Aptameric Fluorescent Biosensors for Liver Cancer Diagnosis
Abstract
:1. Introduction
2. Förster Resonance Energy Transfer-Based Biosensors for Liver Cancer Diagnosis
2.1. Förster Resonance Energy Transfer
2.2. FRET-Based Aptameric Biosensor for Protein Analysis
2.3. FRET-Based Aptameric Biosensor for miRNA Analysis
3. Metal-Enhanced Fluorescent-Based Analysis Methods for Liver Cancer Diagnosis
3.1. Metal-Enhanced Fluorescent
3.2. MEF-Based Aptameric Biosensor for Protein Analysis
3.3. MEF-Based Aptameric Biosensor for miRNA Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Weiderpass, E.; Soerjomataram, I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 2021, 127, 3029–3030. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Pineros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Anwanwan, D.; Singh, S.K.; Singh, S.; Saikam, V.; Singh, R. Challenges in liver cancer and possible treatment approaches. Biochim. Biophys. Acta Rev. Cancer 2020, 1873, 188314. [Google Scholar] [CrossRef] [PubMed]
- Zong, J.; Fan, Z.; Zhang, Y. Serum Tumor Markers for Early Diagnosis of Primary Hepatocellular Carcinoma. J. Hepatocell. Carcinoma 2020, 7, 413–422. [Google Scholar] [CrossRef]
- Yang, N.; Cao, C.; Lv, X.; Zhang, T.; Shao, J.; Song, X.; Wang, W.; Chen, P.; Huang, W.; Dong, X. Photo-facilitated chemodynamic therapeutic agents: Synthesis, mechanisms, and biomedical applications. BMEMat 2023, 1, e12005. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, J.; He, M.; Su, X. Molecular dynamics simulation-guided toehold mediated strand displacement probe for single-nucleotide variants detection. Exploration 2022, 2, 20210265. [Google Scholar] [CrossRef]
- Wu, G.; Dai, Z.; Tang, X.; Lin, Z.; Lo, P.K.; Meyyappan, M.; Lai, K.W.C. Graphene field-effect transistors for the sensitive and selective detection of Escherichia coli using pyrene-tagged DNA aptamer. Adv. Healthc. Mater. 2017, 6, 1700736. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, Y.; Li, L.S.; Zhao, X.J.; Zhao, M.X.; Shen, H. Aminophosphate precursors for the synthesis of near-unity emitting InP quantum dots and their application in liver cancer diagnosis. Exploration 2022, 2, 20220082. [Google Scholar] [CrossRef]
- Son, M.H.; Park, S.W.; Sagong, H.Y.; Jung, Y.K. Recent advances in electrochemical and optical biosensors for cancer biomarker detection. BioChip J. 2023, 17, 44–67. [Google Scholar] [CrossRef]
- Kou, X.; Zhang, X.; Shao, X.; Jiang, C.; Ning, L. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal. Bioanal. Chem. 2020, 412, 6691–6705. [Google Scholar] [CrossRef] [PubMed]
- Kaur, B.; Kumar, S.; Kaushik, B.K. Recent advancements in optical biosensors for cancer detection. Biosens. Bioelectron. 2022, 197, 113805. [Google Scholar] [CrossRef] [PubMed]
- Shao, B.; Xiao, Z. Recent achievements in exosomal biomarkers detection by nanomaterials-based optical biosensors-a review. Anal. Chim. Acta 2020, 1114, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Dai, X.; Zhao, S.; Cui, X.; Gong, T.; Song, Z.; Meng, H.; Zhang, X.; Yu, B. Aptamer-based fluorescent sensors for the detection of cancer biomarkers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 247, 119038. [Google Scholar] [CrossRef] [PubMed]
