Recent Progress in Diboronic-Acid-Based Glucose Sensors
Abstract
:1. Introduction
2. Mechanism of Selective Glucose Recognition via Diboronic-Acid-Based Sensors
3. Design Principles of Diboronic-Acid-Based Optical Glucose Sensors
3.1. Intramolecular Charge Transfer (ICT) Sensors
3.2. Photoinduced Electron Transfer (PET) Sensors
Intra-Molecular PET Sensors
3.3. Fluorescence Resonance Energy Transfer (FRET) Sensors
3.4. Excimer/Exciplex Sensors
3.5. Surface-Enhanced Raman Spectroscopy Sensors
3.6. Vibration-Induced Emission (VIE)-Based Sensors
4. Design Principles of Diboronic-Acid-Based Electrochemical Glucose Sensors
5. Diboronic-Acid-Based NMR Sensors
6. Conclusions and Perspective
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Combettes, M.M. GLP-1 and type 2 diabetes: Physiology and new clinical advances. Curr. Opin. Pharmacol. 2006, 6, 598–605. [Google Scholar] [CrossRef]
- Ginter, E.; Simko, V. Type 2 diabetes mellitus, pandemic in 21st century. Adv. Exp. Med. Biol. 2013, 771, 42–50. [Google Scholar]
- ERFC. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef] [Green Version]
- Kuzulugil, D.; Papeix, G.; Luu, J.; Kerridge, R.K. Recent advances in diabetes treatments and their perioperative implications. Curr. Opin. Anaesthesiol. 2019, 32, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Cefalu, W.T.; Buse, J.B.; Tuomilehto, J.; Fleming, G.A.; Ferrannini, E.; Gerstein, H.C.; Bennett, P.H.; Ramachandran, A.; Raz, I.; Rosenstock, J.; et al. Update and next steps for real-world translation of interventions for type 2 diabetes prevention: Reflections from a diabetes care editors’ expert forum. Diabetes Care 2013, 39, 1186–1201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Facchinetti, A.; Cobelli, C. Real-time improvement of continuous glucose monitoring accuracy. Diabetes Care 2013, 36, 793–800. [Google Scholar] [CrossRef] [Green Version]
- Mokrani, S.; Saidi, M. Current advances in diabetes type 1 and type 2 treatment: An overview. J. Diabetes Metab. Disord. 2020, 5, 111–114. [Google Scholar]
- Wang, H.; Lee, A. Recent developments in blood glucose sensors. J. Food Drug Anal. 2015, 23, 191–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pham, X.; Seong, G.H. Electrochemical patterning of palladium nanoparticles on a single-walled carbon nanotube platform and its application to glucose detection. Electroanalysis 2011, 23, 2087–2093. [Google Scholar] [CrossRef]
- Hwang, D.W.; Lee, S.; Seo, M.; Chung, T.D. Recent advances in electrochemical non-enzymatic glucose sensors—A review. Anal. Chim. Acta 2018, 1033, 1–34. [Google Scholar] [CrossRef]
- Xie, B.B.; Wang, K.; Li, B.Y.; Huang, R.Y.; Xu, Z.W.; Li, X.M. Biomaterial-mediated strategies for accurate and convenient diagnosis, and effective treatment of diabetes: Advantages, current progress and future perspectives. J. Mater. Chem. B 2023, 11, 3766–37868. [Google Scholar] [CrossRef]
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef] [PubMed]
- Nor, N.M.; Ridhuan, N.S.; Razak, K.A. Progress of enzymatic and non-enzymatic electrochemical glucose biosensor based on nanomaterial-modified electrode. Biosensors 2022, 12, 1136. [Google Scholar]
- Teymourian, H.; Barfidokht, A.; Wang, J. Electrochemical glucose sensors in diabetes management: An updated review (2010–2020). Chem. Soc. Rev. 2020, 49, 7671–7709. [Google Scholar] [CrossRef] [PubMed]
- Williams, G.T.; Kedge, J.L.; Fossey, J.S. Molecular boronic acid-based saccharide sensors. ACS Sens. 2021, 6, 1508–1528. [Google Scholar] [CrossRef]
- Sun, X. Glucose detection through surface-enhanced Raman spectroscopy: A review. Anal. Chim. Acta 2021, 1206, 339226. [Google Scholar] [CrossRef]
