Microparticle-Based Detection of Viruses
Abstract
:1. Introduction
2. Definition and Advantages of Microparticles
3. How Microparticles Are Used for Virus Detection
- (1)
- Label: microparticles are used as labels for virus detection;
- (2)
- Capture: microparticles are used for separating, purifying, capturing, or extracting virus antigens and amplicons from samples;
- (3)
- Both: label and capture;
- (4)
- Other: microparticles are used for other purposes.
- (1)
- Antibody (to detect viral antigens);
- (2)
- Antigen (to detect neutralizing antibodies);
- (3)
- Aptamer (to detect viral antigens);
- (4)
- Nucleic acid (mainly to capture amplicons);
- (5)
- Other.
4. Viruses Detected Using Microparticles
4.1. Coronaviridae (Including SARS-CoV-2)
4.2. Filoviridae (Including Ebola Virus)
4.3. Flaviviridae (Including Zika Virus)
4.4. Hepadnaviridae (Including Hepatitis B Virus)
4.5. Herpesviridae (Including Herpes Simplex Virus)
4.6. Orthomoxyviridae (Including H1N1 Swine Flu Virus)
4.7. Papillomaviridae (Including Human Papillomavirus)
4.8. Retroviridae (Including Human Immunodeficiency Virus)
5. Classification of Microparticle-Based Virus Detection Methods
6. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Houlihan, F.H.; Whitworth, J.A. Outbreak science: Recent progress in the detection and response to outbreaks of infectious diseases. Clin. Med. J. 2019, 19, 140–144. [Google Scholar] [CrossRef]
- Baker, R.E.; Mahmud, A.S.; Miller, A.F.; Rajeev, M.; Rasambainarivo, F.; Rice, B.L.; Takahashi, S.; Tatem, A.J.; Wagner, C.E.; Wang, L.F.; et al. Infectious disease in an era of global change. Nat. Rev. Microbiol. 2021, 20, 193–205. [Google Scholar] [CrossRef]
- Breshears, L.E.; Nguyen, B.T.; Akarapipad, P.; Sosnowski, K.; Kaarj, K.; Quirk, G.; Uhrlaub, J.L.; Nikolich-Zugich, J.; Worobey, M.; Yoon, J.-Y. Sensitive, smartphone-based SARS-CoV-2 detection from clinical saline gargle samples. PNAS Nexus 2022, 1, pgac028. [Google Scholar] [CrossRef]
- Chung, S.; Breshears, L.E.; Gonzales, A.; Jennings, C.M.; Morrison, C.M.; Betancourt, W.Q.; Reynolds, K.A.; Yoon, J.-Y. Norovirus detection in water samples at the level of single virus copies per microliter using a smartphone-based fluorescence microscope. Nat. Protoc. 2021, 16, 1452–1475. [Google Scholar] [CrossRef]
- Heinze, B.C.; Yoon, J.-Y. Nanoparticle immunoagglutination Rayleigh scatter assay to complement microparticle immunoagglutination Mie scatter assay in a microfluidic device. Colloids Surf. B Biointerfaces 2011, 85, 168–173. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, P.; Ahmed, R.; Wang, J.; Akin, D.; Soto, F.; Liu, B.-F.; Li, P.; Demirci, U. Advanced point-of-care testing technologies for human acute respiratory virus detection. Adv. Mater. 2022, 34, 2103646. [Google Scholar] [CrossRef]
- Trinh, T.N.D.; Lee, N.Y. Advances in nucleic acid amplification-based microfluidic devices for clinical microbial detection. Chemosensors 2022, 10, 123. [Google Scholar] [CrossRef]
- Gupta, N.; Augustine, S.; Narayan, T.; O’Riordan, A.; Das, A.; Kumar, D.; Luong, J.H.T.; Malhotra, B.D. Point-of-care PCR assays for COVID-19 detection. Biosensors 2021, 11, 141. [Google Scholar] [CrossRef]
- Teymouri, M.; Mollazadeh, S.; Mortazavi, H.; Ghale-noie, Z.N.; Keyvani, V.; Aghababaei, F.; Hamblin, M.R.; Abbaszadeh-Goudarzi, G.; Pourghadamyari, H.; Hashemian, S.M.R.; et al. Recent advances and challenges of RT-PCR tests for the diagnosis of COVID-19. Pathol. Res. Pract. 2021, 221, 153443. [Google Scholar] [CrossRef]
- Zeng, Y.; Wu, C.; He, Y. Loop-mediated isothermal amplification–based microfluidic platforms for the detection of viral infections. Curr. Infect. Dis. Rep. 2022, 24, 205–215. [Google Scholar] [CrossRef]
- Moehling, T.J.; Choi, G.; Dugan, L.C.; Salit, M.; Meagher, R.J. LAMP diagnostics at the point-of-care: Emerging trends and perspectives for the developer community. Expert Rev. Mol. Diagn. 2021, 21, 43–61. [Google Scholar] [CrossRef]
- Augustine, R.; Hasan, A.; Das, S.; Ahmed, R.; Mori, Y.; Notomi, T.; Kevadiya, B.D.; Thakor, A.S. Loop-mediated isothermal amplification (LAMP): A rapid, sensitive, specific, and cost-effective point-of-care test for coronaviruses in the context of COVID-19 pandemic. Biology 2020, 9, 182. [Google Scholar] [CrossRef]
