Conductive Ink-Coated Paper-Based Supersandwich DNA Biosensor for Ultrasensitive Detection of Neisseria gonorrhoeae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instrumentation
2.2. Design of Oligonucleotide Probes
2.3. Formulation of the Conductive Ink
2.4. Rheological Studies
2.5. Fabrication of C5@paper Electrodes
2.6. Electrochemical Magnetic DNA Supersandwich Assay
2.6.1. Supersandwich Assay
2.6.2. Electrochemical Analysis
2.7. Real Sample Analysis
3. Results and Discussion
3.1. Optimization and Characterization of the Ink Formulation
3.2. Morphological and Functional Characterization of C5@paper Electrodes
3.3. Electrochemical Studies
3.4. Real Sample Analysis and Specificity Studies
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization (WHO). Sexually Transmitted Infections (STIs). Available online: https://www.who.int/health-topics/sexually-transmitted-infections#tab=tab_1 (accessed on 24 February 2023).
- World Health Organization (WHO). Global Health Sector Strategies on, Respectively, HIV, Viral Hepatitis, and Sexually Transmitted Infections for the Period 2022–2030; World Health Organization: Geneva, Switzerland, 2022; p. 9240053778. [Google Scholar]
- Chen, X.; Zhou, Q.; Wu, X.; Wang, S.; Liu, R.; Dong, S.; Yuan, W. Visual and rapid diagnosis of Neisseria gonorrhoeae using Loop-mediated isothermal amplification combined with a polymer nanoparticle–based biosensor in clinical application. Front. Mol. Biosci. 2021, 8, 702134. [Google Scholar] [CrossRef]
- Whelan, J.; Eeuwijk, J.; Bunge, E.; Beck, E. Systematic literature review and quantitative analysis of health problems associated with sexually transmitted Neisseria gonorrhoeae infection. Infect. Dis. Ther. 2021, 10, 1887–1905. [Google Scholar] [CrossRef]
- Berus, S.M.; Adamczyk-Popławska, M.; Młynarczyk-Bonikowska, B.; Witkowska, E.; Szymborski, T.; Waluk, J.; Kamińska, A. SERS-based sensor for the detection of sexualltransmitted pathogens in the male swab specimens: A new approach for clinical diagnosis. Biosens. Bioelectron. 2021, 189, 113358. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, L.; Zhou, Q.; Tan, Y.; Tan, X.; Dong, S. A nanoparticle-based biosensor combined with multiple cross displacement amplification for the rapid and visual diagnosis of Neisseria gonorrhoeae in clinical application. Front. Microbiol. 2021, 12, 747140. [Google Scholar] [CrossRef]
- Ma, J.; Du, M.; Wang, C.; Xie, X.; Wang, H.; Li, T.; Chen, S.; Zhang, L.; Mao, S.; Zhou, X. Rapid and sensitive detection of Mycobacterium tuberculosis by an enhanced nanobiosensor. ACS Sens. 2021, 6, 3367–3376. [Google Scholar] [CrossRef]
- Ali, M.; Bacchu, M.; Setu, M.; Akter, S.; Hasan, M.; Chowdhury, F.; Rahman, M.; Ahommed, M.; Khan, M. Development of an advanced DNA biosensor for pathogenic Vibrio cholerae detection in real sample. Biosens. Bioelectron. 2021, 188, 113338. [Google Scholar] [CrossRef] [PubMed]
- Saadati, A.; Ehsani, M.; Hasanzadeh, M.; Seidi, F.; Shadjou, N. An innovative flexible and portable DNA based biodevice towards sensitive identification of Haemophilus influenzae bacterial genome: A new platform for the rapid and low cost recognition of pathogenic bacteria using point of care (POC) analysis. Microchem. J. 2021, 169, 106610. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, J.; Zhou, X. A CRISPR-based and post-amplification coupled SARS-CoV-2 detection with a portable evanescent wave biosensor. Biosens. Bioelectron. 2021, 190, 113418. [Google Scholar] [CrossRef]
