Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection
Abstract
:1. Introduction
2. Structures and Characteristics of Conjugated Polymers for Biosensors
Conjugated Polymers | Conductivity (S/cm) | Properties | Refs |
---|---|---|---|
Homopolymers | |||
Polyacetylene | Trans-polyacetylene (4.4 × 10−5 ) Cis-polyacetylene (1.7 × 10−9) | Water insolubility Low solubility in organic solvents The morphology consists of fibrils, with an average width of 200 Å | [45,46] |
Polypyrrole (PPy) | 2–100 | Solubility in DMSO, chloroform, chlorobenzene, and tetrachloromethane Environmental stability, compatibility | [47] |
Polythiophene (PT) | 10–103 | Insolubility in ordinary solvents The optical properties of PTs are sensitive to many factors. PTs exhibit absorption shifts due to application of electric potentials | [48] |
Poly(phenylenevinylene) (PPV) | 10–13 | Water insolubility A highly ordered crystalline thin film. A small optical band gap and bright yellow fluorescence | [49] |
Poly(aniline) (PANI) | 30–200 | Insolubility in the common organic solvents Solubility in NMP, DMSO, DMF, and THF Environmental stability and compatibility | [50] |
Poly(3,4-ethylenedioxythiophene) (PEDOT) | 0.4–400 | Available aqueous dispersion Low density, excellent thermoelectric performance | [51,52] |
Polydiacetylene (PDA) | ∼10−5 | Highly ordered backbones with customizable side chains An absorption peak at ∼640 nm (blue color). Upon interaction with external stimuli, the main absorption peak shifts hypsochromically to ∼540 nm (red color) | [53] |
Copolymers | |||
DPP-DTT | 8.4 | Solubility in chloroform, chlorobenzene, and dichlorobenzene High mobility 10 cm2/Vs | [54,55] |
PEDOT:PSS | 54 | Self-healing properties Adjustable conductivity, good transparency to visible light, excellent thermal stability, and a high level of biocompatibility High water solubility | [56,57] |
TBTT-ProDOT | - | Optical bandgaps ranging from 1.96–2.46 eV High photoluminescent quantum yields | [31,58] |
3. CPs-Based Optical Biosensors for Virus Detection
3.1. Fluorescent Conjugated Polymer Biosensors
3.2. Colorimetric-Conjugated Polymer-Based Biosensors
3.2.1. Solution-Based CP Colorimetric Biosensors
3.2.2. Substrate-Based CP Colorimetric Biosensors
4. CP-Based Organic Thin Film Transistors
5. Conducting Polymer Hydrogel (CPH)-Based Biosensors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tumpey, T.M.; Basler, C.F.; Aguilar, P.V.; Zeng, H.; Solórzano, A.; Swayne, D.E.; Cox, N.J.; Katz, J.M.; Taubenberger, J.K.; Palese, P.; et al. Characterization of the Reconstructed 1918 Spanish Influenza Pandemic Virus. Science 2005, 310, 77–80. [Google Scholar] [CrossRef]
- Eisinger, R.W.; Lerner, A.M.; Fauci, A.S. Human Immunodeficiency Virus/AIDS in the Era of Coronavirus Disease 2019: A Juxtaposition of 2 Pandemics. J. Infect. Dis. 2021, 224, 1455–1461. [Google Scholar] [CrossRef]
- Emergence of a Novel Swine-Origin Influenza A (H1N1) Virus in Humans. N. Engl. J. Med. 2009, 360, 2605–2615. [CrossRef] [PubMed]
- Calderaro, A.; De Conto, F.; Buttrini, M.; Piccolo, G.; Montecchini, S.; Maccari, C.; Martinelli, M.; Di Maio, A.; Ferraglia, F.; Pinardi, F.; et al. Human respiratory viruses, including SARS-CoV-2, circulating in the winter season 2019–2020 in Parma, Northern Italy. Int. J. Infect. Dis. 2021, 102, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Ahmad, K.Z.; Warden, A.R.; Ke, Y.; Maboyi, N.; Zhi, X.; Ding, X. One-pot pre-coated interface proximity extension assay for ultrasensitive co-detection of anti-SARS-CoV-2 antibodies and viral RNA. Biosens. Bioelectron. 2021, 193, 113535. [Google Scholar] [CrossRef] [PubMed]
- Corman, V.M.; Landt, O.; Kaiser, M.; Molenkamp, R.; Meijer, A.; Chu, D.K.; Bleicker, T.; Brünink, S.; Schneider, J.; Schmidt, M.L.; et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 2020, 25, 2000045. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Städler, B. Polydiacetylene-Based Biosensors for the Detection of Viruses and Related Biomolecules. Adv. Funct. Mater. 2020, 30, 2004605. [Google Scholar] [CrossRef]
- Cho, I.-H.; Kim, D.H.; Park, S. Electrochemical biosensors: Perspective on functional nanomaterials for on-site analysis. Biomater. Res. 2020, 24, 6. [Google Scholar] [CrossRef]
- Tran, V.V. Conjugated Polymers-Based Biosensors for Virus Detection: Lessons from COVID-19. Biosensors 2022, 12, 748. [Google Scholar] [CrossRef]
- Hussein, H.A.; Kandeil, A.; Gomaa, M.; Mohamed El Nashar, R.; El-Sherbiny, I.M.; Hassan, R.Y.A. SARS-CoV-2-Impedimetric Biosensor: Virus-Imprinted Chips for Early and Rapid Diagnosis. ACS Sens. 2021, 6, 4098–4107. [Google Scholar] [CrossRef]
