Interactions of Amino Group Functionalized Tetraphenylvinyl and DNA: A Label-Free “On-Off-On” Fluorescent Aptamer Sensor toward Ampicillin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Measurement and Apparatus
2.3. Principles of Fluorescence Quenching
2.4. Fluorescence Detection Procedures for AMP
3. Results and Discussion
3.1. Fluorescence Spectroscopy of TPE-Am
3.2. Interaction of TPE-Am and DNA
3.2.1. Quenching Mechanism of Fluorescence
3.2.2. Binding Constants
3.2.3. Thermodynamic Constants
3.3. Fluorescence Assay for AMP
3.3.1. Characterization of TPE-Am/Aptamer
3.3.2. Feasibility of the Fluorescence Aptamer Sensor
3.3.3. Optimization of the Experimental Conditions
3.3.4. Analytical Performance of Fluorescent Aptasensor
3.3.5. Selectivity of the Sensor for Detection of AMP
3.3.6. AMP Content in Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Luo, J.; Xie, Z.; Lam, J.W.Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H.S.; Zhan, X.; Liu, Y.; Zhu, D.; et al. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem. Commun. 2001, 1740–1741. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, S.; Ni, H.; Zhang, H.; Zhang, H.; Chuah, C.; Ma, C.; Wong, K.S.; Lam, J.W.Y.; Kwok, R.T.K.; et al. ACQ-to-AIE Transformation: Tuning Molecular Packing by Regioisomerization for Two-Photon NIR Bioimaging. Angew. Chem. Int. Ed. 2020, 59, 12822–12826. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, X.; Shi, J.; Yang, S.; Xu, L. Kaempferol as an AIE-active natural product probe for selective Al3+ detection in Arabidopsis thaliana. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2021, 249, 119303. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Liu, B. Aggregation-Induced Emission: Recent Advances in Materials and Biomedical Applications. Angew. Chem. Int. Ed. 2020, 59, 9868–9886. [Google Scholar] [CrossRef] [PubMed]
- Kwok, R.T.K.; Leung, C.W.T.; Lam, J.W.Y.; Tang, B.Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228–4238. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Leung, N.L.C.; Kwok, R.T.K.; Lam, J.W.Y.; Tang, B.Z. Aggregation-Induced Emission: Together We Shine, United We Soar! Chem. Rev. 2015, 115, 11718–11940. [Google Scholar] [CrossRef]
- Li, B.; Liu, C.; Pan, W.; Shen, J.; Guo, J.; Luo, T.; Feng, J.; Situ, B.; An, T.; Zhang, Y.; et al. Facile fluorescent aptasensor using aggregation-induced emission luminogens for exosomal proteins profiling towards liquid biopsy. Biosens. Bioelectron. 2020, 168, 112520. [Google Scholar] [CrossRef]
- Zhu, Y.; Xia, X.; Deng, S.; Yan, B.; Dong, Y.; Zhang, K.; Deng, R.; He, Q. Label-free fluorescent aptasensing of mycotoxins via aggregation-induced emission dye. Dyes Pigm. 2019, 170, 107572. [Google Scholar] [CrossRef]
- Hu, F.; Cai, X.; Manghnani, P.N.; Kenry; Wu, W.; Liu, B. Multicolor monitoring of cellular organelles by single wavelength excitation to visualize the mitophagy process. Chem. Sci. 2018, 9, 2756–2761. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, S.; Liang, X.; Zhong, S.; Wang, B.; Li, Z.; Cui, X. Novel biocompatible AIEgen from natural resources: Palmatine and its bioimaging application. Dyes Pigm. 2021, 184, 108860. [Google Scholar] [CrossRef]
- Zhu, Z.C.; Xu, L.; Li, H.; Zhou, X.; Qin, J.G.; Yang, C.L. A tetraphenylethene-based zinc complex as a sensitive DNA probe by coordination interaction. Chem. Commun. 2014, 50, 7060–7062. [Google Scholar] [CrossRef]
- Ying, Y.M.; Tao, C.L.; Yu, M.X.; Xiong, Y.; Guo, C.R.; Liu, X.G.; Zhao, Z.J. In situ encapsulation of pyridine-substituted tetraphenylethene cations in metal-organic framework for the detection of antibiotics in aqueous medium. J. Mater. Chem. C 2019, 7, 8383–8388. [Google Scholar] [CrossRef]