- Sahoo, P.R.; Sethy, K.; Mohapatra, S.; Panda, D. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases. Vet. World 2016, 9, 465–469. [Google Scholar] [CrossRef] [Green Version]
- Draz, M.S.; Shafiee, H. Applications of gold nanoparticles in virus detection. Theranostics 2018, 8, 1985–2017. [Google Scholar] [CrossRef]
- Brangel, P.; Sobarzo, A.; Parolo, C.; Miller, B.S.; Howes, P.D.; Gelkop, S.; Lutwama, J.J.; Dye, J.M.; McKendry, R.A.; Lobel, L.; et al. A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. ACS Nano 2018, 12, 63–73. [Google Scholar] [CrossRef]
- Zhang, H.-J.; Zhu, J.; Baoc, N.; Ding, S.-N. Enhanced electrochemiluminescence of CdS quantum dots capped with mercaptopropionic acid activated by EDC for Zika virus detection. Analyst 2021, 146, 2928–2935. [Google Scholar] [CrossRef]
- Tessaro, L.; Aquino, A.; de Carvalho, A.P.A.; Conte-Junior, C.A. A systematic review on gold nanoparticles based-optical biosensors for Influenza virus detection. Sens. Actuat. Rep. 2021, 3, 100060. [Google Scholar] [CrossRef]
- Wang, J.; Drelich, A.J.; Hopkins, C.M.; Mecozzi, S.; Li, L.; Kwon, G.; Hong, S. Gold nanoparticles in virus detection: Recent advances and potential considerations for SARS-CoV-2 testing development. WIREs Nanomed. Nanobiotechnol. 2021, 14, e1754. [Google Scholar] [CrossRef]
- Martinez-Liu, C.; Machain-Williams, C.; Martinez-Acuña, N.; Lozano-Sepulveda, S.; Galan-Huerta, K.; Arellanos-Soto, D.; Meléndez-Villanueva, M.; Ávalos-Nolazco, D.; Pérez-Ibarra, K.; Galindo-Rodríguez, S.; et al. Development of a rapid gold nanoparticle-based lateral flow immunoassay for the detection of dengue virus. Biosensors 2022, 12, 495. [Google Scholar] [CrossRef]
- Qian, S.; Cui, Y.; Cai, Z.; Li, L. Applications of smartphone-based colorimetric biosensors. Biosens. Bioelectron. 2022, 11, 100173. [Google Scholar] [CrossRef]
- Nasrin, F.; Chowdhury, A.D.; Takemura, K.; Kozaki, I.; Honda, J.; Adegoke, O.; Park, E.Y. Fluorometric virus detection platform using quantum dots-gold nanocomposites optimizing the linker length variation. Anal. Chim. Acta 2020, 1109, 148–157. [Google Scholar] [CrossRef]
- Xu, Q.; Xiao, F.; Xu, H. Fluorescent detection of emerging virus based on nanoparticles: From synthesis to application, TrAC Trends Anal. Chem. 2023, 161, 116999. [Google Scholar] [CrossRef]
- Luo, M.; Xiang, X. A universal platform for amplified multiplexed DNA detection based on exonuclease III-coded magnetic microparticle probes. Chem. Commun. 2012, 48, 7416–7418. [Google Scholar] [CrossRef] [Green Version]
- Yuan, C.; Fang, J. Two-layer three-dimensional DNA walker with highly integrated entropy-driven and enzyme-powered reactions for HIV detection. Biosens. Bioelectron. 2019, 133, 243–249. [Google Scholar] [CrossRef]
- Liang, Z.; Peng, T.; Jiao, X.; Zhao, Y.; Xie, J.; Jiang, Y.; Meng, B.; Fang, X.; Yu, X.; Dai, X. Latex microsphere-based bicolor immunochromatography for qualitative detection of neutralizing antibody against SARS-CoV-2. Biosensors 2022, 12, 103. [Google Scholar] [CrossRef]
- Lengyel, M.; Kállai-Szabó, N.; Antal, V.; Laki, A.J.; Antal, I. Microparticles, microspheres, and microcapsules for advanced drug delivery. Sci. Pharm. 2019, 87, 20. [Google Scholar] [CrossRef] [Green Version]
- Stack, M.; Parikh, D.; Wang, H.; Wang, L.; Xu, M.; Zou, J.; Cheng, J.; Wang, H. Electrospun nanofibers for drug delivery. In Electrospinning: Nanofabrication and Applications; Ding, B., Wang, X., Yu, J., Eds.; William Andrew Publishing: Norwich, CT, USA, 2019; pp. 735–764. [Google Scholar] [CrossRef]
- Li, W.; Zhang, L.; Ge, X.; Xu, B.; Zhang, W.; Qu, L.; Choi, C.-H.; Xu, J.; Zhang, A.; Lee, H.; et al. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev. 2018, 47, 5646–5683. [Google Scholar] [CrossRef]
- Acharya, G.; McDermott, M.; Shin, S.J.; Park, H.; Park, K. Hydrogel templates for the fabrication of homogeneous polymer microparticles. In Biomedical Nanotechnology: Methods and Protocols; Hurst, S.J., Ed.; Humana Press: New York, NY, USA, 2011; pp. 179–185. [Google Scholar] [CrossRef]
- Zhou, C.; Liang, S.; Li, Y.; Chen, H.; Li, J. Fabrication of sharp-edged 3D microparticles via folded PDMS microfluidic channels. Lab Chip 2022, 22, 148–155. [Google Scholar] [CrossRef]