- Ménard-Moyon, C.; Bianco, A.; Kalantar-Zadeh, K. Two-Dimensional Material-Based Biosensors for Virus Detection. ACS Sens. 2020, 5, 3739–3769. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, M.; Ahour, F. An electrochemical biosensor based on a graphene oxide modified pencil graphite electrode for direct detection and discrimination of double-stranded DNA sequences. Anal. Methods 2020, 12, 4541–4550. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.T.; Heiranian, M.; Kim, Y.; You, S.; Leem, J.; Taqieddin, A.; Faramarzi, V.; Jing, Y.; Park, I.; van der Zande, A.M.; et al. Ultrasensitive detection of nucleic acids using deformed graphene channel field effect biosensors. Nat. Commun. 2020, 11, 1543. [Google Scholar] [CrossRef] [PubMed]
- Aydemir, N.; Malmström, J.; Travas-Sejdic, J. Conducting polymer based electrochemical biosensors. Phys. Chem. Chem. Phys. 2016, 18, 8264–8277. [Google Scholar] [CrossRef] [PubMed]
- Marsh, A.V.; Heeney, M. Conjugated polymers based on selenophene building blocks. Polym. J. 2022, 55, 375–385. [Google Scholar] [CrossRef]
- Wu, W.; Bazan, G.C.; Liu, B. Conjugated-Polymer-Amplified Sensing, Imaging, and Therapy. Chem 2017, 2, 760–790. [Google Scholar] [CrossRef]
- Zhang, Z.; Feng, Q.; Yang, M.; Tang, Y. A ratiometric fluorescent biosensor based on conjugated polymers for sensitive detection of nitroreductase and hypoxia diagnosis in tumor cells. Sens. Actuators B Chem. 2020, 318, 128257. [Google Scholar] [CrossRef]
- Lee, K.; Povlich, L.K.; Kim, J. Recent advances in fluorescent and colorimetric conjugated polymer-based biosensors. Analyst 2010, 135, 2179–2189. [Google Scholar] [CrossRef]
- Shirakawa, H. The Discovery of Polyacetylene Film: The Dawning of an Era of Conducting Polymers (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2574–2580. [Google Scholar] [CrossRef]
- Pan, H.M.; Gonuguntla, S.; Li, S.; Trau, D. 3.33 Conjugated Polymers for Biosensor Devices. In Comprehensive Biomaterials II; Ducheyne, P., Ed.; Elsevier: Oxford, UK, 2017; pp. 716–754. [Google Scholar]
- McQuade, D.T.; Pullen, A.E.; Swager, T.M. Conjugated Polymer-Based Chemical Sensors. Chem. Rev. 2000, 100, 2537–2574. [Google Scholar] [CrossRef]
- Zhou, Q.; Swager, T.M. Fluorescent Chemosensors Based on Energy Migration in Conjugated Polymers: The Molecular Wire Approach to Increased Sensitivity. J. Am. Chem. Soc. 1995, 117, 12593–12602. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar] [CrossRef]
- Rahman, M.A.; Kumar, P.; Park, D.-S.; Shim, Y.-B. Electrochemical Sensors Based on Organic Conjugated Polymers. Sensors 2008, 8, 118–141. [Google Scholar] [CrossRef]
- Chen, L.; McBranch, D.W.; Wang, H.-L.; Helgeson, R.; Wudl, F.; Whitten, D.G. Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. Proc. Natl. Acad. Sci. USA 1999, 96, 12287–12292. [Google Scholar] [CrossRef]
- Liu, B.; Bazan, G.C. Homogeneous Fluorescence-Based DNA Detection with Water-Soluble Conjugated Polymers. Chem. Mater. 2004, 16, 4467–4476. [Google Scholar] [CrossRef]
- Liu, B.; Bazan, G.C. Interpolyelectrolyte Complexes of Conjugated Copolymers and DNA: Platforms for Multicolor Biosensors. J. Am. Chem. Soc. 2004, 126, 1942–1943. [Google Scholar] [CrossRef]
- Wang, D.; Gong, X.; Heeger, P.S.; Rininsland, F.; Bazan, G.C.; Heeger, A.J. Biosensors from conjugated polyelectrolyte complexes. Proc. Natl. Acad. Sci. USA 2002, 99, 49–53. [Google Scholar] [CrossRef] [PubMed]
- Müllen, K.; Scherf, U. Conjugated Polymers: Where We Come From, Where We Stand, and Where We Might Go. Macromol. Chem. Phys. 2023, 224, 2200337. [Google Scholar] [CrossRef]
- Veeramuthu, L.; Venkatesan, M.; Liang, F.-C.; Benas, J.-S.; Cho, C.-J.; Chen, C.-W.; Zhou, Y.; Lee, R.-H.; Kuo, C.-C. Conjugated Copolymers through Electrospinning Synthetic Strategies and Their Versatile Applications in Sensing Environmental Toxicants, pH, Temperature, and Humidity. Polymers 2020, 12, 587. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, C.E.; Sabury, S.; Jenkins, J.E.; Collier, G.S.; Sumpter, B.G.; Long, B.K.; Kilbey, S.M. Highly fluorescent purine-containing conjugated copolymers with tailored optoelectronic properties. Polym. Chem. 2022, 13, 4921–4933. [Google Scholar] [CrossRef]
- McCullough, R.D. The Chemistry of Conducting Polythiophenes. Adv. Mater. 1998, 10, 93–116. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, R.; Seferos, D.S. Precision Synthesis of Conjugated Polymers Using the Kumada Methodology. Acc. Chem. Res. 2021, 54, 4203–4214. [Google Scholar] [CrossRef] [PubMed]