- Hwang, C.; Park, N.; Kim, E.S.; Kim, M.; Kim, S.D.; Park, S.; Kim, N.Y.; Kim, J.H. Ultra-fast and recyclable DNA biosensor for point-of-care detection of SARS-CoV-2 (COVID-19). Biosens. Bioelectron. 2021, 185, 113177. [Google Scholar] [CrossRef]
- Khristunova, E.; Dorozhko, E.; Korotkova, E.; Kratochvil, B.; Vyskocil, V.; Barek, J. Label-free electrochemical biosensors for the determination of Flaviviruses: Dengue, Zika, and Japanese Encephalitis. Sensors 2020, 20, 4600. [Google Scholar] [CrossRef]
- Bishoyi, A.; Alam, M.A.; Hasan, M.R.; Khanuja, M.; Pilloton, R.; Narang, J. Cyclic voltammetric-paper-based genosensor for detection of the target DNA of Zika virus. Micromachines 2022, 13, 2037. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.; Sood, S.; Singh, R.; Sumana, G.; Bala, M.; Sharma, V.K.; Samantaray, J.C.; Pandey, R.M.; Malhotra, B.D. Coupling electrochemical response of a DNA biosensor with PCR for Neisseria gonorrhoeae detection. Diagn. Microbiol. Infect. Dis. 2014, 78, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Shi, A.; Fang, X.; Han, X.; Zhang, Y. Ultrasensitive electrochemical supersandwich DNA biosensor using a glassy carbon electrode modified with gold particle-decorated sheets of graphene oxide. Microchim. Acta 2014, 181, 935–940. [Google Scholar] [CrossRef]
- Wang, L.; Shan, T.; Pu, L.; Zhang, J.; Hu, R.; Yang, Y.; Yang, J.; Zhao, Y. Glucometer-based electrochemical biosensor for determination of microRNA (let-7a) using magnetic-assisted extraction and supersandwich signal amplification. Microchim. Acta 2022, 189, 444. [Google Scholar] [CrossRef]
- Xia, F.; White, R.J.; Zuo, X.; Patterson, A.; Xiao, Y.; Kang, D.; Gong, X.; Plaxco, K.W.; Heeger, A.J. An electrochemical supersandwich assay for sensitive and selective DNA detection in complex matrices. J. Am. Chem. Soc. 2010, 132, 14346–14348. [Google Scholar] [CrossRef] [PubMed]
- Feng, Q.; Wang, M.; Qin, L.; Wang, P. Dual-signal readout of DNA methylation status based on the assembly of a supersandwich electrochemical biosensor without enzymatic reaction. ACS Sens. 2019, 4, 2615–2622. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Jiang, J.; Su, Y.; Liang, Y.; Zhang, C. A novel cloth-based supersandwich electrochemical aptasensor for direct, sensitive detection of pathogens. Anal. Chim. Acta 2021, 1188, 339176. [Google Scholar] [CrossRef]
- Liu, F.; Liu, H.; Liao, Y.; Wei, J.; Zhou, X.; Xing, D. Multiplex detection and genotyping of pathogenic bacteria on paper-based biosensor with a novel universal primer mediated asymmetric PCR. Biosens. Bioelectron. 2015, 74, 778–785. [Google Scholar] [CrossRef]
- Colozza, N.; Caratelli, V.; Moscone, D.; Arduini, F. Origami paper-based electrochemical (bio) sensors: State of the art and perspective. Biosensors 2021, 11, 328. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Kim, M.I. Nanomaterial-mediated paper-based biosensors for colorimetric pathogen detection. Trends Anal. Chem. 2020, 132, 116038. [Google Scholar] [CrossRef]
- Solhi, E.; Hasanzadeh, M.; Babaie, P. Electrochemical paper-based analytical devices (ePADs) toward biosensing: Recent advances and challenges in bioanalysis. Anal. Methods 2020, 12, 1398–1414. [Google Scholar] [CrossRef]
- Mohanraj, J.; Durgalakshmi, D.; Rakkesh, R.A.; Balakumar, S.; Rajendran, S.; Karimi-Maleh, H. Facile synthesis of paper based graphene electrodes for point of care devices: A double stranded DNA (dsDNA) biosensor. J. Colloid Interface Sci. 2020, 566, 463–472. [Google Scholar] [CrossRef]