- Sargazi, S.; Fatima, I.; Hassan Kiani, M.; Mohammadzadeh, V.; Arshad, R.; Bilal, M.; Rahdar, A.; Diez-Pascual, A.M.; Behzadmehr, R. Fluorescent-based nanosensors for selective detection of a wide range of biological macromolecules: A comprehensive review. Int. J. Biol. Macromol. 2022, 206, 115–147. [Google Scholar] [CrossRef]
- Prevo, B.; Peterman, E.J. Forster resonance energy transfer and kinesin motor proteins. Chem. Soc. Rev. 2014, 43, 1144–1155. [Google Scholar] [CrossRef] [Green Version]
- Aslan, K.; Gryczynski, I.; Malicka, J.; Matveeva, E.; Lakowicz, J.R.; Geddes, C.D. Metal-enhanced fluorescence: An emerging tool in biotechnology. Curr. Opin. Biotechnol. 2005, 16, 55–62. [Google Scholar] [CrossRef]
- Jeong, Y.; Kook, Y.M.; Lee, K.; Koh, W.G. Metal enhanced fluorescence (MEF) for biosensors: General approaches and a review of recent developments. Biosens. Bioelectron. 2018, 111, 102–116. [Google Scholar] [CrossRef]
- Bertram, J.S. The molecular biology of cancer. Mol. Aspects Med. 2000, 21, 167–223. [Google Scholar] [CrossRef]
- Zhang, G.Q.; Zhong, L.P.; Yang, N.; Zhao, Y.X. Screening of aptamers and their potential application in targeted diagnosis and therapy of liver cancer. World J. Gastroenterol. 2019, 25, 3359–3369. [Google Scholar] [CrossRef]
- Zheng, X.T.; Tan, Y.N. Recent development of nucleic acid nanosensors to detect sequence-specific binding interactions: From metal ions, small molecules to proteins and pathogens. Sens. Int. 2020, 1, 100034. [Google Scholar] [CrossRef]
- Bruno, J.G. Applications in which aptamers are needed or wanted in diagnostics and therapeutics. Pharmaceuticals 2022, 15, 693. [Google Scholar] [CrossRef] [PubMed]
- Su, Q.; Feng, W.; Yang, D.; Li, F. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection. Acc. Chem. Res. 2017, 50, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Schiffman, J.D.; Balakrishna, R.G. Quantum dots as fluorescent probes: Synthesis, surface chemistry, energy transfer mechanisms, and applications. Sens. Actuators B Chem. 2018, 258, 1191–1214. [Google Scholar]
- Zhang, X.; Hu, Y.; Yang, X.; Tang, Y.; Han, S.; Kang, A.; Deng, H.; Chi, Y.; Zhu, D.; Lu, Y. FOrster resonance energy transfer (FRET)-based biosensors for biological applications. Biosens. Bioelectron. 2019, 138, 111314. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, H. Förster resonance energy transfer–A spectroscopic nanoruler: Principle and applications. J. Photochem. Photobiol. C Photochem. Rev. 2011, 12, 20–30. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Q.; Pan, X.; Zhang, J. Insight into fluorescence imaging and bioorthogonal reactions in biological analysis. Top. Curr. Chem. 2021, 379, 10. [Google Scholar] [CrossRef]
- Piston, D.W.; Kremers, G.J. Fluorescent protein FRET: The good, the bad and the ugly. Trends Biochem. Sci. 2007, 32, 407–414. [Google Scholar] [CrossRef]
- Yun, C.S.; Javier, A.; Jennings, T.; Fisher, M.; Hira, S.; Peterson, S.; Hopkins, B.; Reich, N.O.; Strouse, G.F. Nanometal surface energy transfer in optical rulers, breaking the FRET barrier. J. Am. Chem. Soc. 2005, 127, 3115–3119. [Google Scholar] [CrossRef]
- Guo, J.; Han, X.; Wang, J.; Zhao, J.; Guo, Z.; Zhang, Y. Horseradish peroxidase functionalized gold nanorods as a label for sensitive electrochemical detection of alpha-fetoprotein antigen. Anal. Biochem. 2015, 491, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Gao, T.; Gu, S.; Zhi, J.; Yang, J.; Li, G. An electrochemical biosensor for the assay of alpha-fetoprotein-L3 with practical applications. Biosens. Bioelectron. 2017, 87, 352–357. [Google Scholar] [CrossRef]