- Wallace, G.G.; Smyth, M.; Zhao, H. Conducting electroactive polymer-based biosensors. TrAC Trends Anal. Chem. 1999, 18, 245–251. [Google Scholar] [CrossRef]
- Tran, V.V.; Tran, N.H.T.; Hwang, H.S.; Chang, M. Development strategies of conducting polymer-based electrochemical biosensors for virus biomarkers: Potential for rapid COVID-19 detection. Biosens. Bioelectron. 2021, 182, 113192. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Yu, C.; Liu, Z.; Luo, H.; Yang, Y.; Zhang, G.; Zhang, D. Significant Improvement of Semiconducting Performance of the Diketopyrrolopyrrole–Quaterthiophene Conjugated Polymer through Side-Chain Engineering via Hydrogen-Bonding. J. Am. Chem. Soc. 2016, 138, 173–185. [Google Scholar] [CrossRef]
- Li, Y.; Sonar, P.; Murphy, L.; Hong, W. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 2013, 6, 1684–1710. [Google Scholar] [CrossRef]
- Ghosh, R.; Luscombe, C.K.; Hambsch, M.; Mannsfeld, S.C.B.; Salleo, A.; Spano, F.C. Anisotropic Polaron Delocalization in Conjugated Homopolymers and Donor–Acceptor Copolymers. Chem. Mater. 2019, 31, 7033–7045. [Google Scholar] [CrossRef]
- Heeger, A.J. Semiconducting and Metallic Polymers: The Fourth Generation of Polymeric Materials (Nobel Lecture). Angew. Chem. Int. Ed. 2001, 40, 2591–2611. [Google Scholar] [CrossRef]
- Krauss, G.; Hochgesang, A.; Mohanraj, J.; Thelakkat, M. Highly Efficient Doping of Conjugated Polymers Using Multielectron Acceptor Salts. Macromol. Rapid Commun. 2021, 42, 2100443. [Google Scholar] [CrossRef]
- Smela, E. Conjugated Polymer Actuators for Biomedical Applications. Adv. Mater. 2003, 15, 481–494. [Google Scholar] [CrossRef]
- Tam, T.L.D.; Xu, J. Strategies and concepts in n-doped conjugated polymer thermoelectrics. J. Mater. Chem. A 2021, 9, 5149–5163. [Google Scholar] [CrossRef]
- Bargigia, I.; Savagian, L.R.; Österholm, A.M.; Reynolds, J.R.; Silva, C. Charge-Transfer Intermediates in the Electrochemical Doping Mechanism of Conjugated Polymers. J. Am. Chem. Soc. 2021, 143, 294–308. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Wang, J.-Y.; Pei, J. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants. Acc. Chem. Res. 2021, 54, 2871–2883. [Google Scholar] [CrossRef]
- Hirayama, H.; Tamaoka, J.; Horikoshi, K. Improved Immobilization of DNA to Microwell Plates for DNA-DNA Hybridization. Nucleic Acids Res. 1996, 24, 4098–4099. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Huang, H.; Li, Y.; Deng, J. Particles of polyacetylene and its derivatives: Preparation and applications. Polym. Chem. 2014, 5, 1107–1118. [Google Scholar] [CrossRef]
- Dicks, J.M.; Cardosi, M.F.; Turner, A.P.F.; Karube, I. The application of ferrocene-modified n-type silicon in glucose biosensors. Electroanalysis 1993, 5, 1–9. [Google Scholar] [CrossRef]
- Das, S.; Chatterjee, D.P.; Ghosh, R.; Nandi, A.K. Water soluble polythiophenes: Preparation and applications. RSC Adv. 2015, 5, 20160–20177. [Google Scholar] [CrossRef]
- Blayney, A.J.; Perepichka, I.F.; Wudl, F.; Perepichka, D.F. Advances and Challenges in the Synthesis of Poly(p-phenylene vinylene)-Based Polymers. Isr. J. Chem. 2014, 54, 674–688. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef]
- Minudri, D.; Mantione, D.; Dominguez-Alfaro, A.; Moya, S.; Maza, E.; Bellacanzone, C.; Antognazza, M.R.; Mecerreyes, D. Water Soluble Cationic Poly(3,4-Ethylenedioxythiophene) PEDOT-N as a Versatile Conducting Polymer for Bioelectronics. Adv. Electron. Mater. 2020, 6, 2000510. [Google Scholar] [CrossRef]
- Yin, X.; Wu, F.; Fu, N.; Han, J.; Chen, D.; Xu, P.; He, M.; Lin, Y. Facile Synthesis of Poly(3,4-ethylenedioxythiophene) Film via Solid-State Polymerization as High-Performance Pt-Free Counter Electrodes for Plastic Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2013, 5, 8423–8429. [Google Scholar] [CrossRef]
- Qian, X.; Städler, B. Recent Developments in Polydiacetylene-Based Sensors. Chem. Mater. 2019, 31, 1196–1222. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, W.; Liu, Y.; Wang, C.; Zhu, G.; Song, W. Directly written DPP-DTT/SrTiO3 organic/inorganic heterojunctions for anisotropic self-powered photodetectors. J. Mater. Chem. C 2021, 9, 15654–15661. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Y.; Tan, H.S.; Guo, Y.; Di, C.-A.; Yu, G.; Liu, Y.; Lin, M.; Lim, S.H.; Zhou, Y.; et al. A stable solution-processed polymer semiconductor with record high-mobility for printed transistors. Sci. Rep. 2012, 2, 754. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, W.; Zhang, H.; Xie, M.; Duan, X. PEDOT:PSS: From conductive polymers to sensors. Nanotechnol. Precis. Eng. 2021, 4, 045004. [Google Scholar] [CrossRef]