- Morais, A.S.; Vieira, E.G.; Afewerki, S.; Sousa, R.; Honorio, L.M.C.; Cambrussi, A.N.C.O.; Santos, J.A.; Bezerra, R.D.S.; Furtini, J.A.O.; Silva-Filho, E.C.; et al. Fabrication of polymeric microparticles by electrospray: The impact of experimental parameters. J. Funct. Biomater. 2020, 11, 4. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, J.J.; Ottoman, R.; Tao, G.; Shabahang, S.; Banaei, E.H.; Liang, X.; Johnson, S.G.; Fink, Y.; Chakrabarti, R.; Abouraddy, A.F. In-fiber production of polymeric particles for biosensing and encapsulation. Proc. Natl. Acad. Sci. USA 2013, 110, 15549–15554. [Google Scholar] [CrossRef]
- McHugh, K.J.; Nguyen, T.D.; Linehan, A.R.; Yang, D.; Behrens, A.M.; Rose, S.; Tochka, Z.L.; Tzeng, S.Y.; Norman, J.J.; Anselmo, A.C.; et al. Fabrication of fillable microparticles and other complex 3D microstructures. Science 2015, 357, 1138–1142. [Google Scholar] [CrossRef] [Green Version]
- Rahim, M.; Rizvi, S.M.D.; Iram, S.; Khan, S.; Bagga, P.S.; Khan, M.S. Inorganic Frameworks as Smart Nanomedicines; William Andrew Publishing: Norwich, NY, USA, 2018; Chapter 5; pp. 185–237. [Google Scholar] [CrossRef]
- Lane, L.A.; Qian, A.; Nie, S. SERS nanoparticles in medicine: From label-free detection to spectroscopic tagging. Chem. Rev. 2015, 115, 10489–10529. [Google Scholar] [CrossRef] [PubMed]
- Vainionpää, R.; Leinikki, P. Encyclopedia of Virology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 29–37. ISBN 978-0-12-374410-4. [Google Scholar]
- Alhajj, M.; Zubair, M.; Farhana, A. Enzyme Linked Immunosorbent Assay; NBK555922; StatPearls: Treasure Island, FL, USA, 2023; pp. 1–8. [Google Scholar]
- Yoon, J.Y. Introduction to Biosensors; Springer: Cham, Switzerland, 2016; pp. 225+237+239+288. [Google Scholar] [CrossRef]
- Heinze, B.C.; Gamboa, J.R.; Kim, K.; Song, J.-Y.; Yoon, J.-Y. Microfluidic immunosensor with integrated liquid core waveguides for sensitive Mie scattering detection of avian influenza antigens in a real biological matrix. Anal. Bioanal. Chem. 2010, 398, 2693–2700. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Buchanan, B.C.; Khanthaphixay, B.; Zhou, A.; Quirk, G.; Worobey, M.; Yoon, J.-Y. Sensitive SARS-CoV-2 salivary antibody assays for clinical saline gargle samples using smartphone-based competitive particle immunoassay platforms. Biosens. Bioelectron. 2023, 229, 115221. [Google Scholar] [CrossRef]
- Chung, S.; Breshears, L.E.; Perea, S.; Morrison, C.M.; Betancourt, W.Q.; Reynolds, K.A.; Yoon, J.-Y. Smartphone-based paper microfluidic particulometry of norovirus from environmental water samples at single copy level. ACS Omega 2019, 4, 11180–11188. [Google Scholar] [CrossRef]
- Xianyu, Y.; Wang, Q.; Chen, Y. Magnetic particles-enabled biosensors for point-of-care testing. TrAC Trends Anal. Chem. 2018, 106, 213–224. [Google Scholar] [CrossRef]
- Ribeiro, B.V.; Cordeiro, T.A.R.; Freitas, G.R.O.E.; Ferreira, L.F.; Franco, D.L. Biosensors for the detection of respiratory viruses: A review. Talanta Open 2020, 2, 100007. [Google Scholar] [CrossRef]
- Weber, F.; Wagner, V.; Rasmussen, S.B.; Hartmann, R.; Paludan, S.R. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J. Virol. 2006, 80, 5059–5064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louten, J. Essential Human Virology; Academic Press: Cambridge, MA, USA, 2016; pp. 71–92. [Google Scholar] [CrossRef]
- Payne, S. Viruses; Academic Press: Cambridge, MA, USA, 2017; pp. 149–158. [Google Scholar] [CrossRef]
- Lamers, M.M.; Haagmans, B.L. SARS-CoV-2 pathogenesis. Nat. Rev. Microbiol. 2022, 20, 270–284. [Google Scholar] [CrossRef]
- Mascellino, M.T.; Di Timoteo, F.; De Angelis, M.; Oliva, A. Overview of the main anti-SARS-CoV-2 vaccines: Mechanism of action, efficacy and safety. Infect. Drug Resist. 2021, 14, 3459–3476. [Google Scholar] [CrossRef] [PubMed]
- Feng, M.; Chen, J.; Xun, J.; Dai, R.; Zhao, W.; Lu, H.; Xu, J.; CHen, L.; Sui, G.; Cheng, X. Development of a Sensitive immunochromatographic method using lanthanide fluorescent microsphere for rapid serodiagnosis of COVID-19. ACS Sens. 2020, 5, 2331–2337. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, L.; Du, K.; Zhang, Y.; Wang, J.; Chen, L.; Lyu, Y.; Li, J.; Liu, H.; Huo, J.; et al. Foundation and clinical evaluation of a new method for detecting SARS-CoV-2 antigen by fluorescent microsphere immunochromatography. Front. Cell. Infect. Microbiol. 2020, 10, 553837. [Google Scholar] [CrossRef]