- Rana, A.; Killa, M.; Yadav, N.; Mishra, A.; Mathur, A.; Kumar, A.; Khanuja, M.; Narang, J.; Pilloton, R. Graphitic carbon nitride as an amplification platform on an electrochemical paper-based device for the detection of norovirus-specific DNA. Sensors 2020, 20, 2070. [Google Scholar] [CrossRef] [PubMed]
- Lu, Q.; Su, T.; Shang, Z.; Jin, D.; Shu, Y.; Xu, Q.; Hu, X. Flexible paper-based Ni-MOF composite/AuNPs/CNTs film electrode for HIV DNA detection. Biosens. Bioelectron. 2021, 184, 113229. [Google Scholar] [CrossRef] [PubMed]
- Camargo, J.R.; Orzari, L.O.; Araujo, D.A.G.; de Oliveira, P.R.; Kalinke, C.; Rocha, D.P.; dos Santos, A.L.; Takeuchi, R.M.; Munoz, R.A.A.; Bonacin, J.A. Development of conductive inks for electrochemical sensors and biosensors. Microchem. J. 2021, 164, 105998. [Google Scholar] [CrossRef]
- de Araujo Andreotti, I.A.; Orzari, L.O.; Camargo, J.R.; Faria, R.C.; Marcolino-Junior, L.H.; Bergamini, M.F.; Gatti, A.; Janegitz, B.C. Disposable and flexible electrochemical sensor made by recyclable material and low cost conductive ink. J. Electroanal. Chem. 2019, 840, 109–116. [Google Scholar] [CrossRef]
- Hong, H.; Jiyong, H.; Moon, K.-S.; Yan, X.; Wong, C.-P. Rheological properties and screen printability of UV curable conductive ink for flexible and washable E-textiles. J. Mater. Sci. Technol. 2021, 67, 145–155. [Google Scholar] [CrossRef]
- Edali, M.; Esmail, M.N.; Vatistas, G.H. Rheological properties of high concentrations of carboxymethyl cellulose solutions. J. Appl. Polym. Sci. 2001, 79, 1787–1801. [Google Scholar] [CrossRef]
- Pillai, A.S.; Chandran, A.; Peethambharan, S.K. MWCNT Ink with PEDOT:PSS as a multifunctional additive for energy efficient flexible heating applications. Appl. Mater. Today 2021, 23, 100987. [Google Scholar] [CrossRef]
- Liu, L.; Shen, Z.; Zhang, X.; Ma, H. Highly conductive graphene/carbon black screen printing inks for flexible electronics. J. Colloid Interface Sci. 2021, 582, 12–21. [Google Scholar] [CrossRef]
- Zheng, Y.; He, Z.; Gao, Y.; Liu, J. Direct desktop printed-circuits-on-paper flexible electronics. Sci. Rep. 2013, 3, 1786. [Google Scholar] [CrossRef]
- He, P.; Cao, J.; Ding, H.; Liu, C.; Neilson, J.; Li, Z.; Kinloch, I.A.; Derby, B. Screen-printing of a highly conductive graphene ink for flexible printed electronics. ACS Appl. Mater. Interfaces 2019, 11, 32225–32234. [Google Scholar] [CrossRef] [PubMed]
- Menon, H.; Aiswarya, R.; Surendran, K.P. Screen printable MWCNT inks for printed electronics. RSC Adv. 2017, 7, 44076–44081. [Google Scholar] [CrossRef]
- Pekturk, H.Y.; Elitas, M.; Goktas, M.; Demir, B.; Birhanu, S. Evaluation of the effect of MWCNT amount and dispersion on bending fatigue properties of non-crimp CFRP composites. Eng. Sci. Technol. Int. J. 2022, 34, 101081. [Google Scholar] [CrossRef]
- Kumar, S.; Gupta, N.; Malhotra, B.D. Ultrasensitive biosensing platform based on yttria doped zirconia-reduced graphene oxide nanocomposite for detection of salivary oral cancer biomarker. Bioelectrochemistry 2021, 140, 107799. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.; Chen, W.; Mai, Z.; Yang, J.; Lin, X.; Zeng, L.; Pan, Y.; Xie, Q.; Xu, Q.; Li, X. Development and application of Cas13a-based diagnostic assay for Neisseria gonorrhoeae detection and azithromycin resistance identification. J. Antimicrob. Chemother. 2022, 77, 656–664. [Google Scholar] [CrossRef]
- GeneProof®. GeneProof Neisseria gonorrhoeae PCR Kit. Available online: https://www.geneproof.com/geneproof-neisseria-gonorrhoeae-pcr-kit/p1069 (accessed on 4 October 2022).