- Fang, G.; Wang, H.; Bian, Z.; Sun, J.; Liu, A.; Fang, H.; Liu, B.; Yao, Q.; Wu, Z. Recent development of boronic acid-based fluorescent sensors. RSC Adv. 2018, 8, 29400–29427. [Google Scholar] [CrossRef] [Green Version]
- Das, B.C.; Chokkalingam, P.; Masilamani, P.; Shukla, S.; Das, S. Stimuli-responsive boron-based materials in drug delivery. Int. J. Mol. Sci. 2023, 24, 2757. [Google Scholar] [CrossRef]
- Lorand, J.P.; Edwards, J.O. Polyol complexes and structure of the benzeneboronate ion. J. Org. Chem. 1959, 24, 769–774. [Google Scholar] [CrossRef]
- Yan, J.; Springsteen, G.; Deeter, S. The relationship among pKa, pH, and binding constants in the interactions between boronic acids and diols-it is not as simple as it appears. Tetrahedron 2004, 60, 11205–11209. [Google Scholar] [CrossRef]
- Hansen, J.S.; Christensen, J.B.; Petersen, J.F. Arylboronic acids: A diabetic eye on glucose sensing. Sens. Actuators B Chem. 2012, 161, 45–79. [Google Scholar] [CrossRef]
- Angyal, S.J. The Composition of reducing sugars in solution. Adv. Carbohydr. Chem. Biochem. 1984, 42, 15–68. [Google Scholar]
- James, T.D.; Shinkai, S. A glucose-selective molecular fluorescence sensor. Angew. Chem. Int. Ed. 1994, 33, 2207–2209. [Google Scholar] [CrossRef]
- Bielecki, M.; Eggert, H.; Norrild, J.C. A fluorescent glucose sensor binding covalently to all five hydroxy groups of α-D-glucofuranose. A reinvestigation. J. Chem. Soc. Perkin Trans. 2 1999, 3, 449–456. [Google Scholar] [CrossRef]
- Suzuki, Y.; Mizuta, Y.; Mikagi, A.; Misawa-Suzuki, T.; Tsuchido, Y.; Sugaya, T.; Hashimoto, T.; Ema, K.; Hayashita, T. Recognition of D-glucose in water with excellent sensitivity, selectivity, and chiral selectivity using γ-cyclodextrin and fluorescent boronic acid inclusion complexes having a pseudodiboronic acid moiety. ACS Sens. 2023, 8, 218–227. [Google Scholar] [CrossRef] [PubMed]
- Tsuchido, Y.; Fujiwara, S.; Hashimoto, T.; Hayashita, T. Development of supramolecular saccharide sensors based on cyclodextrin complexes and self-assembling systems. Chem. Pharm. Bull. 2017, 65, 318–325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vrbata, D.; Kereiche, S.; Kalíková, K.; Uchman, M. Stimuli-responsive multifunctional micelles of ABC vs. ACB triblock terpolymers using reversible covalent bonding of phenylboronic acid: Controlled synthesis, self-assembly and model drug release. J. Mol. Liq. 2021, 335, 116528. [Google Scholar] [CrossRef]
- Liu, Z.; He, W.; Guo, Z. Metal coordination in photoluminescent sensing. J. Chem. Soc. Rev. 2013, 42, 1568–1600. [Google Scholar] [CrossRef]
- DiCesare, N.; Lakowicz, J.R. Spectral properties of fluorophores combining the boronic acid group with electron donor or withdrawing groups. Implication in the development of fluorescence probes for saccharides. J. Phys. Chem. A 2001, 105, 6834–6840. [Google Scholar] [CrossRef]
- DiCesare, N.; Lakowicz, J.R. Charge transfer fluorescent probes using boronic acids for monosaccharide signaling. J. Biomed. Opt. 2002, 7, 538–545. [Google Scholar] [CrossRef]
- Shinmori, H.; Takeuchi, M.; Shinkai, S. Spectroscopic sugar sensing by a stilbene derivative with push (MeN-)-pull ((HO)B-)-type substituents22. Tetrahedron 1995, 51, 1893–1902. [Google Scholar] [CrossRef]
- Wu, Y.B.; Guo, H.M.; Zhang, X.; James, T.D.; Zhao, J.Z. Chiral donor photoinduced electron transfer (d-PET) boronic acid chemosensors for the selective recognition of tartaric acids, disaccharides, and ginsenosides. Chem. Eur. J. 2011, 17, 7632–7644. [Google Scholar] [CrossRef]
- James, T.D.; Sandanayake, K.R.A.S.; Shinkai, S. Novel photoinduced electron-transfer sensor for saccharides based on the interaction of boronic acid and amine. J. Chem. Soc., Chem. Commun. 1994, 4, 477–478. [Google Scholar] [CrossRef]