- Stambaugh, A.; Parks, J.W.; Stott, M.A.; Meena, G.G.; Hawkins, A.R.; Schmidt, H. Optofluidic multiplex detection of single SARS-CoV-2 and influenza A antigens using a novel bright fluorescent probe assay. Proc. Natl. Acad. Sci. USA 2021, 118, e2103480118. [Google Scholar] [CrossRef]
- Schlutz, J.S.; McCarthy, M.K.; Rester, C.; Sabourin, K.R.; Annen, K.; DomBourian, M.; Eisenmesser, E.; Frazer-Abel, A.; Knight, V.; Jaenisch, T.; et al. Development and validation of a multiplex microsphere immunoassay using dried blood spots for SARS-CoV-2 seroprevalence: Application in first responders in Colorado, USA. J. Clin. Microbiol. 2021, 59, e00290-21. [Google Scholar] [CrossRef]
- Fong, C.H.-Y.; Cai, J.-P.; Dissanayake, T.K.; Chen, L.-L.; Choi, C.Y.-K.; Wong, L.-H.; Ng, A.C.-K.; Pang, P.K.P.; Ho, D.T.-Y.; Poon, R.W.-S.; et al. Improved detection of antibodies against SARS-CoV-2 by microsphere-based antibody assay. Int. J. Mol. Sci. 2020, 21, 6595. [Google Scholar] [CrossRef] [PubMed]
- Nakano, M.; Inaba, M.; Suehiro, J. Rapid and low-cost amplicon visualization for nucleic acid amplification tests using magnetic microbeads. Analyst 2021, 146, 2818–2824. [Google Scholar] [CrossRef] [PubMed]
- Jang, A.S.; Kumar, P.P.P.; Lim, D.K. Attomolar sensitive magnetic microparticles and a surface-enhanced Raman scattering-based assay for detecting SARS-CoV-2 nucleic acid targets. ACS Appl. Mater. Interfaces 2022, 14, 138–149. [Google Scholar] [CrossRef]
- Chuong, T.T.; Pallaoro, A.; Chavez, C.A.; Li, Z.; Lee, J.; Eisenstein, M.; Stucky, G.D.; Moskovits, M.; Soh, H.T. Dual-reporter SERS-based biomolecular assay with reduced false-positive signals. Proc. Natl. Acad. Sci. USA 2017, 114, 9056–9061. [Google Scholar] [CrossRef]
- Prianej, S.; Zhang, L.; Barzafshan, A.; Marin, M.; Melikyan, G.B.; Salaita, K. Rolosense: Mechanical detection of SARS-CoV-2 using a DNA-based motor. bioRxiv 2023. [Google Scholar] [CrossRef]
- Beer, B.; Kurth, R.; Bukreyev, A. Characteristics of Filoviridae: Marburg and Ebola viruses. Naturwissenschaften 1999, 86, 8–17. [Google Scholar] [CrossRef]
- Feldmann, H.; Sprecher, A.; Geisbert, T.W. Ebola. N. Engl. J. Med. 2020, 382, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Parks, J.W.; Wall, T.A.; Stott, M.A.; Stambaugh, A.; Alfson, K.; Griffiths, A.; Mathies, R.A.; Carrion, R.; Patterson, J.L.; et al. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Sci. Rep. 2015, 5, 14494. [Google Scholar] [CrossRef] [Green Version]
- Stambaugh, A.; Stott, M.A.; Meena, G.A.; Tamhankar, M.; Carrion, R.; Patterson, J.L.; Hawkins, A.R.; Schmidt, H. Optofluidic amplification-free multiplex detection of viral hemorrhagic fevers. IEEE J. Quantum Electron. 2020, 27, 7200206. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Jeong, H.; Jung, I.Y.; Jang, B.; Seo, Y.C.; Lee, H.; Lee, H. DhITACT: DNA hydrogel formation by isothermal amplification of complementary target in fluidic channels. Adv. Mater. 2015, 27, 3513–3517. [Google Scholar] [CrossRef]
- Xu, X.; Gao, Y.; Zhang, S.; Li, S.; Bai, T.; Zhang, Y.; Hu, X.; Liu, R. A electro-thermal atomic absorption spectrometry-based assay for disease-related DNA. Microchem. J. 2016, 126, 302–306. [Google Scholar] [CrossRef]
- Sebba, D.; Lastovich, A.G.; Kuroda, M.; Fallows, E.; Johnson, J.; Ahouidi, A.; Honko, A.A.; Fu, H.; Nielsen, R.; Carruthers, E.; et al. A point-of-care diagnostic for differentiating Ebola from endemic febrile diseases. Sci. Transl. Med. 2018, 10, eaat0944. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wu, S.; Jiang, L.; Xiao, R.; Li, T.; Mei, L.; Lv, J.; Liu, J.; Lin, X.; Han, X. Establishment and optimization of a liquid bead array for the simultaneous detection of ten insect-borne pathogens. Parasites Vectors 2018, 11, 442. [Google Scholar] [CrossRef] [Green Version]
- Gould, E.A.; Solomon, T. Pathogenic flaviviruses. Lancet 2008, 371, 500–509. [Google Scholar] [CrossRef]
- Vue, D.; Tang, Q. Zika virus overview: Transmission, origin, pathogenesis, animal model and diagnosis. Zoonoses Public Health 2021, 1, 14. [Google Scholar] [CrossRef]
- Mohsin, F.; Suleman, S.; Anzar, N.; Narang, J.; Wadhwa, S. A review on Japanese Encephalitis virus emergence, pathogenesis and detection: From conventional diagnostics to emerging rapid detection techniques. Int. J. Biol. Macromol. 2022, 217, 435–448. [Google Scholar] [CrossRef]