- Cai, Y.; Fang, J.; Wang, B.; Zhang, F.; Shao, G.; Liu, Y. A signal-on detection of organophosphorus pesticides by fluorescent probe based on aggregation-induced emission. Sens. Actuators B Chem. 2019, 292, 156–163. [Google Scholar] [CrossRef]
- Wang, X.; Jiang, A.; Hou, T.; Li, H.; Li, F. Enzyme-free and label-free fluorescence aptasensing strategy for highly sensitive detection of protein based on target-triggered hybridization chain reaction amplification. Biosens. Bioelectron. 2015, 70, 324–329. [Google Scholar] [CrossRef]
- Rothlisberger, P.; Hollenstein, M. Aptamer chemistry. Adv. Drug Del. Rev. 2018, 134, 3–21. [Google Scholar] [CrossRef]
- Marrazza, G. Aptamer Sensors. Biosensors 2017, 7, 5. [Google Scholar] [CrossRef]
- Kim, Y.S.; Raston, N.H.A.; Gu, M.B. Aptamer-based nanobiosensors. Biosens. Bioelectron. 2016, 76, 2–19. [Google Scholar]
- Liang, C.X.; Wang, Y.M.; Zhang, T.T.; Nie, H.L.; Han, Y.M.; Bai, J. Aptamer-functionalised metal-organic frameworks as an ‘on-off-on’ fluorescent sensor for bisphenol S detection. Talanta 2023, 253, 123942. [Google Scholar] [CrossRef]
- Rahbarimehr, E.; Chao, H.P.; Churcher, Z.R.; Slavkovic, S.; Kaiyum, Y.A.; Johnson, P.E.; Dauphin-Ducharme, P. Finding the Lost Dissociation Constant of Electrochemical Aptamer-Based Biosensors. Anal. Chem. 2023, 95, 2229–2237. [Google Scholar] [CrossRef]
- Wang, H.; Ma, K.; Xu, B.; Tian, W.J. Tunable Supramolecular Interactions of Aggregation-Induced Emission Probe and Graphene Oxide with Biomolecules: An Approach toward Ultrasensitive Label-Free and “Turn-On” DNA Sensing. Small 2016, 12, 6613–6622. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, L.; Ma, K.; Xu, B.; Liu, L.; Tian, W. Label-Free Aptamer-Based Biosensor for Specific Detection of Chloramphenicol Using AIE Probe and Graphene Oxide. ACS Omega 2018, 3, 12886–12892. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dong, S.; Gai, P.; Duan, R.; Li, F. Highly sensitive homogeneous electrochemical aptasensor for antibiotic residues detection based on dual recycling amplification strategy. Biosens. Bioelectron. 2016, 82, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.H.; Li, X.; Liu, H.; Zamyadi, A.; Guo, W.S.; Wen, H.T.; Gao, L.; Nghiem, L.D.; Wang, Q.L. Advancements in detection and removal of antibiotic resistance genes in sludge digestion: A state-of-art review. Bioresour. Technol. 2022, 344, 126197. [Google Scholar] [CrossRef] [PubMed]
- Luan, Y.X.; Wang, N.; Li, C.; Guo, X.J.; Lu, A.X. Advances in the Application of Aptamer Biosensors to the Detection of Aminoglycoside Antibiotics. Antibiotics 2020, 9, 787. [Google Scholar] [CrossRef]
- Zhou, J.J.; Xu, Z.Q. Simultaneous separation of 12 different classes of antibiotics under the condition of complete protonation by capillary electrophoresis-coupled contactless conductivity detection. Anal. Methods 2022, 14, 174–179. [Google Scholar] [CrossRef]
- Li, F.; Li, X.; Zhu, N.; Li, R.; Kang, H.; Zhang, Q. An aptasensor for the detection of ampicillin in milk using a personal glucose meter. Anal. Methods 2020, 12, 3376–3381. [Google Scholar] [CrossRef]
- Simmons, M.D.; Miller, L.M.; Sundstrom, M.O.; Johnson, S. Aptamer-Based Detection of Ampicillin in Urine Samples. Antibiotics 2020, 9, 655. [Google Scholar] [CrossRef]
- Luo, W.; Hansen, E.B., Jr.; Ang, C.Y.W.; Deck, J.; Freeman, J.P.; Thompson, H.C. Simultaneous Determination of Amoxicillin and Ampicillin in Bovine Milk by HPLC with Fluorescence Detection. J. Agric. Food Chem. 1997, 45, 1264–1268. [Google Scholar] [CrossRef]