- Girtan, M.; Mallet, R.; Socol, M.; Stanculescu, A. On the Physical Properties PEDOT:PSS Thin Films. Mater. Today Commun. 2020, 22, 100735. [Google Scholar] [CrossRef]
- Hacıefendioǧlu, T.; Yildirim, E. Design Principles for the Acceptor Units in Donor–Acceptor Conjugated Polymers. ACS Omega 2022, 7, 38969–38978. [Google Scholar] [CrossRef]
- Li, D.; Chen, H.; Gao, X.; Mei, X.; Yang, L. Development of General Methods for Detection of Virus by Engineering Fluorescent Silver Nanoclusters. ACS Sens. 2021, 6, 613–627. [Google Scholar] [CrossRef]
- Gaylord, B.S.; Heeger, A.J.; Bazan, G.C. DNA detection using water-soluble conjugated polymers and peptide nucleic acid probes. Proc. Natl. Acad. Sci. USA 2002, 99, 10954–10957. [Google Scholar] [CrossRef]
- Zhang, P.; Lu, C.; Niu, C.; Wang, X.; Li, Z.; Liu, J. Binding Studies of Cationic Conjugated Polymers and DNA for Label-Free Fluorescent Biosensors. ACS Appl. Polym. Mater. 2022, 4, 6211–6218. [Google Scholar] [CrossRef]
- Tan, C.; Atas, E.; Müller, J.G.; Pinto, M.R.; Kleiman, V.D.; Schanze, K.S. Amplified Quenching of a Conjugated Polyelectrolyte by Cyanine Dyes. J. Am. Chem. Soc. 2004, 126, 13685–13694. [Google Scholar] [CrossRef]
- Kim, I.-B.; Dunkhorst, A.; Gilbert, J.; Bunz, U.H.F. Sensing of Lead Ions by a Carboxylate-Substituted PPE: Multivalency Effects. Macromolecules 2005, 38, 4560–4562. [Google Scholar] [CrossRef]
- Disney, M.D.; Zheng, J.; Swager, T.M.; Seeberger, P.H. Detection of Bacteria with Carbohydrate-Functionalized Fluorescent Polymers. J. Am. Chem. Soc. 2004, 126, 13343–13346. [Google Scholar] [CrossRef] [PubMed]
- Ho, H.A.; Doré, K.; Boissinot, M.; Bergeron, M.G.; Tanguay, R.M.; Boudreau, D.; Leclerc, M. Direct Molecular Detection of Nucleic Acids by Fluorescence Signal Amplification. J. Am. Chem. Soc. 2005, 127, 12673–12676. [Google Scholar] [CrossRef] [PubMed]
- Doré, K.; Dubus, S.; Ho, H.-A.; Lévesque, I.; Brunette, M.; Corbeil, G.; Boissinot, M.; Boivin, G.; Bergeron, M.G.; Boudreau, D.; et al. Fluorescent Polymeric Transducer for the Rapid, Simple, and Specific Detection of Nucleic Acids at the Zeptomole Level. J. Am. Chem. Soc. 2004, 126, 4240–4244. [Google Scholar] [CrossRef]
- Suto, K.; Yoshimoto, S.; Itaya, K. Two-Dimensional Self-Organization of Phthalocyanine and Porphyrin: Dependence on the Crystallographic Orientation of Au. J. Am. Chem. Soc. 2003, 125, 14976–14977. [Google Scholar] [CrossRef]
- Pinto, M.R.; Schanze, K.S. Amplified fluorescence sensing of protease activity with conjugated polyelectrolytes. Proc. Natl. Acad. Sci. 2004, 101, 7505–7510. [Google Scholar] [CrossRef]
- Pu, K.-Y.; Liu, B. Optimizing the cationic conjugated polymer-sensitized fluorescent signal of dye labeled oligonucleotide for biosensor applications. Biosens. Bioelectron. 2009, 24, 1067–1073. [Google Scholar] [CrossRef]
- Ho, H.-A.; Boissinot, M.; Bergeron, M.G.; Corbeil, G.; Doré, K.; Boudreau, D.; Leclerc, M. Colorimetric and Fluorometric Detection of Nucleic Acids Using Cationic Polythiophene Derivatives. Angew. Chem. Int. Ed. 2002, 41, 1548–1551. [Google Scholar] [CrossRef]
- Feng, X.; Liu, L.; Wang, S.; Zhu, D. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors. Chem. Soc. Rev. 2010, 39, 2411–2419. [Google Scholar] [CrossRef]
- Swager, T.M. The Molecular Wire Approach to Sensory Signal Amplification. Acc. Chem. Res. 1998, 31, 201–207. [Google Scholar] [CrossRef]
- Priye, A.; Ball, C.S.; Meagher, R.J. Colorimetric-Luminance Readout for Quantitative Analysis of Fluorescence Signals with a Smartphone CMOS Sensor. Anal. Chem. 2018, 90, 12385–12389. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, L.; Chu, S.; Liu, B.; Zhang, Q.; Zou, L.; Yu, S.; Jiang, C. Semiquantitative Visual Detection of Lead Ions with a Smartphone via a Colorimetric Paper-Based Analytical Device. Anal. Chem. 2019, 91, 9292–9299. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.-L.; Chen, Y.; Jiang, H.-L.; Qiu, X.-B.; Yu, D.-L. Smartphone-Based Microfluidic Colorimetric Sensor for Gaseous Formaldehyde Determination with High Sensitivity and Selectivity. Sensors 2018, 18, 3141. [Google Scholar] [CrossRef]
- Zhu, D.; Liu, B.; Wei, G. Two-Dimensional Material-Based Colorimetric Biosensors: A Review. Biosensors 2021, 11, 259. [Google Scholar] [CrossRef]