- Lauer, G.M.; Walker, B.D. Hepatitis C virus infection. N. Engl. J. Med. 2001, 345, 41–52. [Google Scholar] [CrossRef]
- Alter, H.J.; Seeff, L.B. Recovery, persistence, and sequelae in hepatitis C virus infection: A perspective on long-term outcome. Semin. Liver Dis. 2000, 20, 17–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyson, J.; Tsai, W.; Tsai, J.; Mässgård, L.; Stramer, S.L.; Lehrer, A.T.; Nerurkar, V.R.; Wang, W. A high-throughput and multiplex microsphere immunoassay based on non-structural protein 1 can discriminate three flavivirus infections. PLoS Negl. Trop. Dis. 2019, 13, e0007649. [Google Scholar] [CrossRef] [Green Version]
- Dahora, L.; Castillo, I.N.; Medina, F.A.; Vila, F.; Munoz-Jordan, J.; Segovia, B.; de Silva, A.M.; Premkumar, L. Flavivirus Serologic Surveillance: Multiplex sample-sparing assay for detecting type-specific antibodies to Zika and dengue viruses. Lancet. Available at SSRN 4411430. [CrossRef]
- Taylor, C.T.; Mackay, I.M.; McMahon, J.L.; Wheatley, S.L.; Moore, P.R.; Finger, M.J.; Hewitson, G.R.; Moore, F.A. Detection of specific ZIKV IgM in travelers using a multiplexed flavivirus microsphere immunoassay. Viruses 2018, 10, 253. [Google Scholar] [CrossRef] [Green Version]
- Miyachi, H.; Masukawa, A.; Ohshima, T.; Hirose, T.; Impraim, C.; Ando, Y. Automated specific capture of hepatitis C virus RNA with probes and paramagnetic particle separation. J. Clin. Microbiol. 2000, 38, 18–21. [Google Scholar] [CrossRef]
- Yin, H.; Ji, C.; Yang, X.; Wang, R.; Yang, S.; Zhang, H.; Zhang, J. An improved gold nanoparticle probe-based assay for HCV core antigen ultrasensitive detection. J. Virol. Meth. 2017, 243, 142–145. [Google Scholar] [CrossRef]
- Neves, W.L.L.; Mariuba, L.A.M.M.; Alves, K.C.S.; Coelho, K.F.; Tarragô, A.M.; Costa, A.G.; Chavez, Y.O.; Victoria, F.D.; Victoria, M.B.; Malheiro, A. Development of an immunoassay for the detection of human IgG against hepatitis C virus proteins using magnetic beads and flow cytometry. Biotechnol. Biotechnol. Equip. 2021, 35, 103–110. [Google Scholar] [CrossRef]
- Liu, Z.; Lei, Y.; Yu, Z.; Meng, Z.; Jin, S.; Qu, X.; Jinag, Z.; Zhang, F.; Wei, X. Fluorescent labeling based acoustofluidic screening of Japanese encephalitis virus. Sens. Actuat. B Chem. 2020, 322, 128649. [Google Scholar] [CrossRef]
- Lee, S.; Lee, W.; Kim, H.; Bae, P.K.; Park, J.; Kim, J. Oscillatory flow-assisted efficient target enrichment with small volumes of sample by using a particle-based microarray device. Biosens. Bioelectron. 2019, 131, 280–286. [Google Scholar] [CrossRef]
- Rong, Z.; Wang, Q.; Sun, N.; Jia, X.; Wang, K.; Xiao, R.; Wang, S. Smartphone-based fluorescent lateral flow immunoassay platform for highly sensitive point-of-care detection of Zika virus nonstructural protein 1. Anal. Chim. Acta 2019, 1055, 140–147. [Google Scholar] [CrossRef]
- Kramvis, A.; Kew, M.C. Structure and function of the encapsidation signal of hepadnaviridae. J. Viral Hepat. 2002, 5, 357–367. [Google Scholar] [CrossRef]
- Baumert, T.F.; Thimme, R.; Weizsäcker, F. Pathogenesis of hepatitis B virus infection. World J. Gastroenterol. 2007, 13, 82–90. [Google Scholar] [CrossRef] [Green Version]
- Jin, F.; Liu, M.; Xu, D. Web hybrid chain reaction enhanced fluorescent magnetic bead array for digital nucleic acid detection. Talanta 2023, 253, 123968. [Google Scholar] [CrossRef]
- Xu, G.; Zhao, H.; Reboud, J.; Cooper, J.M. Cycling of rational hybridization chain reaction to enable enzyme-free DNA-based clinical diagnosis. ACS Nano 2018, 12, 7213–7219. [Google Scholar] [CrossRef]
- Tao, F.; Fang, J.; Guo, Y.; Tao, Y.; Han, X.; Hu, Y.; Wang, J.; Li, L.; Jian, Y.; Xie, G. A target-triggered biosensing platform for detection of HBV DNA based on DNA walker and CHA. Anal. Biochem. 2018, 554, 16–22. [Google Scholar] [CrossRef]
- Kim, J.; Biondi, M.J.; Feld, J.J.; Chan, W.C.W. Clinical validation of quantum dot barcode diagnostic technology. ACS Nano 2016, 10, 4742–4753. [Google Scholar] [CrossRef]
- Wang, X.; Wang, G.; Li, W.; Zhao, B.; Xing, B.; Leng, Y.; Dou, H.; Sun, K.; Shen, L.; Yuan, X.; et al. NIR-emitting quantum dot-encoded microbeads through membrane emulsification for multiplexed immunoassays. Small 2013, 9, 3327–3335. [Google Scholar] [CrossRef]