- James, T.D.; Shinmori, H.; Shinkai, S. Novel fluorescence sensor for ‘small’ saccharides. Chem. Commun. 1997, 1, 71–72. [Google Scholar] [CrossRef]
- Arimori, S.; Bell, M.L.; Oh, C.S.; Frimat, K.A.; James, T.D. Modular fluorescence sensors for saccharides. Chem. Commun. 2001, 183, 1836–1837. [Google Scholar] [CrossRef]
- James, T.D.; Shinkai, S. Chiral discrimination of monosaccharides using a fluorescent molecular sensor. Nature 2002, 374, 345–347. [Google Scholar] [CrossRef]
- Sun, X.L.; Chapin, B.M.; Metola, P.; Collins, B.; Wang, B.H.; James, T.D.; Anslyn, E.V. The mechanisms of boronate ester formation and fluorescent turn-on in ortho- aminomethylphenylboronic acids. Nat. Chem. 2019, 11, 768–778. [Google Scholar] [CrossRef]
- James, T.D.; Shinkai, S. A diboronic acid ‘glucose cleft’ and a biscrown ether ‘metal sandwich’ are allosterically coupled. J. Chem. Soc. Chem. Commun. 1995, 14, 1483–1485. [Google Scholar] [CrossRef]
- Wang, Y.E.; Rong, R.X.; Li, X.L. Synthesis of fluorescent diboronic acid sensors and their recognition of mono-/oligo-saccharides. Chin. Chem. Lett. 2017, 28, 6. [Google Scholar] [CrossRef]
- Kropff, J.; Choudhary, P.; Neupane, S.; Barnard, K.; Bain, S.C.; Kapitza, C.; Forst, T.; Link, M.; Dehennis, A.; DeVries, J.H. Accuracy and longevity of an implantable continuous glucose sensor in the precise study: A 180-day, prospective, multicenter, pivotal trial. Diabetes Care 2017, 40, 63–68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joseph, J.I. Review of the long-term implantable senseonics continuous glucose monitoring system and other continuous glucose monitoring systems. J. Diabetes Sci. Tech. 2021, 15, 167–173. [Google Scholar] [CrossRef]
- Garg, S.K.; Liljenquist, D.; Bode, B.; Christiansen, M.P.; Bailey, T.S.; Brazg, R.L.; Denham, D.S.; Chang, A.R.; Akturk, H.K.; Dehennis, A.; et al. Evaluation of accuracy and safety of the next-generation up to 180-day long-term implantable eversense continuous glucose monitoring system: The PROMISE study. Diabetes Technol. Ther. 2022, 24, 84–92. [Google Scholar] [CrossRef]
- Irace, C.; Cutruzzola, A.; Tweden, K.; Kaufman, F.R. Device profile of the Eversense continuous glucose monitoring system for glycemic control in type-1 diabetes: Overview of its safety and efficacy. Expert Rev. Med. Devices 2021, 18, 909–914. [Google Scholar] [CrossRef]
- Wang, K.; Meng, M. Synthesis of diboronic acid-based fluorescent probes for the sensitive detection of glucose in aqueous media and biological matrices. ACS Sens. 2021, 6, 1543–1551. [Google Scholar] [CrossRef]
- Frederiksen, J.; Eggert, H.; Morin, C.; Norrild, J.C. A new glucose-selective fluorescent bisboronic acid first report of strong a-furanose complexation in aqueous solution at physiological pH. J. Org. Chem. 1999, 64, 3846–3852. [Google Scholar]
- Wang, K.; Zhang, R.; Zhao, X.; Ma, Y.; Ren, L.; Ren, Y.; Chen, G.; Ye, D.; Wu, J.; Hu, X.; et al. Reversible recognition-based boronic acid probes for glucose detection in live cells and zebrafish. J. Am. Chem. Soc. 2023, 145, 8408–8416. [Google Scholar] [CrossRef] [PubMed]
- Valdes-García, J.; Zamora-Moreno, J.; Salomón-Flores, M.K.; Martínez-Otero, D.; Barroso-Flores, J.; Yatsimirsky, A.K.; Bazany-Rodríguez, I.J.; Dorazco-González, A. Fluorescence sensing of monosaccharides by bis-boronic acids derived from quinolinium dicarboxamides: Structural and spectroscopic studies. J. Org. Chem. 2023, 88, 2174–2189. [Google Scholar] [CrossRef] [PubMed]
- Gamscy, S.; Miller, A.; Olmstead, M. Boronic acid-based bipyridinium salts as tunable receptors for monosaccharides and a-hydroxy carboxylates. J. Am. Chem. Soc. 2007, 129, 1278–1286. [Google Scholar] [CrossRef] [PubMed]