- Choi, J.; Hong, Y.; Lee, E.; Kim, M.-H.; Yoon, D.S.; Suh, J.; Huh, Y.; Haam, S.; Yang, J. Redox-sensitive colorimetric polyaniline nanoprobes synthesized by a solvent-shift process. Nano Res. 2013, 6, 356–364. [Google Scholar] [CrossRef]
- Lee, T.; Bang, D.; Park, Y.; Chang, Y.W.; Kang, B.; Kim, J.; Suh, J.-S.; Huh, Y.-M.; Haam, S. Synthesis of Stable Magnetic Polyaniline Nanohybrids with Pyrene as a Cross-Linker for Simultaneous Diagnosis by Magnetic Resonance Imaging and Photothermal Therapy. Eur. J. Inorg. Chem. 2015, 2015, 3740–3747. [Google Scholar] [CrossRef]
- Park, G.; Kim, H.-O.; Lim, J.-W.; Park, C.; Yeom, M.; Song, D.; Haam, S. Rapid detection of influenza A (H1N1) virus by conductive polymer-based nanoparticle via optical response to virus-specific binding. Nano Res. 2022, 15, 2254–2262. [Google Scholar] [CrossRef]
- Song, S.; Ha, K.; Guk, K.; Hwang, S.-G.; Choi, J.M.; Kang, T.; Bae, P.; Jung, J.; Lim, E.-K. Colorimetric detection of influenza A (H1N1) virus by a peptide-functionalized polydiacetylene (PEP-PDA) nanosensor. RSC Adv. 2016, 6, 48566–48570. [Google Scholar] [CrossRef]
- Yarimaga, O.; Jaworski, J.; Yoon, B.; Kim, J.-M. Polydiacetylenes: Supramolecular smart materials with a structural hierarchy for sensing, imaging and display applications. Chem. Commun. 2012, 48, 2469–2485. [Google Scholar] [CrossRef]
- Lee, J.; Pyo, M.; Lee, S.-h.; Kim, J.; Ra, M.; Kim, W.-Y.; Park, B.J.; Lee, C.W.; Kim, J.-M. Hydrochromic conjugated polymers for human sweat pore mapping. Nat. Commun. 2014, 5, 3736. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Ma, Z. Colorimetric detection of oligonucleotides using a polydiacetylene vesicle sensor. Anal. Bioanal. Chem. 2005, 382, 1708–1710. [Google Scholar] [CrossRef] [PubMed]
- Skehel, J.J.; Wiley, D.C. Receptor Binding and Membrane Fusion in Virus Entry: The Influenza Hemagglutinin. Annu. Rev. Biochem. 2000, 69, 531–569. [Google Scholar] [CrossRef] [PubMed]
- Lesniewski, A.; Los, M.; Jonsson-Niedziółka, M.; Krajewska, A.; Szot, K.; Los, J.M.; Niedziolka-Jonsson, J. Antibody Modified Gold Nanoparticles for Fast and Selective, Colorimetric T7 Bacteriophage Detection. Bioconjug. Chem. 2014, 25, 644–648. [Google Scholar] [CrossRef]
- Jiang, L.; Luo, J.; Dong, W.; Wang, C.; Jin, W.; Xia, Y.; Wang, H.; Ding, H.; Jiang, L.; He, H. Development and evaluation of a polydiacetylene based biosensor for the detection of H5 influenza virus. J. Virol. Methods 2015, 219, 38–45. [Google Scholar] [CrossRef]
- Mercer, J.; Helenius, A. Vaccinia Virus Uses Macropinocytosis and Apoptotic Mimicry to Enter Host Cells. Science 2008, 320, 531–535. [Google Scholar] [CrossRef]
- Orynbayeva, Z.; Kolusheva, S.; Groysman, N.; Gavrielov, N.; Lobel, L.; Jelinek, R. Vaccinia Virus Interactions with the Cell Membrane Studied by New Chromatic Vesicle and Cell Sensor Assays. J. Virol. 2007, 81, 1140–1147. [Google Scholar] [CrossRef]
- Jeong, J.-P.; Cho, E.; Lee, S.-C.; Kim, T.; Song, B.; Lee, I.-S.; Jung, S. Detection of Foot-and-Mouth Disease Virus Using a Polydiacetylene Immunosensor on Solid-Liquid Phase. Macromol. Mater. Eng. 2018, 303, 1700640. [Google Scholar] [CrossRef]
- Kang, D.H.; Jung, H.-S.; Lee, J.; Seo, S.; Kim, J.; Kim, K.; Suh, K.-Y. Design of Polydiacetylene-Phospholipid Supramolecules for Enhanced Stability and Sensitivity. Langmuir 2012, 28, 7551–7556. [Google Scholar] [CrossRef]
- Roh, J.; Lee, S.Y.; Park, S.; Ahn, D.J. Polydiacetylene/Anti-HBs Complexes for Visible and Fluorescent Detection of Hepatitis B Surface Antigen on a Nitrocellulose Membrane. Chem. Asian J. 2017, 12, 2033–2037. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Bahrani, S.; Yousefi, K.; Behbudi, G.; Babapoor, A.; Omidifar, N.; Lai, C.W.; Gholami, A.; Chiang, W.-H. Recent Advancements in Polythiophene-Based Materials and their Biomedical, Geno Sensor and DNA Detection. Int. J. Mol. Sci. 2021, 22, 6850. [Google Scholar] [CrossRef]
- Wosnick, J.H.; Mello, C.M.; Swager, T.M. Synthesis and Application of Poly(phenylene Ethynylene)s for Bioconjugation: A Conjugated Polymer-Based Fluorogenic Probe for Proteases. J. Am. Chem. Soc. 2005, 127, 3400–3405. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Cheng, Y.; Lv, X. Colorimetric detection of microRNA and RNase H activity in homogeneous solution with cationic polythiophene derivative. Chem. Commun. 2009, 22, 3172–3174. [Google Scholar] [CrossRef]
- Ho, H.-A.; Leclerc, M. Optical Sensors Based on Hybrid Aptamer/Conjugated Polymer Complexes. J. Am. Chem. Soc. 2004, 126, 1384–1387. [Google Scholar] [CrossRef]
