A Novel Aggregation-Induced Emission Fluorescent Probe for Detection of β-Amyloid Based on Pyridinyltriphenylamine and Quinoline–Malononitrile
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Synthesis of Compound PTPA-QM
3. Results and Discussion
3.1. Design and Synthesis of Probe PTPA-QM
3.2. Photophysical Properties of PTPA-QM
3.3. Cell Imaging
3.4. Specificity of PTPA-QM to Aβ Plaques in Brain Slices
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, S.-Q.; Wang, Z.-S.; Ma, Y.-X.; Zhang, W.; Lu, J.-L.; Liang, Y.-R.; Zheng, X.-Q. Neuroprotective Effects and Mechanisms of Tea Bioactive Components in Neurodegenerative Diseases. Molecules 2018, 23, 512. [Google Scholar] [CrossRef] [Green Version]
- Gelders, G.; Baekelandt, V.; Van der Perren, A. Linking Neuroinflammation and Neurodegeneration in Parkinson’s Disease. J. Immunol. Res. 2018, 2018, 4784268. [Google Scholar] [CrossRef] [Green Version]
- Golpich, M.; Amini, E.; Mohamed, Z.; Azman Ali, R.; Mohamed Ibrahim, N.; Ahmadiani, A. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci. Ther. 2017, 23, 5–22. [Google Scholar] [CrossRef]
- Karaboğa, M.N.S.; Sezgintürk, M.K. Biosensor approaches on the diagnosis of neurodegenerative diseases: Sensing the past to the future. J. Pharmaceut. Biomed. 2022, 209, 114479. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, J.-G.; Yang, W.; Xu, P.; Xiao, Y.-L.; Zhang, H.-T. 6-Gingerol attenuates LPS-induced neuroinflammation and cognitive impairment partially via suppressing astrocyte overactivation. Biomed. Pharmacother. 2018, 107, 1523–1529. [Google Scholar] [CrossRef]
- Tripathi, A.; Paliwal, P.; Krishnamurthy, S. Piracetam Attenuates LPS-Induced Neuroinflammation and Cognitive Impairment in Rats. Cell Mol. Neurobiol. 2017, 37, 1373–1386. [Google Scholar] [CrossRef]
- Mathis, C.A.; Mason, N.S.; Lopresti, B.J.; Klunk, W.E. Development of Positron Emission Tomography β-Amyloid Plaque Imaging Agents. Semin. Nucl. Med. 2012, 42, 423–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhu, L.; Ploessl, K.; Kung, H.F. PET/SPECT imaging agents for neurodegenerative diseases. Chem. Soc. Rev. 2014, 43, 6683–6691. [Google Scholar] [CrossRef] [Green Version]
- Lockhart, A.; Lamb, J.R.; Osredkar, T.; Sue, L.I.; Joyce, J.N.; Ye, L.; Libri, V.; Leppert, D.; Beach, T.G. PIB is a non-specific imaging marker of amyloid-beta (Abeta) peptide-related cerebral amyloidosis. Brain 2007, 130, 2607–2615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canter, R.G.; Penney, J.; Tsai, L.-H. The road to restoring neural circuits for the treatment of Alzheimer’s disease. Nature 2016, 539, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Webers, A.; Heneka, M.T.; Gleeson, P.A. The role of innate immune responses and neuroinflammation in amyloid accumulation and progression of Alzheimer’s disease. Immunol. Cell Biol. 2020, 98, 28–41. [Google Scholar] [CrossRef]
- Palmqvist, S.; Eshaghi, A. Spatial Distribution of Tau and β-Amyloid Pathologies and Their Role in Different Alzheimer Disease Phenotypes. Neurology 2021, 96, 191–192. [Google Scholar] [CrossRef]