- Zhou, L.; Ji, F.; Zhang, T.; Wang, F.; Li, Y.; Yu, Z.; Jin, X.; Ruan, B. An fluorescent aptasensor for sensitive detection of tumor marker based on the FRET of a sandwich structured QDs-AFP-AuNPs. Talanta 2019, 197, 444–450. [Google Scholar] [CrossRef]
- Lu, C.; Wei, D.; Li, G. A fluorescence turn-on biosensor based on gold nanoclusters and aptamer for alpha fetoprotein detection. IOP Conf. Ser. Earth Environ. Sci. 2019, 218, 012106. [Google Scholar] [CrossRef]
- Li, G.; Zeng, J.; Liu, H.; Ding, P.; Liang, J.; Nie, X.; Zhou, Z. A fluorometric aptamer nanoprobe for alpha-fetoprotein by exploiting the FRET between 5-carboxyfluorescein and palladium nanoparticles. Mikrochim. Acta 2019, 186, 314. [Google Scholar] [CrossRef]
- Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J. 1999, 13, 9–22. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.E.; Si, S. A fluorescent nanoprobe based on graphene oxide fluorescence resonance energy transfer for the rapid determination of oncoprotein vascular endothelial growth factor (VEGF). Appl. Spectrosc. 2013, 67, 1270–1274. [Google Scholar] [CrossRef]
- Li, X.; Ding, X.; Fan, J. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst 2015, 140, 7918–7925. [Google Scholar] [CrossRef] [PubMed]
- Shao, K.; Wang, L.; Wen, Y.; Wang, T.; Teng, Y.; Shen, Z.; Pan, Z. Near-infrared carbon dots-based fluorescence turn on aptasensor for determination of carcinoembryonic antigen in pleural effusion. Anal. Chim. Acta 2019, 1068, 52–59. [Google Scholar] [CrossRef] [PubMed]
- Duffy, M.J. Carcinoembryonic antigen as a marker for colorectal cancer: Is it clinically useful? Clin. Chem. 2001, 47, 624–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.H.; Lee, S.W. The Roles of Carcinoembryonic Antigen in Liver Metastasis and Therapeutic Approaches. Gastroenterol. Res. Pract. 2017, 2017, 7521987. [Google Scholar] [CrossRef] [Green Version]
- Lu, K.; Liu, C.; Wang, G.; Yang, W.; Fan, K.; Lazarouk, S.; Labunov, V.; Dong, L.; Li, D.; Yang, X. A highly sensitive silicon nanowire array sensor for joint detection of tumor markers CEA and AFP. Biomater. Sci. 2022, 10, 3823–3830. [Google Scholar] [CrossRef]
- Li, G.; Chen, W.; Mi, D.; Wang, B.; Li, H.; Wu, G.; Ding, P.; Liang, J.; Zhou, Z. A highly sensitive strategy for glypican-3 detection based on aptamer/gold carbon dots/magnetic graphene oxide nanosheets as fluorescent biosensor. Anal. Bioanal. Chem. 2022, 414, 6441–6453. [Google Scholar] [CrossRef] [PubMed]
- Haruyama, Y.; Kataoka, H. Glypican-3 is a prognostic factor and an immunotherapeutic target in hepatocellular carcinoma. World J. Gastroenterol. 2016, 22, 275–283. [Google Scholar] [CrossRef]
- Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, J.; Wu, C.; Che, X.; Wang, L.; Yu, D.; Zhang, T.; Huang, L.; Li, H.; Tan, W.; Wang, C.; et al. Circulating microRNAs, miR-21, miR-122, and miR-223, in patients with hepatocellular carcinoma or chronic hepatitis. Mol. Carcinog 2011, 50, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Ladeiro, Y.; Couchy, G.; Balabaud, C.; Bioulac-Sage, P.; Pelletier, L.; Rebouissou, S.; Zucman-Rossi, J. MicroRNA profiling in hepatocellular tumors is associated with clinical features and oncogene/tumor suppressor gene mutations. Hepatology 2008, 47, 1955–1963. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, S.; Wang, S.; Zhao, J.; Sun, J.; Yang, X. Classical Triplex Molecular Beacons for MicroRNA-21 and Vascular Endothelial Growth Factor Detection. ACS Sens. 2018, 3, 2438–2445. [Google Scholar] [CrossRef]