- Schiller, A.; Singaram, B. A fluorescent sensor array for saccharides based on boronic acid appended bipyridinium salts. J. Angew. Chem. Int. Ed. 2007, 46, 6457–6459. [Google Scholar] [CrossRef]
- Zhang, X.T.; Wang, S.; Xing, G.W. Novel boronlectins based on bispyridium salt with a flexible linker: Discriminative sensing of lactose and other monosaccharides and disaccharides in aqueous solution. Asian J. Chem. 2015, 10, 2594–2598. [Google Scholar] [CrossRef] [PubMed]
- Sapsford, K.E.; Bertl, L.; Medintz, I.L. Materials for fluorescence resonance energy transfer analysis: Beyond traditional donor-acceptor combinations. Angew. Chem. Int. Ed. 2006, 45, 4562–4589. [Google Scholar] [CrossRef]
- Arimori, S.; Bel1, M.; Oh, S.; James, T.D. A modular fluorescence intramolecular energy transfer saccharide sensor. Org. Lett. 2002, 4, 4249–4251. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Ouyang, W.J.; Wu, X.; Li, Z.; Fossey, J.S.; James, T.D.; Jiang, Y.B. Glucose Sensing via Aggregation and the Use of “Knock-Out” Binding to Improve Selectivity. J. Am. Chem. Soc. 2013, 135, 1700–1703. [Google Scholar] [CrossRef]
- Zhang, X.T.; Wang, S.; Xing, G.W. Aggregates-based boronlectins with pyrene as fluorophore: Multichannel discriminative sensing of monosaccharides and their applications. ACS Appl. Mater. Interfaces 2016, 8, 12007–12017. [Google Scholar] [CrossRef]
- Fan, M.; Andrade, G.F.S.; Brolo, A.G. A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal. Chim. Acta 2011, 693, 7–25. [Google Scholar] [CrossRef] [PubMed]
- Graham, D.; Goodacre, R. Chemical and bioanalytical applications of surface enhanced Raman Scattering Spectroscopy. Chem. Soc. Rev. 2008, 37, 883–884. [Google Scholar] [CrossRef] [PubMed]
- Sharma, B.; Duyne, R.P.V. Bisboronic acids for selective, physiologically relevant direct glucose sensing with Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2016, 138, 13952–13959. [Google Scholar] [CrossRef]
- Zhang, Z.Y.; Wu, Y.S.; Tang, K.C.; Chen, C.L.; Ho, J.W.; Su, J.H.; Tian, H.; Chou, P.T. Excited-state conformational/electronic responses of saddle-shaped n,n′-disubstituted-dihydrodibenzo[a,c]phenazines: Wide-tuning emission from red to deep blue and white light combination. J. Am. Chem. Soc. 2015, 137, 8509–8520. [Google Scholar] [CrossRef]
- Huang, W.; Sun, L.; Zheng, Z.W.; Sua, J.H.; Tian, H. Colour-tunable fluorescence of single molecules based on the vibration induced emission of phenazine. Chem. Commun. 2015, 51, 4462–4464. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.; Guo, C.X.; He, Q.; Chi, X.D.; Lynch, V.M.; Zhang, Z.Y.; Su, J.H.; Tian, H.; Sessler, J.L. Molecular cursor caliper: A fluorescent sensor for dicarboxylate dianions. J. Am. Chem. Soc. 2019, 141, 14798–14806. [Google Scholar] [CrossRef]
- Ramos-Soriano, J.; Benitez-Benitez, S.J.; Davis, A.P.; Galan, M.C. A vibration-induced-emission-based fluorescent chemosensor for the selective and visual recognition of glucose. Angew. Chem. Int. Ed. 2021, 60, 16880–16884. [Google Scholar] [CrossRef] [PubMed]
- Gough, D.A.; Anderson, F.L.; Giner, J. Effect of coreactants on electrochemical glucose oxidation. Anal. Chem. 1978, 50, 941–944. [Google Scholar] [CrossRef]
- Gebhardt, U.; Luft, G.; Richter, G.J. Development of an implantable electrocatalytic glucose sensor. Bioelectrochem. Bioenerg. 1978, 5, 607–624. [Google Scholar] [CrossRef]
- Rahman, M.M.; Ahammad, A.J.S.; Jin, J.H. A comprehensive review of glucose biosensors based on nanostructured metal-oxides. Sensors 2010, 10, 4855–4886. [Google Scholar] [CrossRef] [Green Version]