- Wang, G.; Leng, Y.; Dou, H.; Wang, L.; Li, W.; Wang, X.; Sun, K.; Shen, L.; Yuan, X.; Li, J.; et al. Highly efficient preparation of multiscaled quantum dot barcodes for multiplexed hepatitis B detection. ACS Nano 2013, 7, 471–481. [Google Scholar] [CrossRef]
- Hay, J.; Roberts, C.R.; Ruyechan, W.T.; Steven, A.C. Animal Virus Structure; Elsevier: Amsterdam, The Netherlands, 1987; Chapter 24; pp. 391–405. [Google Scholar] [CrossRef]
- Gatherer, D.; Depledge, D.P.; Hartley, C.A.; Szpara, M.L.; Vaz, P.K.; Benkő, M.; Brandt, C.R.; Bryant, N.A.; Dastjerdi, A.; Doszpoly, A.; et al. ICTV virus taxonomy profile: Herpesviridae 2021. J. Gen. Virol. 2021, 102, 001673. [Google Scholar] [CrossRef]
- Zhu, S.; Viejo-Borbolla, V. Pathogenesis and virulence of herpes simplex virus. Virulence 2021, 12, 2670–2702. [Google Scholar] [CrossRef]
- Wu, Y.; Ray, A.; Wei, Q.; Feizi, A.; Tong, X.; Chen, E.; Luo, Y.; Ozcan, A. Deep learning enables high-throughput analysis of particle-aggregation-based biosensors imaged using holography. ACS Photon. 2019, 6, 294–301. [Google Scholar] [CrossRef] [Green Version]
- Tao, G.; Lai, T.; Xu, X.; Ma, Y.; Wu, X.; Pei, X.; Liu, F.; Li, N. Colocalized particle counting platform for zeptomole level multiplexed quantification. Anal. Chem. 2020, 92, 3697–3706. [Google Scholar] [CrossRef]
- Shi, X.; Wu, R.; Shi, M.; Wu, M.; Yang, Y.; An, X.; Dai, W.; Tian, L.; Zhang, C.; Ma, X.; et al. Simultaneous detection of 13 viruses involved in meningoencephalitis using a newly developed multiplex PCR Mag-array system. Int. J. Infect. Dis. 2016, 49, 80–86. [Google Scholar] [CrossRef] [Green Version]
- Ma, W. Veterinary Microbiology; John Wiley & Sons: Hoboken, NJ, USA, 2022; pp. 573–588. [Google Scholar] [CrossRef]
- Oxford, J.S.; Hockley, D.J. Animal Virus Structure; Elsevier: Amsterdam, The Netherlands, 1987; Chapter 15; pp. 213–232. [Google Scholar] [CrossRef]
- Jilani, T.N.; Jamil, R.T.; Siddiqui, A.H. H1N1 Influenza; StatPearls: Treasure Island, FL, USA, 2023; pp. 1–9. Available online: https://europepmc.org/article/NBK/nbk513241 (accessed on 15 July 2023).
- Lu, P.; Ma, Y.; Fu, C.; Lee, G. A structure-free digital microfluidic platform for detection of influenza a virus by using magnetic beads and electromagnetic forces. Lab Chip 2020, 20, 789–797. [Google Scholar] [CrossRef]
- Garbarino, F.; Minero, G.A.S.; Rizzi, G.; Fock, J.; Fougt Hansen, M. Integration of rolling circle amplification and optomagnetic detection on a polymer chip. Biosens. Bioelectron. 2019, 142, 111485. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, Y.; Zhao, J.; Li, X.; Zhou, Y.; Wang, S. One-step and wash-free multiplexed immunoassay platform based on bioinspired photonic barcodes. Eng. Regen. 2023, 4, 238–244. [Google Scholar] [CrossRef]
- Chen, C.; Zou, Z.; Chen, L.; Ji, X.; He, Z. Functionalized magnetic microparticle-based colorimetric platform for influenza A virus detection. Nanotechnology 2016, 27, 435102. [Google Scholar] [CrossRef]
- Matsubara, T.; Ogami, A.; Kori, H.; Hashizume, M.; Sato, T. Detection of influenza virus by agglutination of microparticles immobilized a mixed glycan receptor produced from cells. ACS Appl. Bio Mater. 2022, 5, 2130–2134. [Google Scholar] [CrossRef]
- Krejcova, L.; Huska, D.; Hynek, D.; Kopel, P.; Adam, V.; Hubalek, J.; Trnkova, L.; Kizek, R. Using of paramagnetic microparticles and quantum dots for isolation and electrochemical detection of influenza viruses’ specific nucleic acids. Int. J. Electrochem. Sci. 2013, 8, 689–702. [Google Scholar] [CrossRef]
- Doorslaer, K.V.; Chen, Z.; Bernard, H.; Chan, P.K.S.; DeSalle, R.; Dillner, J.; Forslund, O.; Haga, T.; McBride, A.A.; Villa, L.L.; et al. ICTV virus taxonomy profile: Papillomaviridae. J. Gen. Virol. 2018, 99, 001105. [Google Scholar] [CrossRef]
- Hebner, C.M.; Laimins, L.A. Human papillomaviruses: Basic mechanisms of pathogenesis and oncogenicity. Rev. Med. Virol. 2005, 16, 83–97. [Google Scholar] [CrossRef]
- Kubheka, G.; Climent, E.; Tobias, C.; Rurack, K.; Mack, J.; Nyokong, T. Multiplexed detection of human papillomavirus based on AzaBODIPY-doped silica-coated polystyrene microparticles. Chemosensors 2023, 11, 1. [Google Scholar] [CrossRef]
- Li, H.; Han, Y.; Zhao, H.; Jafri, H.; Tian, B. Dyes and Pigments—Novel Applications and Waste Treatment; IntechOpen: London, UK, 2021; Chapter 3; p. 486. Available online: https://www.intechopen.com/chapters/75483 (accessed on 15 July 2023).
