Ultrasensitive Nonenzymatic Real-Time Hydrogen Peroxide Monitoring Using Gold Nanoparticle-Decorated Titanium Dioxide Nanotube Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Preparation of the Au NPs
2.3. Synthesis of TiO2 Nanotubes
2.4. Fabrication of Au NPs-TiO2 NTs Composite Electrode
2.5. Morphological Characterization and Electrochemical Measurement
2.6. Preparation and Analysis of Real Samples
3. Results and Discussion
3.1. Morphological Characterization of Au NPs and TiO2 Nanotubes
3.2. Morphological and Structural Studies of Au NPs-TiO2 NTs Composite
3.3. Electrochemical Properties of the Au NPs-TiO2 NTs Composite Electrode
3.4. Electrochemical H2O2 Sensing of Au NPs-TiO2 NTs Composite Electrode
3.5. Identification of Suitable Experimental Conditions
3.6. Amperometric Detection of H2O2 on Au NPs-TiO2 NTs Composite Electrode
3.7. Selectivity, Reproducibility, and Repeatability Study
3.8. Stability of the Electrode
3.9. Real Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lima, L.S.; Rossini, E.L.; Pezza, L.; Pezza, H.R. Bioactive paper platform for detection of hydrogen peroxide in milk. J. Spec-Trochimica Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117774. [Google Scholar] [CrossRef] [PubMed]
- Lismont, C.; Revenco, I.; Fransen, M. Peroxisomal Hydrogen Peroxide Metabolism and Signaling in Health and Disease. Int. J. Mol. Sci. 2019, 20, 3673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollarasouli, F.; Kurbanoglu, S.; Asadpour-Zeynali, K.; Ozkan, S.A. Non-enzymatic monitoring of hydrogen peroxide using novel nanosensor based on CoFe2O4@CdSeQD magnetic nanocomposite and rifampicin mediator. Anal. Bioanal. Chem. 2020, 412, 5053–5065. [Google Scholar] [CrossRef] [PubMed]
- Karimi, A.; Husain, S.W.; Hosseini, M.; Azar, P.A.; Ganjali, M.R. Rapid and sensitive detection of hydrogen peroxide in milk by Enzyme-free electrochemiluminescence sensor based on a polypyrrole-cerium oxide nanocomposite. Sens. Actuators B Chem. 2018, 271, 90–96. [Google Scholar] [CrossRef]
- Veal, E.A.; Day, A.M.; Morgan, B.A. Hydrogen Peroxide Sensing and Signaling. Mol. Cell 2007, 26, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Arena, M.P.; Silvain, A.; Normanno, G.; Grieco, F.; Drider, D.; Spano, G.; Fiocco, D. Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms. Front. Microbiol. 2016, 7, 464. [Google Scholar] [CrossRef] [Green Version]
- Panieri, E.; Gogvadze, V.; Norberg, E.; Venkatesh, R.; Orrenius, S.; Zhivotovsky, B. Reactive oxygen species generated in different compartments induce cell death, survival, or senescence. Free Radic. Biol. Med. 2013, 57, 176–187. [Google Scholar] [CrossRef]
- Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Electrochemical sensing of hydrogen peroxide using metal nanoparticles: A review. Microchim. Acta 2012, 180, 15–32. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, M.-M.; Chen, Y.; Yang, Y.-J.; Wu, L.-N.; Bai, F.-Q.; Lei, Y.; Gao, F.; Liu, A.-L. A high-performance amperometric sensor based on a monodisperse Pt–Au bimetallic nanoporous electrode for determination of hydrogen peroxide released from living cells. Mikrochim. Acta 2020, 187, 1–9. [Google Scholar] [CrossRef]