- Bai, S.; Xu, B.; Guo, Y.; Qiu, J.; Yu, W.; Xie, G. High-Discrimination Factor Nanosensor Based on Tetrahedral DNA Nanostructures and Gold Nanoparticles for Detection of MiRNA-21 in Live Cells. Theranostics 2018, 8, 2424–2434. [Google Scholar] [CrossRef]
- Xia, Z.; Wang, P.; Liu, X.; Liu, T.; Yan, Y.; Yan, J.; Zhong, J.; Sun, G.; He, D. Tumor-Penetrating Peptide-Modified DNA Tetrahedron for Targeting Drug Delivery. Biochemistry 2016, 55, 1326–1331. [Google Scholar] [CrossRef]
- Tang, H.; Yang, X.; Wang, K.; Tan, W.; Li, W. mRNA detection in living cell using phosphorothioate-modified molecular beacon. Chin. Sci. Bull. 2009, 54, 1507–1514. [Google Scholar] [CrossRef]
- Ren, H.; Long, Z.; Shen, X.; Zhang, Y.; Sun, J.; Ouyang, J.; Na, N. Sandwich DNA Hybridization Fluorescence Resonance Energy-Transfer Strategy for miR-122 Detection by Core-Shell Upconversion Nanoparticles. ACS Appl. Mater. Interfaces 2018, 10, 25621–25628. [Google Scholar] [CrossRef]
- Oudeng, G.; Au, M.; Shi, J.; Wen, C.; Yang, M. One-Step in Situ Detection of miRNA-21 Expression in Single Cancer Cells Based on Biofunctionalized MoS(2) Nanosheets. ACS Appl. Mater. Interfaces 2018, 10, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Wei, S.; Wang, S.; Zhu, X.; Lei, C.; Huang, Y.; Nie, Z.; Yao, S. Chimeric DNA-Functionalized Titanium Carbide MXenes for Simultaneous Mapping of Dual Cancer Biomarkers in Living Cells. Anal. Chem. 2019, 91, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Kong, X.J.; Ji, X.; He, T.; Xie, L.H.; Zhang, Y.Z.; Lv, H.; Ding, C.; Li, J.R. A Green-Emission Metal-Organic Framework-Based Nanoprobe for Imaging Dual Tumor Biomarkers in Living Cells. ACS Appl. Mater. Interfaces 2020, 12, 35375–35384. [Google Scholar] [CrossRef] [PubMed]
- Sundaresan, S.M.; Fothergill, S.M.; Tabish, T.A.; Ryan, M.; Xie, F. Aptamer biosensing based on metal enhanced fluorescence platform: A promising diagnostic tool. Appl. Phys. Rev. 2021, 8, 041311. [Google Scholar] [CrossRef]
- Xu, D.D.; Liu, C.; Li, C.Y.; Song, C.Y.; Kang, Y.F.; Qi, C.B.; Lin, Y.; Pang, D.W.; Tang, H.W. Dual Amplification Fluorescence Assay for Alpha Fetal Protein Utilizing Immunohybridization Chain Reaction and Metal-Enhanced Fluorescence of Carbon Nanodots. ACS Appl. Mater. Interfaces 2017, 9, 37606–37614. [Google Scholar] [CrossRef]
- Zuo, J.; Jiang, T.; Zhao, X.; Xiong, X.; Xiao, S.; Zhu, Z. Preparation and Application of Fluorescent Carbon Dots. J. Nanomater. 2015, 2015, 787862. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Zhuo, Y.; Zhu, S.; Luo, Y.; Feng, Y.; Xu, Y. Selectively assaying CEA based on a creative strategy of gold nanoparticles enhancing silver nanoclusters’ fluorescence. Biosens. Bioelectron. 2015, 64, 345–351. [Google Scholar] [CrossRef]
- Zhu, D.; Li, W.; Wen, H.M.; Yu, S.; Miao, Z.Y.; Kang, A.; Zhang, A. Silver nanoparticles-enhanced time-resolved fluorescence sensor for VEGF(165) based on Mn-doped ZnS quantum dots. Biosens. Bioelectron. 2015, 74, 1053–1060. [Google Scholar] [CrossRef]