- Obahiagbon, U.; Smith, J.T.; Zhu, M.; Katchman, B.A.; Arafa, H.; Anderson, K.S.; Blain Christen, J.M. A compact, low-cost, quantitative and multiplexed fluorescence detection platform for point-of-care applications. Biosens. Bioelectron. 2018, 117, 153–160. [Google Scholar] [CrossRef]
- Bartosik, M.; Durikova, H.; Vojtesek, B.; Anton, M.; Jandakova, E.; Hrstka, R. Electrochemical chip-based genomagnetic assay for detection of high-risk human papillomavirus DNA. Biosens. Bioelectron. 2016, 83, 300–305. [Google Scholar] [CrossRef]
- Xiang, D.; Zeng, G.; He, Z. Magnetic microparticle-based multiplexed DNA detection with biobarcoded quantum dot probes. Biosens. Bioelectron. 2011, 26, 4405–4410. [Google Scholar] [CrossRef]
- McVey, D.S.; Kennedy, M.; Chengappa, M.M.; Wilkes, R. Veterinary Microbiology; Wiley-Blackwell: Hoboken, NJ, USA, 2022; p. 698. [Google Scholar] [CrossRef]
- Fenner, F.; Bachmann, P.A.; Gibbs, E.P.J.; Murphy, F.A.; Studdert, M.J.; White, D.O. Fenner’s Veterinary Virology; Elsevier: Amsterdam, The Netherlands, 1987; pp. 21–38. [Google Scholar] [CrossRef]
- Klimas, N.; Koneru, A.O.B.; Fletcher, M.A. Overview of HIV. Psychosom. Med. 2008, 70, 523–530. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Hou, M.; Li Peng, L.; Jing, M.; Xiao Guang, Z.; Cao, Y.X. A new method for ultra-sensitive p24 antigen assay based on near-infrared fluorescent microsphere immunochromatography. Biomed. Environ. Sci. 2020, 33, 174–182. [Google Scholar] [CrossRef]
- Sher, M.; Coleman, B.; Caputi, M.; Asghar, W. Development of a point-of-care assay for HIV-1 viral load using higher refractive index antibody-coated microbeads. Sensors 2021, 21, 1819. [Google Scholar] [CrossRef]
- Miyagawa, A. Label-free detection for DNA/RNA molecules. In Acoustic Levitation-Based Trace-Level Biosensing; Springer: Singapore, 2021; pp. 61–78. [Google Scholar] [CrossRef]
Virus | Microparticle Use | Microparticle Character | LOD | Refs. | |||||
---|---|---|---|---|---|---|---|---|---|
Label | Capture | Other | Properties | Material | Receptor | Size | |||
Coronaviridae | |||||||||
SARS-CoV-2 | ✓ | Fluorescent | Latex | Antibody | NA | 100 ng/mL | [50] | ||
✓ | NA | Antigen | NA | NA | [52] | ||||
✓ | PS | Antigen | NA | NA | [49] | ||||
✓ | Magnetic | NA | Nucleic acid | 2.8 µm | 1.0 fM | [55] | |||
✓ | PS | Nucleic acid | 2.8 µm | NA | [54] | ||||
✓ | Nonmagnetic | PS | Antigen | 4.95 µm | NA | [53] | |||
SARS-CoV-2, IAV * | ✓ | Magnetic | PS | Antibody | NA | 30 ng/mL | [51] | ||
✓ | Nonmagnetic | DNA | Aptamer | 5 µm | 103 copies/mL | [57] | |||
Filoviridae | |||||||||
EBOV | ✓ | Magnetic | NA | Nucleic acid | NA | 3.0 pM | [63] | ||
✓ | PS | Nucleic acid | 1 µm | 0.2 PFU/mL | [60] | ||||
✓ | Nonmagnetic | Hydrogel | Nucleic acid | NA | NA | [62] | |||
EBOV, BTV, ASFV, RFV, SBV, WNV * | ✓ | Fluorescent | PS | Nucleic acid | NA | 10 copies/rxn | [65] | ||
EBOV, MARV, CCHF | ✓ | Magnetic | NA | Nucleic acid | NA | NA | [61] | ||
EBOV, LASV, Malaria | ✓ | NA | Antibody | NA | 105 PFU/mL | [64] | |||
Flaviviridae | |||||||||
JEV | ✓ | Nonmagnetic | PS | Antibody | NA | 103 PFU/mL | [77] | ||