- Guliy, O.I.; Evstigneeva, S.S.; Bunin, V.D. Bacteria-based electro-optical platform for ampicillin detection in aquatic solutions. Talanta 2021, 225, 122007. [Google Scholar] [CrossRef]
- Mehlhorn, A.; Rahimi, P.; Joseph, Y. Aptamer-Based Biosensors for Antibiotic Detection: A Review. Biosensors 2018, 8, 54. [Google Scholar] [CrossRef]
- Sun, P.; Li, H.-L.; Wang, X.-Z. Investigation of interaction between nitrobenzene and bovine serum albumin by spectroscopic methods. Chem. Res. Appl. 2014, 26, 804–808. [Google Scholar]
- Zeng, Y.; Chang, F.; Liu, Q.; Duan, L.; Li, D.; Zhang, H. Recent Advances and Perspectives on the Sources and Detection of Antibiotics in Aquatic Environments. J. Anal. Methods Chem. 2022, 2022, 5091181. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, H.; Hu, L.; Wang, J.; Lam, J.W.Y.; Blancafort, L.; Tang, B.Z. Through-Space Interaction of Tetraphenylethylene: What, Where, and How. J. Am. Chem. Soc. 2022, 144, 7901–7910. [Google Scholar] [CrossRef]
- Muralisankar, M.; Bhuvanesh, N.S.P.; Sreekanth, A. Synthesis, X-ray crystal structure, DNA/protein binding and DNA cleavage studies of novel copper(II) complexes of N-substituted isatin thiosemicarbazone ligands. New J. Chem. 2016, 40, 2661–2679. [Google Scholar] [CrossRef]
- Yu, X.; Ying, Y.; Lu, S.; Qing, Y.; Liu, H.; Li, X.; Yi, P. The fluorescence spectroscopic study on the interaction between imidazo [2,1-b]thiazole analogues and bovine serum albumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2011, 83, 322–328. [Google Scholar] [CrossRef]
- Sun, Y.; Wei, S.; Yin, C.; Liu, L.; Hu, C.; Zhao, Y.; Ye, Y.; Hu, X.; Fan, J. Synthesis and spectroscopic characterization of 4-butoxyethoxy-N-octadecyl-1,8-naphthalimide as a new fluorescent probe for the determination of proteins. Bioorg. Med. Chem. Lett. 2011, 21, 3798–3804. [Google Scholar] [CrossRef]
- Hu, Y.J.; Liu, Y.; Xiao, X.H. Investigation of the interaction between Berberine and human serum albumin. Biomacromolecules 2009, 10, 517–521. [Google Scholar] [CrossRef]
T (K) | Ksv (L·mol−1) | Kq (L·mol−1·s−1) | R 1 |
---|---|---|---|
287 | 2.488 × 106 | 2.488 × 1014 | 0.9986 |
305 | 2.149 × 106 | 2.149 × 1014 | 0.9995 |
318 | 2.065 × 106 | 2.065 × 1014 | 0.9949 |
T (K) | Kb (/105 L/mol) | n | R | ΔH (kJ/mol) | ΔS (J/mol) | ΔG (kJ/mol) |
---|---|---|---|---|---|---|
287 | 9.59 | 1.03 | 0.9929 | −29.46 | 12.59 | −33.07 |
305 | 6.26 | 1.08 | 0.9902 | −33.3 | ||
318 | 2.75 | 1.21 | 0.9902 | −33.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, W.; Feng, Y.; Chen, Y.; Zhang, X.; Zhang, H.; Yang, F.; Wang, X. Interactions of Amino Group Functionalized Tetraphenylvinyl and DNA: A Label-Free “On-Off-On” Fluorescent Aptamer Sensor toward Ampicillin. Biosensors 2023, 13, 504. https://doi.org/10.3390/bios13050504
Geng W, Feng Y, Chen Y, Zhang X, Zhang H, Yang F, Wang X. Interactions of Amino Group Functionalized Tetraphenylvinyl and DNA: A Label-Free “On-Off-On” Fluorescent Aptamer Sensor toward Ampicillin. Biosensors. 2023; 13(5):504. https://doi.org/10.3390/bios13050504
Chicago/Turabian StyleGeng, Weifu, Yan Feng, Yu Chen, Xin Zhang, Haoyi Zhang, Fanfan Yang, and Xiuzhong Wang. 2023. "Interactions of Amino Group Functionalized Tetraphenylvinyl and DNA: A Label-Free “On-Off-On” Fluorescent Aptamer Sensor toward Ampicillin" Biosensors 13, no. 5: 504. https://doi.org/10.3390/bios13050504
APA StyleGeng, W., Feng, Y., Chen, Y., Zhang, X., Zhang, H., Yang, F., & Wang, X. (2023). Interactions of Amino Group Functionalized Tetraphenylvinyl and DNA: A Label-Free “On-Off-On” Fluorescent Aptamer Sensor toward Ampicillin. Biosensors, 13(5), 504. https://doi.org/10.3390/bios13050504