- Aslan, K.; Huang, J.; Wilson, G.M.; Geddes, C.D. Metal-enhanced fluorescence-based RNA sensing. J. Am. Chem. Soc. 2006, 128, 4206–4207. [Google Scholar] [CrossRef]
- Lu, L.; Tu, D.; Liu, Y.; Zhou, S.; Zheng, W.; Chen, X. Ultrasensitive detection of cancer biomarker microRNA by amplification of fluorescence of lanthanide nanoprobes. Nano Res. 2017, 11, 264–273. [Google Scholar] [CrossRef]
- Lee, J.H.; Choi, J.H.; Chueng, S.D.; Pongkulapa, T.; Yang, L.; Cho, H.Y.; Choi, J.W.; Lee, K.B. Nondestructive Characterization of Stem Cell Neurogenesis by a Magneto-Plasmonic Nanomaterial-Based Exosomal miRNA Detection. ACS Nano 2019, 13, 8793–8803. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.; Li, H.; Xu, D. Sensitive and enzyme-free fluorescence polarization detection for miRNA-21 based on decahedral sliver nanoparticles and strand displacement reaction. RSC Adv. 2020, 10, 17037–17044. [Google Scholar] [CrossRef]
- Shi, J.; Shen, M.; Zhao, W.; Liu, J.; Qu, Z.; Zhu, M.; Chen, Z.; Shi, P.; Zhang, Z.; Zhang, S.S. Ultrasensitive Dual-Signal Detection of Telomerase and MiR-21 Based on Boolean Logic Operations. ACS Appl. Mater. Interfaces 2021, 13, 51393–51402. [Google Scholar] [CrossRef]
- Wang, Z.; Zong, S.; Wang, Z.; Wu, L.; Chen, P.; Yun, B.; Cui, Y. Microfluidic chip based micro RNA detection through the combination of fluorescence and surface enhanced Raman scattering techniques. Nanotechnology 2017, 28, 105501. [Google Scholar] [CrossRef]
- Masterson, A.N.; Liyanage, T.; Berman, C.; Kaimakliotis, H.; Johnson, M.; Sardar, R. A novel liquid biopsy-based approach for highly specific cancer diagnostics: Mitigating false responses in assaying patient plasma-derived circulating microRNAs through combined SERS and plasmon-enhanced fluorescence analyses. Analyst 2020, 145, 4173–4180. [Google Scholar] [CrossRef]
- Liang, L.; Lan, F.; Yin, X.; Ge, S.; Yu, J.; Yan, M. Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices. Biosens. Bioelectron. 2017, 95, 181–188. [Google Scholar] [CrossRef]
- Peng, M.; Sun, F.; Na, N.; Ouyang, J. Target-Triggered Assembly of Nanogap Antennas to Enhance the Fluorescence of Single Molecules and Their Application in MicroRNA Detection. Small 2020, 16, e2000460. [Google Scholar] [CrossRef]
Detection Strategy | Target Biomarker | Linear Range | LOD | Reference |
---|---|---|---|---|
CdTe quantum dots (QDs) labeled AFP aptamer as a donor and gold nanoparticles (AuNPs) functionalized anti-AFP antibody as an acceptor. | AFP | 0.5–45 ng/mL | 400 pg/mL | [32] |
Incorporating 5-carboxyfluorescein (FAM)–APF aptamer and gold nanoclusters (AuNCs) as a donor and acceptors | AFP | 10.0–100.0 ng/mL | 6.631 ng/mL | [33] |
FAM-AFP aptamer as donor and PdNPs as acceptor) | AFP | 5.0–150.0 ng/mL | 1.38 ng/mL | [34] |
Fluorescent dye-labeled anti-VEGF aptamer as a donor and GO as an acceptor | VEGF | 5 × 10−10 −5 × 10−9 M | 2.5 × 10−10 M | [36] |
FAM-labeled Apt1 as a donor and GO as a super-quencher | VEGF | 5–200 pM | 1 pM | [37] |
Energy donor, Fluorophore (FAM), and quencher (BHQ1) | VEGF | 0.05–6 ng/mL | - | [47] |
Near-infrared carbon dots (NIR-CDs) as donors and gold nanorods (AuNRs) as acceptors | CEA | 0.1–5000 pg/mL | 0.02 pg/mL | [38] |