- Ammanath, G.; Yeasmin, S.; Srinivasulu, Y.; Vats, M.; Cheema, J.A.; Nabilah, F.; Srivastava, R.; Yildiz, U.H.; Alagappan, P.; Liedberg, B. Flow-through colorimetric assay for detection of nucleic acids in plasma. Anal. Chim. Acta 2019, 1066, 102–111. [Google Scholar] [CrossRef]
- Jeong, J.-P.; Cho, E.; Yun, D.; Kim, T.; Lee, I.-S.; Jung, S. Label-Free Colorimetric Detection of Influenza Antigen Based on an Antibody-Polydiacetylene Conjugate and Its Coated Polyvinylidene Difluoride Membrane. Polymers 2017, 9, 127. [Google Scholar] [CrossRef] [PubMed]
- Swierczewski, M.; Bürgi, T. Langmuir and Langmuir–Blodgett Films of Gold and Silver Nanoparticles. Langmuir 2023, 39, 2135–2151. [Google Scholar] [CrossRef]
- Park, C.H.; Kim, J.P.; Lee, S.W.; Jeon, N.L.; Yoo, P.J.; Sim, S.J. A Direct, Multiplex Biosensor Platform for Pathogen Detection Based on Cross-linked Polydiacetylene (PDA) Supramolecules. Adv. Funct. Mater. 2009, 19, 3703–3710. [Google Scholar] [CrossRef]
- Li, Y.-Q.; Feng, L. Progress in Paper-based Colorimetric Sensor Array. Chin. J. Anal. Chem. 2020, 48, 1448–1457. [Google Scholar] [CrossRef]
- Anjali, M.K.; Bharath, G.; Rashmi, H.M.; Avinash, J.; Naresh, K.; Raju, P.N.; Raghu, H.V. Polyaniline-Pectin nanoparticles immobilized paper based colorimetric sensor for detection of Escherichia coli in milk and milk products. Curr. Res. Food Sci. 2022, 5, 823–834. [Google Scholar] [CrossRef]
- Zhao, V.X.T.; Wong, T.I.; Zheng, X.T.; Tan, Y.N.; Zhou, X. Colorimetric biosensors for point-of-care virus detections. Mater. Sci. EnergyTechnol. 2020, 3, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Son, S.U.; Seo, S.B.; Jang, S.; Choi, J.; Lim, J.-w.; Lee, D.K.; Kim, H.; Seo, S.; Kang, T.; Jung, J.; et al. Naked-eye detection of pandemic influenza a (pH1N1) virus by polydiacetylene (PDA)-based paper sensor as a point-of-care diagnostic platform. Sens. Actuators B Chem. 2019, 291, 257–265. [Google Scholar] [CrossRef]
- Prainito, C.D.; Eshun, G.; Osonga, F.J.; Isika, D.; Centeno, C.; Sadik, O.A. Colorimetric Detection of the SARS-CoV-2 Virus (COVID-19) in Artificial Saliva Using Polydiacetylene Paper Strips. Biosensors 2022, 12, 804. [Google Scholar] [CrossRef]
- Lavanchy, D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures. J. Viral Hepat. 2004, 11, 97–107. [Google Scholar] [CrossRef]
- Shen, J.; Zhou, Y.; Fu, F.; Xu, H.; Lv, J.; Xiong, Y.; Wang, A. Immunochromatographic assay for quantitative and sensitive detection of hepatitis B virus surface antigen using highly luminescent quantum dot-beads. Talanta 2015, 142, 145–149. [Google Scholar] [CrossRef]
- Shi, W.; Guo, Y.; Liu, Y. When Flexible Organic Field-Effect Transistors Meet Biomimetics: A Prospective View of the Internet of Things. Adv. Mater. 2020, 32, 1901493. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Chen, X.; Wang, Q.; Xiao, M.; Zhong, D.; Sun, W.; Zhang, G.; Zhang, Z. Ultrasensitive Monolayer MoS2 Field-Effect Transistor Based DNA Sensors for Screening of Down Syndrome. Nano Lett. 2019, 19, 1437–1444. [Google Scholar] [CrossRef]
- Janissen, R.; Sahoo, P.K.; Santos, C.A.; da Silva, A.M.; von Zuben, A.A.G.; Souto, D.E.P.; Costa, A.D.T.; Celedon, P.; Zanchin, N.I.T.; Almeida, D.B.; et al. InP Nanowire Biosensor with Tailored Biofunctionalization: Ultrasensitive and Highly Selective Disease Biomarker Detection. Nano Lett. 2017, 17, 5938–5949. [Google Scholar] [CrossRef] [PubMed]
- Thriveni, G.; Ghosh, K. Advancement and Challenges of Biosensing Using Field Effect Transistors. Biosensors 2022, 12, 647. [Google Scholar] [CrossRef]
- Li, H.; Shi, W.; Song, J.; Jang, H.-J.; Dailey, J.; Yu, J.; Katz, H.E. Chemical and Biomolecule Sensing with Organic Field-Effect Transistors. Chem. Rev. 2019, 119, 3–35. [Google Scholar] [CrossRef]
- Sun, C.; Wang, X.; Auwalu, M.A.; Cheng, S.; Hu, W. Organic thin film transistors-based biosensors. EcoMat 2021, 3, e12094. [Google Scholar] [CrossRef]
- Friedlein, J.T.; McLeod, R.R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 63, 398–414. [Google Scholar] [CrossRef]
- Torricelli, F.; Adrahtas, D.Z.; Bao, Z.; Berggren, M.; Biscarini, F.; Bonfiglio, A.; Bortolotti, C.A.; Frisbie, C.D.; Macchia, E.; Malliaras, G.G.; et al. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Dis. Prim. 2021, 1, 66. [Google Scholar] [CrossRef]
- Seo, G.; Lee, G.; Kim, M.J.; Baek, S.-H.; Choi, M.; Ku, K.B.; Lee, C.-S.; Jun, S.; Park, D.; Kim, H.G.; et al. Rapid Detection of COVID-19 Causative Virus (SARS-CoV-2) in Human Nasopharyngeal Swab Specimens Using Field-Effect Transistor-Based Biosensor. ACS Nano 2020, 14, 5135–5142. [Google Scholar] [CrossRef]