- Yang, W.; Liu, Y.; Xu, Q.-Q.; Xian, Y.-F.; Lin, Z.-X. Sulforaphene Ameliorates Neuroinflammation and Hyperphosphorylated Tau Protein via Regulating the PI3K/Akt/GSK-3βPathway in Experimental Models of Alzheimer’s Disease. Oxid. Med. Cell. Longev. 2020, 2020, 4754195. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Wang, Y.; He, Y.; Wang, T.; Huang, X.-H.; Zhao, C.-M.; Zhang, L.; Li, S.-W.; Wang, C.; Qu, Y.-N.; et al. A1 astrocytes contribute to murine depression-like behavior and cognitive dysfunction, which can be alleviated by IL-10 or fluorocitrate treatment. J. Neuroinflamm. 2020, 17, 200. [Google Scholar] [CrossRef]
- Hansson, O. Biomarkers for neurodegenerative diseases. Nat. Med. 2021, 27, 954–963. [Google Scholar] [CrossRef]
- Hamley, I.W. The Amyloid Beta Peptide: A Chemist’s Perspective. Role in Alzheimer’s and Fibrillization. Chem. Rev. 2012, 112, 5147–5192. [Google Scholar] [CrossRef]
- Aliyan, A.; Cook, N.P.; Martí, A.A. Interrogating Amyloid Aggregates using Fluorescent Probes. Chem. Rev. 2019, 119, 11819–11856. [Google Scholar] [CrossRef]
- Shui, B.; Tao, D.; Florea, A.; Cheng, J.; Zhao, Q.; Gu, Y.; Li, W.; Jaffrezic-Renault, N.; Mei, Y.; Guo, Z. Biosensors for Alzheimer’s disease biomarker detection: A review. Biochimie 2018, 147, 13–24. [Google Scholar] [CrossRef]
- Aleksis, R.; Oleskovs, F.; Jaudzems, K.; Pahnke, J.; Biverstål, H. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie 2017, 140, 176–192. [Google Scholar] [CrossRef]
- Suzuki, N.; Cheung, T.T.; Cai, X.-D.; Odaka, A.; Otvos, L.; Eckman, C.; Golde, T.E.; Younkin, S.G. An increased percentage of long amyloid beta protein secreted by familial amyloid beta protein precursor (beta APP717) mutants. Science 1994, 264, 1336–1340. [Google Scholar] [CrossRef]
- Tong, H.; Lou, K.; Wang, W. Near-infrared fluorescent probes for imaging of amyloid plaques in Alzheimer׳s disease. Acta Pharm. Sin. B 2015, 5, 25–33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amdursky, N.; Erez, Y.; Huppert, D. Molecular Rotors: What Lies Behind the High Sensitivity of the Thioflavin-T Fluorescent Marker. Accounts Chem. Res. 2012, 45, 1548–1557. [Google Scholar] [CrossRef] [PubMed]
- Groenning, M. Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils—Current status. J. Chem. Biol. 2010, 3, 1–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rodríguez, C.; Rimola, A.; Rodríguez-Santiago, L.; Ugliengo, P.; Álvarez-Larena, Á.; Gutiérrez-de-Terán, H.; Sodupe, M.; González-Duarte, P. Crystal structure of thioflavin-T and its binding to amyloid fibrils: Insights at the molecular level. Chem. Commun. 2010, 46, 1156–1158. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Yan, C.; Guo, Z.; Zhang, J.; Zhang, H.; Tian, H.; Zhu, W.-H. Rational Design of Near-Infrared Aggregation-Induced-Emission-Active Probes: In Situ Mapping of Amyloid-β Plaques with Ultrasensitivity and High-Fidelity. J. Am. Chem. Soc. 2019, 141, 3171–3177. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Zhou, Y.; Wang, W.; Zhu, J.; Li, X.; Fang, M.; Wu, Z.; Zhu, W.; Li, C. A fluorescent probe based on triphenylamine with AIE and ICT characteristics for hydrazine detection. Spectrochim. Acta A 2023, 286, 122011. [Google Scholar] [CrossRef]
- Mandal, K.; Jana, D.; Ghorai, B.K.; Jana, N.R. Fluorescent Imaging Probe from Nanoparticle Made of AIE Molecule. J. Phys. Chem. C 2016, 120, 5196–5206. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, Y.; Sun, A.; Xiong, Y.; Tan, H.; Shi, Y.; Yu, P.; Roy, G.; Zhang, L.; Yan, J. Dual-functional AIE fluorescent probes for imaging β-amyloid plaques and lipid droplets. Anal. Chim. Acta 2020, 1133, 109–118. [Google Scholar] [CrossRef]