GPC3 aptamer labelled gold carbon dots (AuCDs-GPC3Apt) as a donor and magnetic graphene oxide (Fe3O4/GO) nanosheets as an acceptor | GPC3 | 5–100 ng/mL | 3.01 ng/mL | [42] |
Energy donor, fluorophore (FAM), and quencher (BHQ1) | miR-21 | 0.5–250 nM | 0.18 nM | [47] |
Fluorescent dye-labeled detection probe on Au-TDNNs as donor and Au-NPs as an acceptor | miR-21 | - | - | [48] |
DNA-functionalized UCNPs were designed as energy donors, and TAMRA labeled on another shorter DNA as the energy acceptor | miR-122 | 0–10−12 M | 10−13 M | [51] |
FAM-labeled probe as the donor and MoS2–PEG–FA nanosheets as an acceptor | miR-21 | - | - | [52] |
Dual-signal-tagged chimeric DNA probe (dcDNA) as donor and PAA-Ti3C2 as an acceptor | miR-21 | 0–25 nM | 0.8 nM | [53] |
BHQ-3-induced quenching of AP-DNA-fluorescent Cy5 | miR-21 | [54] |
Detection Strategy | Target Biomarker | Linear Range | LOD | Reference |
---|---|---|---|---|
Dual amplification by immunohybridization chain reaction(immune-HCR) and metal-enhanced fluorescence with carbon nanodots (CDs) | AFP | 0.0005–5 ng/mL | 94.3 fg/mL | [56] |
Surface-enhanced fluorescence (SEF) strategy based on the two types of nanomaterials, gold nanoparticles and silver nanoclusters | CEA | 0.01–1 ng/mL | 3 pg/mL | [58] |
Mn-doped ZnS quantum dots labeled AgNPs enhanced time-resolved fluorescence sensor for improving sensitivity to detect | VEGF | 0.1–16 nM | 0.08 nM | [59] |
Biosensor combined with reconstructive molecular beacon for detecting miRNA | miR-21 | 10 fM–100 pM | 1.38 fM | [61] |
Cyclic strand displacement reaction with AgNPS and tree nucleic strand(2-FAM, 3-fuel, 1-SH) for detecting miR-21 with high effectiveness | miR-21 | 0.16–16 nM | 93.8 pM | [63] |
FOMN-based dual-signal logic operation strategy for detection of cancer biomarker microRNA | miR-21 | 2 pM–1 nM | 0.05 fM | [64] |
The combination of fluorescence and surface-enhanced Raman scattering techniques for improving the sensitivity of detection of micro-RNA | miR-21 | 0–10−7 M | - | [65] |
Chemically synthesized gold triangular nanoprisms (Au TNPs) for LSPR-based SERS and PEF mechanism to detect microRNA | miR-10b, miR-96 | - | 1.13 pM, 0.030 pM | [66] |
Flower-like silver (FLS)-enhanced fluorescence/visual bimodal platform for multiple miRNAs | miR-21 | 0.2 fM–2 nM | 0.06 fM | [67] |
Nanogap antennas with strand displacement for detecting low concentrations of nucleic acid biomarkers | miR-21 | - | 0.0972 fM | [68] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, S.; Cho, E.; Chueng, S.-T.D.; Yoon, J.-S.; Lee, T.; Lee, J.-H. Aptameric Fluorescent Biosensors for Liver Cancer Diagnosis. Biosensors 2023, 13, 617. https://doi.org/10.3390/bios13060617
Park S, Cho E, Chueng S-TD, Yoon J-S, Lee T, Lee J-H. Aptameric Fluorescent Biosensors for Liver Cancer Diagnosis. Biosensors. 2023; 13(6):617. https://doi.org/10.3390/bios13060617
Chicago/Turabian StylePark, Seonga, Euni Cho, Sy-Tsong Dean Chueng, June-Sun Yoon, Taek Lee, and Jin-Ho Lee. 2023. "Aptameric Fluorescent Biosensors for Liver Cancer Diagnosis" Biosensors 13, no. 6: 617. https://doi.org/10.3390/bios13060617
APA StylePark, S., Cho, E., Chueng, S. -T. D., Yoon, J. -S., Lee, T., & Lee, J. -H. (2023). Aptameric Fluorescent Biosensors for Liver Cancer Diagnosis. Biosensors, 13(6), 617. https://doi.org/10.3390/bios13060617