- Kergoat, L.; Piro, B.; Berggren, M.; Pham, M.-C.; Yassar, A.; Horowitz, G. DNA detection with a water-gated organic field-effect transistor. Org. Electron. 2012, 13, 1–6. [Google Scholar] [CrossRef]
- Ji, X.; Zhou, P.; Zhong, L.; Xu, A.; Tsang, A.C.O.; Chan, P.K.L. Smart Surgical Catheter for C-Reactive Protein Sensing Based on an Imperceptible Organic Transistor. Adv. Sci. 2018, 5, 1701053. [Google Scholar] [CrossRef] [PubMed]
- Hai, W.; Goda, T.; Takeuchi, H.; Yamaoka, S.; Horiguchi, Y.; Matsumoto, A.; Miyahara, Y. Human influenza virus detection using sialyllactose-functionalized organic electrochemical transistors. Sens. Actuators B Chem. 2018, 260, 635–641. [Google Scholar] [CrossRef]
- Lin, P.; Luo, X.; Hsing, I.-M.; Yan, F. Organic Electrochemical Transistors Integrated in Flexible Microfluidic Systems and Used for Label-Free DNA Sensing. Adv. Mater. 2011, 23, 4035–4040. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, N.; Yang, A.; Xu, Z.; Zhang, W.; Liu, H.; Law, H.K.-w.; Yan, F. Ultrasensitive Detection of Ribonucleic Acid Biomarkers Using Portable Sensing Platforms Based on Organic Electrochemical Transistors. Anal. Chem. 2021, 93, 14359–14364. [Google Scholar] [CrossRef]
- Tran, V.V.; Lee, K.; Nguyen, T.N.; Lee, D. Recent Advances and Progress of Conducting Polymer-Based Hydrogels in Strain Sensor Applications. Gels 2023, 9, 12. [Google Scholar] [CrossRef]
- Van Tran, V.; Park, D.; Lee, Y.-C. Hydrogel applications for adsorption of contaminants in water and wastewater treatment. Environ. Sci. Pollut. Res. 2018, 25, 24569–24599. [Google Scholar] [CrossRef]
- Li, L.; Shi, Y.; Pan, L.; Shi, Y.; Yu, G. Rational design and applications of conducting polymer hydrogels as electrochemical biosensors. J. Mater. Chem. B 2015, 3, 2920–2930. [Google Scholar] [CrossRef]
- Sekine, S.; Ido, Y.; Miyake, T.; Nagamine, K.; Nishizawa, M. Conducting Polymer Electrodes Printed on Hydrogel. J. Am. Chem. Soc. 2010, 132, 13174–13175. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, B.; Pan, L.; Yu, G. 3D nanostructured conductive polymer hydrogels for high-performance electrochemical devices. Energy Environ. Sci. 2013, 6, 2856–2870. [Google Scholar] [CrossRef]
- Yang, L.; Wang, H.; Lü, H.; Hui, N. Phytic acid functionalized antifouling conducting polymer hydrogel for electrochemical detection of microRNA. Anal. Chim. Acta 2020, 1124, 104–112. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Ma, C.; Peng, L.; Yu, G. Conductive “Smart” Hybrid Hydrogels with PNIPAM and Nanostructured Conductive Polymers. Adv. Funct. Mater. 2015, 25, 1219–1225. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, C.; Pfattner, R.; Yan, H.; Jin, L.; Chen, S.; Molina-Lopez, F.; Lissel, F.; Liu, J.; Rabiah, N.I.; et al. A highly stretchable, transparent, and conductive polymer. Sci. Adv. 2017, 3, e1602076. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Yuk, H.; Lin, S.; Jian, N.; Qu, K.; Xu, J.; Zhao, X. Pure PEDOT:PSS hydrogels. Nat. Commun. 2019, 10, 1043. [Google Scholar] [CrossRef]
- Sun, H.; Gerasimov, J.; Berggren, M.; Fabiano, S. n-Type organic electrochemical transistors: Materials and challenges. J. Mater. Chem. C 2018, 6, 11778–11784. [Google Scholar] [CrossRef]
- Arthur, J.N.; Burns, S.; Cole, C.M.; Barthelme, Q.T.; Yambem, S.D. PEDOT:PSS hydrogel gate electrodes for OTFT sensors. J. Mater. Chem. C 2022, 10, 13964–13973. [Google Scholar] [CrossRef]
- Bai, H.; Lu, H.; Fu, X.; Zhang, E.; Lv, F.; Liu, L.; Wang, S. Supramolecular Strategy Based on Conjugated Polymers for Discrimination of Virus and Pathogens. Biomacromolecules 2018, 19, 2117–2122. [Google Scholar] [CrossRef] [PubMed]
- Guan, H.; Cai, M.; Chen, L.; Wang, Y.; He, Z. Label-free DNA sensor based on fluorescent cationic polythiophene for the sensitive detection of hepatitis B virus oligonucleotides. Luminescence 2010, 25, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Gaylord, B.S.; Heeger, A.J.; Bazan, G.C. DNA Hybridization Detection with Water-Soluble Conjugated Polymers and Chromophore-Labeled Single-Stranded DNA. J. Am. Chem. Soc. 2003, 125, 896–900. [Google Scholar] [CrossRef] [PubMed]
Representative Technique | Detecting Target | Advantages | Disadvantages |
---|---|---|---|
ELISA | Antibodies or viral antigens | High sensitivity and specificity | Require specific antibodies, multiple steps, and sophisticated laboratories |
RT-PCR | Viral genomes | Highest sensitivity, short detection time, best for diagnosis and screening | Expensive, potential sample contamination causing false-positive results, require prior sequence data of the specific target gene of interest |