- Golparian, D.; Hellmark, B.; Unemo, M. Analytical specificity and sensitivity of the novel dual-target GeneProof Neisseria gonorrhoeae PCR kit for detection of N. gonorrhoeae. Apmis 2015, 123, 955–958. [Google Scholar] [CrossRef]
- Goire, N.; Ohnishi, M.; Limnios, A.E.; Lahra, M.M.; Lambert, S.B.; Nimmo, G.R.; Nissen, M.D.; Sloots, T.P.; Whiley, D.M. Enhanced gonococcal antimicrobial surveillance in the era of ceftriaxone resistance: A real-time PCR assay for direct detection of the Neisseria gonorrhoeae H041 strain. J. Antimicrob. Chemother. 2012, 67, 902–905. [Google Scholar] [CrossRef]
- Zhao, L.; Liu, A.; Li, R.; Zhao, S. Multiplex TaqMan real-time PCR platform for detection of Neisseria gonorrhoeae with decreased susceptibility to ceftriaxone. Diagn. Microbiol. Infect. Dis. 2019, 93, 299–304. [Google Scholar] [CrossRef]
- Gupta, R.; Valappil, M.O.; Sakthivel, A.; Mathur, A.; Pundir, C.S.; Murugavel, K.; Narang, J.; Alwarappan, S. Tungsten disulfide quantum dots based disposable paper based lab on genochip for specific meningitis DNA detection. J. Electrochem. Soc. 2020, 167, 107501. [Google Scholar] [CrossRef]
- Srisomwat, C.; Teengam, P.; Chuaypen, N.; Tangkijvanich, P.; Vilaivan, T.; Chailapakul, O. Pop-up paper electrochemical device for label-free hepatitis B virus DNA detection. Sens. Actuators B Chem. 2020, 316, 128077. [Google Scholar] [CrossRef]
- Farshchi, F.; Saadati, A.; Hasanzadeh, M. Optimized DNA-based biosensor for monitoring Leishmania infantum in human plasma samples using biomacromolecular interaction: A novel platform for infectious disease diagnosis. Anal. Methods 2020, 12, 4759–4768. [Google Scholar] [CrossRef] [PubMed]
S. No. | Probe Type | Probe Name | Sequence (5′-3′) | Melting Temperature (°C) |
---|---|---|---|---|
1. | Capture probe | SCP | 5′ NH2-TTT TTT CCT GCT ACT TTC ACG CTG GA 3′ (26 bases) (5′ amino C6 modification) | 59 |
2. | Detector probe (supersandwich) | SDP | 5′ AAG TAA TCA GAT GAA ACC AGT TCC CTG CTA CTT TCA CGC TGG A 3′ (43 bases) | 50.8 |
3. | Target strand | TP | 5′ GAA CTG GTT TCA TCT GAT TAC TTT CCA GCG TGA AAG TAG CAG G 3′ (43 bases) | 66.2 |
4. | Non-complementary probe | NC | 5′ TTG ATT GAG CGT CAT AGA TCG GAC GGC ACT AGT CAG TAC TCG A 3′ (43 bases) | 67 |
S. No. | Ink Formulation/ Nanomaterial | Type of DNA Assay | Target Pathogen | Linear Range | Sensitivity (LOD) | Reference |
---|---|---|---|---|---|---|
1. | Ni–Au composite/CNT/PVA | Traditional hybridization | HIV DNA | 10 nM–1 µM | (0.13 nM) | [26] |
2. | Tungsten disulfide quantum dots | Traditional hybridization | Specific meningitis | 1 nM–100 µM | (1 nM) | [43] |
3. | Oxidized graphitic carbon nitride | Traditional hybridization | Norovirus | 10−7–102 µM | (100 fM) | [25] |
3. | Graphene nanosheets | Direct analysis | (dsDNA) | 0.2–5 pg mL−1 | 0.00656 mA·pg−1 cm−2 | [24] |
4. | Carbon graphene ink (commercial) | Traditional hybridization (pyrrolidinyl peptide nucleic acid-mediated) | Hepatitis B virus | 50 pM-100 nM | (1.45 pM) | [44] |
5. | Ag nanoprisms electrodeposited on graphene quantum dots (GQDs) | Traditional hybridization | Leishmania infantum | 1 zM–1 nM | 1 zM (LOQ *) | [45] |
6. | cMWCNT | Supersandwich hybridization | Neisseria gonorrhoeae | 100 aM-100 nM (5 zmol-5 pmol) | 26.21 kΩ (log[concentration])−1 (45 aM) | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gupta, N.; Kumar, D.; Das, A.; Sood, S.; Malhotra, B.D. Conductive Ink-Coated Paper-Based Supersandwich DNA Biosensor for Ultrasensitive Detection of Neisseria gonorrhoeae. Biosensors 2023, 13, 486. https://doi.org/10.3390/bios13040486
Gupta N, Kumar D, Das A, Sood S, Malhotra BD. Conductive Ink-Coated Paper-Based Supersandwich DNA Biosensor for Ultrasensitive Detection of Neisseria gonorrhoeae. Biosensors. 2023; 13(4):486. https://doi.org/10.3390/bios13040486
Chicago/Turabian StyleGupta, Niharika, D. Kumar, Asmita Das, Seema Sood, and Bansi D. Malhotra. 2023. "Conductive Ink-Coated Paper-Based Supersandwich DNA Biosensor for Ultrasensitive Detection of Neisseria gonorrhoeae" Biosensors 13, no. 4: 486. https://doi.org/10.3390/bios13040486
APA StyleGupta, N., Kumar, D., Das, A., Sood, S., & Malhotra, B. D. (2023). Conductive Ink-Coated Paper-Based Supersandwich DNA Biosensor for Ultrasensitive Detection of Neisseria gonorrhoeae. Biosensors, 13(4), 486. https://doi.org/10.3390/bios13040486