- Xu, M.; Wang, X.; Wang, Q.; Hu, Q.; Huang, K.; Lou, X.; Xia, F. Analyte-responsive fluorescent probes with AIE characteristic based on the change of covalent bond. Sci. China Mater. 2019, 62, 1236–1250. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Wang, X.; Wang, X.; Wang, T.; Liao, W.; Yuan, Y.; Chen, G.; Jia, X. A novel AIE fluorescent probe for β-galactosidase detection and imaging in living cells. Anal. Chim. Acta 2022, 1198, 339554. [Google Scholar] [CrossRef]
- Shi, C.X.; Guo, Z.Q.; Yan, Y.L.; Zhu, S.Q.; Xie, Y.S.; Zhao, Y.S.; Zhu, W.H.; Tian, H. Self-Assembly Solid-State Enhanced Red Emission of Quinolinemalononitrile: Optical Waveguides and Stimuli Response. ACS Appl. Mater. Interfaces 2013, 5, 192–198. [Google Scholar] [CrossRef]
- Yang, H.Y.; Zhang, J.J.; Zang, Y.; Zhang, H.Y.; Li, J.; Chen, G.R.; He, X.P. D-A-D fluorogenic probe for the rapid imaging of amyloid beta plaques in vivo. Dye. Pigment. 2017, 136, 224–228. [Google Scholar] [CrossRef]
- Zhang, J.D.; Mei, J.; Hu, X.L.; He, X.P.; Tian, H. Ratiometric Detection of beta-Amyloid and Discrimination from Lectins by a Supramolecular AIE Glyconanoparticle. Small 2016, 12, 6562–6567. [Google Scholar] [CrossRef]
- Wang, C.Z.; Chen, J.L.; Tang, Y.; Zang, Y.; Chen, G.R.; James, T.D.; Li, J.; Wu, C.F.; He, X.P. Supramolecular Polymer Dot Ensemble for Ratiometric Detection of Lectins and Targeted Delivery of Imaging Agents. ACS Appl. Mater. Interfaces 2017, 9, 3272–3276. [Google Scholar] [CrossRef] [Green Version]
- Dou, W.T.; Zhang, J.J.; Li, Q.; Guo, Z.Q.; Zhu, W.H.; Chen, G.R.; Zhang, H.Y.; He, X.P. Fluorescence imaging of Alzheimer’s Disease with a flat ensemble formed between a quinoline–malononitrile AIEgen and thin-layer molybdenum disulfide. Chembiochem 2019, 20, 1856–1860. [Google Scholar] [CrossRef]
- Guo, Z.Q.; Yan, C.X.; Zhu, W.H. High-Performance Quinoline-Malononitrile Core as a Building Block for the Diversity-Oriented Synthesis of AIEgens. Angew. Chem. Int. Ed. 2020, 59, 9812–9825. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Luo, T.; Zhang, J.; Fan, C.; Li, X.; Li, C.; Gong, H.; Luo, Q.; Zhu, M.-Q. AIE-based fluorescent micro-optical sectioning tomography for automatic 3D mapping of β-amyloid plaques in Tg mouse whole brain. Chem. Eng. J. 2022, 446, 136840. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, Y.; Wang, Q.; Xiang, C.; Liu, G.; Li, J. A Novel Aggregation-Induced Emission Fluorescent Probe for Detection of β-Amyloid Based on Pyridinyltriphenylamine and Quinoline–Malononitrile. Biosensors 2023, 13, 610. https://doi.org/10.3390/bios13060610
Fang Y, Wang Q, Xiang C, Liu G, Li J. A Novel Aggregation-Induced Emission Fluorescent Probe for Detection of β-Amyloid Based on Pyridinyltriphenylamine and Quinoline–Malononitrile. Biosensors. 2023; 13(6):610. https://doi.org/10.3390/bios13060610
Chicago/Turabian StyleFang, Yan, Qi Wang, Chenlong Xiang, Guijin Liu, and Junjian Li. 2023. "A Novel Aggregation-Induced Emission Fluorescent Probe for Detection of β-Amyloid Based on Pyridinyltriphenylamine and Quinoline–Malononitrile" Biosensors 13, no. 6: 610. https://doi.org/10.3390/bios13060610
APA StyleFang, Y., Wang, Q., Xiang, C., Liu, G., & Li, J. (2023). A Novel Aggregation-Induced Emission Fluorescent Probe for Detection of β-Amyloid Based on Pyridinyltriphenylamine and Quinoline–Malononitrile. Biosensors, 13(6), 610. https://doi.org/10.3390/bios13060610