Viral cultivation and isolation | Virions and viral antigens | Gold standard for viral identification, allows further tests for other purposes such as genotype confirmation | Slow and technically demanding, prolonged time to obtain results, requires further identification for a positive sample, not all viruses can multiply in cell culture |
CP-based biosensors | Virions, viral antigens, antibodies, viral genomes (potential) | Low cost, short response time, biomimetic structure, dual output signals | Moderate sensitivity and selectivity, moderate stability |
Biosensors | Conjugated Polymers | Analytes | Sensitivity | Response Time | LOD | Refs |
---|---|---|---|---|---|---|
Fluorescent conjugated polymer biosensors | ||||||
DNA fluorescent sensor | Cationic PMNT | ssDNA | 10 nM | - | 1 nM | [61] |
DNA fluorescent sensor | Cationic polythiophene | ssDNA | 18 zM | 5 min | 3 zM | [65] |
DNA fluorescent sensor | Cationic polythiophene derivatives | Oligonucleotides | 2 × 10−7 M | 5 min | 2 × 10−7 M | [70] |
Fluorescent sensor | Cationic polythiophene derivative (PT) | E. coli S. aureus C. albicans | 1.0 × 108 cfu/mL 1.2 × 108 cfu/mL 5 × 107 cfu/mL | 25 min | 7.5 × 107 cfu/mL 9 × 107 cfu/mL 4 × 107 cfu/mL | [132] |
Label-free DNA sensor | Poly(3-alkoxy-4-methylthiophene) | Hepatitis B virus | 100 pmol/L | 45 min | 88 pmol/L | [133] |
Forster energy transfer (FRET) sensor | Water-soluble conjugated polymers | ssDNA | 2.1 × 10−8 M | - | 5.1 × 10−7 | [134] |
Colorimetric conjugated polymer-based biosensors | ||||||
Colorimetric RNA biosensor | Polythiophene derivative (PMNT) | MicroRNAs | 0.05–1.0 mM | 25 min | 10 nM | [94] |
Colorimetric naked-eye biosensor | Polydiacetylene | H1N1 virus | 2.75 × 106–6.8 × 105 PFU | - | 105 PFU | [80] |
Colorimetric vesicle sensor | Polydiacetylene | Oligonucleotides | 2 nM–20 µM | - | 2 nM | [83] |
Colorimetric vesicle sensor | Polydiacetylene | H5 influenza virus | 1.35 copies/µL | 20 min | 0.53 copies/µL | [86] |
Substrate colorimetric biosensor | Polyvinylidene difluoride (PVDF)-supported polydiacetylene | Foot-and-mouth disease virus | 7.6–122 μg/mL | 10 min | 7.6 μg/mL | [89] |
Liposome colorimetric biosensor | Polydiacetylene liposome | Antibody of bovine viral diarrhea virus | 0.001 to 100 μg/mL | 24 h | 0.001 μg/mL | [90] |
Visible colorimetric biosensor | Polydiacetylene vesicles | Hepatitis B surface antibody | 0.1–1 ng/mL | 15 min | 0.1 ng/ml | [91] |
Flow-through colorimetric biosensor | Cationic poly (3-alkoxy-4-methylthiophene) | Lung cancer (microRNA) Hepatitis B virus DNA | 1 nM to 10 mM 1 nM to 10 mM | - | ~0.6 nM ~2 nM | [96] |
Label-free colorimetric biosensor | Polydiacetylene | Influenza antigens | 3.3–33 µg/mL | 10 min | 3.3 µg/mL | [97] |
Multiple biosensor chip | Polydiacetylene liposome | Six species of pathogen | 102–106 units/mL | 30 min | 102 units/mL | [99] |
Paper colorimetric sensor | Polyaniline | Escherichia coli | 8.56 log CFU/mL | 80 min | 0.52 log CFU/mL | [101] |
Paper colorimetric chip | Polydiacetylene | Influenza A (pH1N1) virus | 5 × 104 TCID50 | 3 h | 5 × 103 TCID50 | [103] |
CP-based organic thin film transistors | ||||||
Water-gated OFET | Poly(3-hexylthiophene) | DNA (HIV virus) | 1–100 nM | 2 h | 1 nM | [116] |
Ultraflexible OFET | DPh-BBTNDT | C-reactive protein (CRP) antigen | 500 ng/mL | 100 s | 1 μg/mL | [117] |
OECT sensor | PEDOT:PSS | Human influenza virus | 0.025–1 HAU | 30 min | 0.025 HAU | [118] |
Flexible Microfluidic OECT | PEDOT:PSS | ssDNA | 1 nM | 6 h | 10 pM | [119] |
Portable OECT sensor | PEDOT:PSS | microRNA | 10−6–10−14 M, | 1 h | 10−14 M | [120] |
Conducting polymer hydrogel (CPH)- based biosensors | ||||||
CPH sensor | PANI | microRNA | 1.0 fM–1.0 pM | 45 min | 0.34 fM | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nguyen, T.N.; Phung, V.-D.; Tran, V.V. Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. Biosensors 2023, 13, 586. https://doi.org/10.3390/bios13060586
Nguyen TN, Phung V-D, Tran VV. Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. Biosensors. 2023; 13(6):586. https://doi.org/10.3390/bios13060586
Chicago/Turabian StyleNguyen, Thanh Ngoc, Viet-Duc Phung, and Vinh Van Tran. 2023. "Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection" Biosensors 13, no. 6: 586. https://doi.org/10.3390/bios13060586
APA StyleNguyen, T. N., Phung, V. -D., & Tran, V. V. (2023). Recent Advances in Conjugated Polymer-Based Biosensors for Virus Detection. Biosensors, 13(6), 586. https://doi.org/10.3390/bios13060586