- Arimori, S.; Ushiroda, S.; Peter, L.M.; Jenkins, A.T.A.; James, T.D. A modular electrochemical sensor for saccharides. Chem. Commun. 2002, 38, 2368–2369. [Google Scholar] [CrossRef]
- Wang, F. A multi-calibration potentiometric sensing array based on diboronic acid-PtAu/CNTs nanozyme for home monitoring of urine glucose. Anal. Chim. Acta 2023, 1237, 340598. [Google Scholar] [CrossRef] [PubMed]
- Ori, A.; Shinkai, S. Electrochemical detection of saccharides by the redox cycle of a chiral ferrocenylboronic acid derivative: A novel method for sugar sensing. J. Chem. Soc. Chem. Commun. 1995, 31, 1771–1772. [Google Scholar] [CrossRef]
- Wang, H.C.; James, T.D. A bis-boronic acid modified electrode for the sensitive and selective determination of glucose concentrations. Analyst 2013, 138, 7146. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.S.; James, T.D. Glucose selective Surface Plasmon Resonance-based bis-boronic acid sensor. Analyst 2013, 138, 7140. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Chou, K.H.; Queenan, B.; Pennathur, S.; Bazan, G.C. Molecular design of a new diboronic acid for electrohydrodynamic monitoring of glucose. Angew. Chem. Int. Ed. 2019, 58, 10612–10615. [Google Scholar] [CrossRef]
- Choi, H.; Song, I.; Park, C.; Yim, H.; Kim, J. Acetylated trifluoromethyl diboronic acid anthracene with a large stokes shift and long excitation wavelength as a glucose-selective probe. Appl. Sci. 2022, 12, 2782. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, H.; Park, C.S.; Yim, H.S.; Kim, D.; Lee, S.; Lee, Y. Diboronic-Acid-Based electrochemical sensor for enzyme-free selective and sensitive glucose detection. Biosensors 2023, 13, 248. [Google Scholar] [CrossRef]
- Chen, H.; Viel, S.; Ziarellic, F.; Peng, L. 19F NMR: A valuable tool for studying biological events. Chem. Soc. Rev. 2013, 42, 7971–7982. [Google Scholar] [CrossRef]
- Wu, L.N.; Liu, F.; Xu, X.A.; Liu, Z.X.; Sun, X.L. Perfluorocarbons-based 19F magnetic resonance imaging in biomedicine. Int. J. Nanomed. 2020, 15, 7377–7395. [Google Scholar] [CrossRef] [PubMed]
- Axthelm, J.; Schiller, A. Fluorinated boronic acid-appended pyridinium salts and 19F NMR Spectroscopy for diol sensing. J. Am. Chem. Soc. 2017, 139, 11413–11420. [Google Scholar] [CrossRef]
- Gao, X.D.; Du, X.Z.; Shi, Y.P. A Bisboronic acid sensor for ultra-high selective glucose assay by 19F NMR Spectroscopy. Anal. Chem. 2021, 93, 7220–7225. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.E.; Hong, Y.; Zhang, S.Y.; Zhang, M.; Yan, X.S.; Cao, J.L.; Li, Z.; James, T.D.; Jiang, Y.B. Proline-based boronic acid receptors for chiral recognition of glucose. J. Org. Chem. 2018, 83, 15128–15135. [Google Scholar] [CrossRef] [PubMed]
Sensors | Structures | Kglu (M−1) | Kfru (M−1) | Kglu/Kfru |
---|---|---|---|---|
4-amino-3-fluorophenyl-boronic acid | 10 | 200 | 0.05 | |
15a: n,n = 1,1 | 48 | 465 | 0.10 | |
15b: n,n = 1,2 | 114 | 389 | 0.29 | |
15c: n,n = 2,2 | 167 | 447 | 0.37 | |
15d: n,n = 2,3 | 99 | 1047 | 0.095 | |
15e: n,n = 3,3 | 29 | 379 | 0.077 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nan, K.; Jiang, Y.-N.; Li, M.; Wang, B. Recent Progress in Diboronic-Acid-Based Glucose Sensors. Biosensors 2023, 13, 618. https://doi.org/10.3390/bios13060618
Nan K, Jiang Y-N, Li M, Wang B. Recent Progress in Diboronic-Acid-Based Glucose Sensors. Biosensors. 2023; 13(6):618. https://doi.org/10.3390/bios13060618
Chicago/Turabian StyleNan, Ke, Yu-Na Jiang, Meng Li, and Bing Wang. 2023. "Recent Progress in Diboronic-Acid-Based Glucose Sensors" Biosensors 13, no. 6: 618. https://doi.org/10.3390/bios13060618
APA StyleNan, K., Jiang, Y. -N., Li, M., & Wang, B. (2023). Recent Progress in Diboronic-Acid-Based Glucose Sensors. Biosensors, 13(6), 618. https://doi.org/10.3390/bios13060618