Sci. Aliments 1993, 13, 577–584. [Google Scholar]
- Wang, J.; Pedrero, M.; Sakslund, H.; Hammerich, O.; Pingarron, J. Electrochemical activation of screen-printed carbon strips. Analyst 1996, 121, 345–350. [Google Scholar] [CrossRef]
- Cui, G.; Yoo, J.H.; Lee, J.S.; Yoo, J.; Uhm, J.H.; Cha, G.S.; Nam, H. Effect of pre-treatment on the surface and electrochemical properties of screen-printed carbon paste electrodes. Analyst 2001, 126, 1399–1403. [Google Scholar] [CrossRef] [PubMed]
- Wei, H.; Sun, J.J.; Xie, Y.; Lin, C.G.; Wang, Y.M.; Yin, W.H.; Chen, G.N. Enhanced electrochemical performance at screen-printed carbon electrodes by a new pretreating procedure. Anal. Chim. Acta 2007, 588, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Joseph, M.H.; Davies, P. Electrochemical activity of o-phthalaldehyde—Mercaptoethanol derivatives of amino acids: Application to high-performance liquid chromatographic determination of amino acids in plasma and other biological materials. J. Chromatogr. B Biomed. Sci. Appl. 1983, 277, 125–136. [Google Scholar] [CrossRef]
- Karlsson, C.; Gogoll, A.; Strømme, M.; Sjödin, M. Investigation of the Redox Chemistry of Isoindole-4,7-diones. J. Phys. Chem. C 2013, 117, 894–901. [Google Scholar] [CrossRef]
- Jacobs, W.A. o-Phthalaldehyde—Sulfite derivaization of primary amines for liquid chromatography—Electrochemistry. J. Chromatogr. A 1987, 392, 435–441. [Google Scholar] [CrossRef]
- Stobaugh, J.F.; Repta, A.J.; Sternson, L.A.; Garren, K.W. Factors affecting the stability of fluorescent isoindoles derived from reaction of o-phthalaldehyde and hydroxyalkylthiols with primary amines. Anal. Biochem. 1983, 135, 495–504. [Google Scholar] [CrossRef]
- Jacobs, W.A.; Leburg, M.W.; Madaj, E.J. Stability of o-phthalaldehyde-derived isoindoles. Anal. Biochem. 1986, 156, 334–340. [Google Scholar] [CrossRef]
- Trepman, E.; Chen, R.F. Fluorescence stopped-flow study of the o-phthaldialdehyde reaction. Arch. Biochem. Biophys. 1980, 204, 524–532. [Google Scholar] [CrossRef]
- Stobaugh, J.F.; Repta, A.J.; Sternson, L.A. Aspects of the stability of isoindoles derived from the reaction of o-phthalaldehyde—Ethanethiol with primary amino compounds. J. Pharm. Biomed. Anal. 1986, 4, 341–351. [Google Scholar] [CrossRef]
- Chen, W.-C. Development of a USB-Powered Mini-Potentiostat and the Detection of o-Phthalaldehyde Disinfectant. Master’s Thesis, National Taiwan University, Taipei, Taiwan, June 2014. [Google Scholar]
- Chan, Y.Y.; Webster, R.D. Electrochemical Oxidation of the Phenolic Benzotriazoles UV-234 and UV-327 in Organic Solvents. ChemElectroChem 2019, 6, 4297–4306. [Google Scholar] [CrossRef]
- Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and Their Role in Biosensing Applications. Adv. Healthc. Mater. 2021, 10, 2100062. [Google Scholar] [CrossRef] [PubMed]
Pre-Treatmzent Methods | Repeatability a | Reproducibility b | ||
---|---|---|---|---|
Mean Response (μA) (Mean) | CV (%) | Mean Response (μA) (Mean ± S.D.) | CV (%) | |
Activated in 0.05 M PBS at +1.2 V for 2 min | 36.4 | 4–31% | 39.6 ± 8.70 | 21% |
Activated in Sat. Na2CO3 at +1.2 V for 5 min | 49.8 | 1–3.7% | 51.2 ± 4.17 | 8% |
Soaked in 3 M NaOH for 1 h, and then activated in 0.5 M NaOH at +1.2 V for 20 s | 43.9 | 6–15% | 41.1 ± 6.85 | 16% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, R.L.C.; Hsieh, B.-C.; Lin, J.-S.; Cheng, T.-J. An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant. Biosensors 2023, 13, 485. https://doi.org/10.3390/bios13040485
Chen RLC, Hsieh B-C, Lin J-S, Cheng T-J. An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant. Biosensors. 2023; 13(4):485. https://doi.org/10.3390/bios13040485
Chicago/Turabian StyleChen, Richie L. C., Bo-Chuan Hsieh, Jia-Sin Lin, and Tzong-Jih Cheng. 2023. "An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant" Biosensors 13, no. 4: 485. https://doi.org/10.3390/bios13040485
APA StyleChen, R. L. C., Hsieh, B. -C., Lin, J. -S., & Cheng, T. -J. (2023). An Electrochemical o-Phthalaldehyde Sensor Using a Modified Disposable Screen-Printed Electrode with Polyacrylate Hydrogel for Concentration Verification of Clinical Disinfectant. Biosensors, 13(4), 485. https://doi.org/10.3390/bios13040485