ZIKV | ✓ | Fluorescent | Carboxyl polymer | Antibody | 1 µm | 0.045 ng/mL | [79] | ||
✓ | Nonmagnetic | PS | Antigen | 20 µm | 1 ng/mL | [78] | |||
ZIKV, DENV1–4, WNV | ✓ | ✓ | Fluorescent, magnetic | PS | Antigen | NA | NA | [71] | |
ZIKV, DENV1–4 | ✓ | ✓ | PS | Antigen | NA | NA | [72] | ||
ZIKV, YFV | ✓ | ✓ | PS | Antibody | 6.5 µm | 1.88–2.77 fM | [73] | ||
HCV | ✓ | Magnetic | NA | Nucleic acid | NA | NA | [74] | ||
✓ | PS | Nucleic acid | 2.8 µm | 1 fg/mL | [75] | ||||
✓ | Silica | Nucleic acid | 1 µm | NA | [76] | ||||
Hepadnaviridae | |||||||||
HBV | ✓ | Fluorescent | PS 1 | Antibody, antigen | 6.6 µm | NA | [86] | ||
✓ | Carboxyl PS 2 | Antibody, antigen | NA | NA | [87] | ||||
✓ | PS 3 | Nucleic acid | 2.7, 3.5 µm | NA | [85] | ||||
✓ | Magnetic | Carboxyl beads | Nucleic acid | 2.7 µm | NA | [82] | |||
✓ | NA | Nucleic acid | 5 µm | 5 copies/rxn | [83] | ||||
✓ | Nonmagnetic | NA | Nucleic acid | 1 µm | 0.20 nM | [84] | |||
Herpesviridae | |||||||||
HSV | ✓ | Nonmagnetic | Silica | Antibody | 2 µm | 5 copies/µL | [91] | ||
HAV, HBV, HCV, HIV, HPV, HSV | ✓ | Fluorescent | PS | Nucleic acid | 1 µm | 0.6–3 fM | [92] | ||
HSV, VZV, CMV, EBV, MuV, MeV, JCV, JEV *, CA16, EV71, ECHO, HEV | ✓ | ✓ | Fluorescent, Magnetic | PS | Nucleic acid | NA | NA | [93] | |
Orthomyxoviridae | |||||||||
H1N1, H1N2, H3N2 | ✓ | Dyed | PS | Oligo-saccharide | 1 µm | 200 PFU | [101] | ||
H1N1, H5N1, SARS-CoV-2 * | ✓ | Fluorescent | Silica 4 | Antibody | 200 µm | 0.2 ng/mL | [99] | ||
H3N2 | ✓ | Magnetic | MMP | Aptamer | 1.02 µm | 11.6 µg/mL | [100] | ||
H1N1, H5N1, H3N2 | ✓ | PS | Nucleic acid | NA | 0.5–1.0 ng/mL | [102] | |||
H1N1 | ✓ | PS | Aptamer | 1.05 µm | 0.032 HA units/rxn | [97] | |||
IBV | ✓ | PS | Nucleic acid | 1 µm | 2 pM | [98] | |||
Papillomaviridae | |||||||||
HPV | ✓ | Fluorescent | Latex | Antibody | 1 µm | NA | [107] | ||
✓ | ✓ | Fluorescent | PS 5 | Nucleic acid | 2.5 µm | 1 fmol/mL | [105] | ||
✓ | Magnetic | PS | Nucleic acid | 2.8 µm | NA | [108] | |||
✓ | Magnetic | PS | Nucleic acid | 1 µm | 6 × 10−11 M | [109] | |||
Retroviridae | |||||||||
HIV | ✓ | ✓ | Fluorescent | NA | Nucleic acid | 1 µm | 2 pM–5 nM | [24] | |
HIV-1 | ✓ | NA | Antibody | 0.1–100 µm | 3.4 pg/mL | [113] | |||
HIV, EBOV * | ✓ | Magnetic | PS | Nucleic acid | 1.02 µm | 70 pM | [23] | ||
HIV-1 | ✓ | Nonmagnetic | PS | Antibody | 3, 5, 7 µm | 1569 virions/mL | [114] | ||
HIV-2 | ✓ | PMMA | Nucleic acid | 6.33, 9.57 µm | NA | [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanthaphixay, B.; Wu, L.; Yoon, J.-Y. Microparticle-Based Detection of Viruses. Biosensors 2023, 13, 820. https://doi.org/10.3390/bios13080820
Khanthaphixay B, Wu L, Yoon J-Y. Microparticle-Based Detection of Viruses. Biosensors. 2023; 13(8):820. https://doi.org/10.3390/bios13080820
Chicago/Turabian StyleKhanthaphixay, Bradley, Lillian Wu, and Jeong-Yeol Yoon. 2023. "Microparticle-Based Detection of Viruses" Biosensors 13, no. 8: 820. https://doi.org/10.3390/bios13080820
APA StyleKhanthaphixay, B., Wu, L., & Yoon, J. -Y. (2023). Microparticle-Based Detection of Viruses. Biosensors, 13(8), 820. https://doi.org/10.3390/bios13080820