- Ahammad, A.J.S. Hydrogen Peroxide Biosensors Based on Horseradish Peroxidase and Hemoglobin. J. Biosens. Bioelectron. 2012, s9, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Achraf Ben Njima, M.; Legrand, L. Ag nanoparticles-oxidized green rust nanohybrids for novel and efficient non-enzymatic H2O2 electrochemical sensor. J. Electroanal. Chem. 2022, 906, 116015. [Google Scholar] [CrossRef]
- González-Sánchez, M.; Rubio-Retama, J.; López-Cabarcos, E.; Valero, E. Development of an acetaminophen amperometric biosensor based on peroxidase entrapped in polyacrylamide microgels. Biosens. Bioelectron. 2011, 26, 1883–1889. [Google Scholar] [CrossRef] [PubMed]
- Dhara, K.; Mahapatra, D.R. Recent advances in electrochemical nonenzymatic hydrogen peroxide sensors based on nanomaterials: A review. J. Mater. Sci. 2019, 54, 12319–12357. [Google Scholar] [CrossRef]
- Jackman, J.A.; Cho, N.; Nishikawa, M.; Yoshikawa, G.; Mori, T.; Shrestha, L.K.; Ariga, K. Materials Nanoarchitectonics for Mechanical Tools in Chemical and Biological Sensing. Chem. Asian J. 2018, 13, 3366–3377. [Google Scholar] [CrossRef] [PubMed]
- Pawar, D.; Kale, S.N. Correction to: A review on nanomaterial-modified optical fiber sensors for gases, vapors and ions. Mikrochim. Acta 2019, 186, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trujillo, R.; Barraza, D.; Zamora, M.; Cattani-Scholz, A.; Madrid, R. Nanostructures in Hydrogen Peroxide Sensing. Sensors 2021, 21, 2204. [Google Scholar] [CrossRef] [PubMed]
- Lou-Franco, J.; Das, B.; Elliott, C.; Cao, C. Gold Nanozymes: From Concept to Biomedical Applications. Nano-Micro Lett. 2020, 13, 1–36. [Google Scholar] [CrossRef]
- Gugoasa, L.A.D.; Pogacean, F.; Kurbanoglu, S.; Tudoran, L.; Serban, A.B.; Kacso, I.; Pruneanu, S. Graphene-gold nanoparticles nanozyme-based electrochemical sensor with en-hanced laccase-like activity for determination of phenolic substrates. J. Electrochem. Soc. 2021, 168, 067523. [Google Scholar] [CrossRef]
- Shu, Y.; Li, Z.; Yang, Y.; Tan, J.; Liu, Z.; Shi, Y.; Ye, C.; Gao, Q. Isolated Cobalt Atoms on N-Doped Carbon as Nanozymes for Hydrogen Peroxide and Dopamine Detection. ACS Appl. Nano Mater. 2021, 4, 7954–7962. [Google Scholar] [CrossRef]
- Zhang, G. Functional gold nanoparticles for sensing applications. Nanotechnol. Rev. 2013, 2, 269–288. [Google Scholar] [CrossRef]
- Zhou, Y.; Ping, T.; Maitlo, I.; Wang, B.; Akram, M.Y.; Nie1, J.; Zhu, X. Regional selective construction of nano-Au on Fe3O4@SiO2@PEI nanoparticles by photoreduction. Nanotechnology 2016, 27, 215301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, X.; Chai, X.; Wang, T.; Cao, T.; Li, Y.; Zhang, L.; Fan, F.; Fu, Y.; Qi, W. An electrochemical sensor for H2O2 based on Au nanoparticles embedded in UiO-66 metal–organicframework films. ACS Appl. Nano Mater. 2021, 4, 6103–6110. [Google Scholar] [CrossRef]
- Huang, A.; He, Y.; Zhou, Y.; Zhou, Y.; Yang, Y.; Zhang, J.; Luo, L.; Mao, Q.; Hou, D.; Yang, J. A review of recent applications of porous metals and metal oxide in energy storage, sensing and catalysis. J. Mater. Sci. 2018, 54, 949–973. [Google Scholar] [CrossRef]
- Hassan, I.U.; Salim, H.; Naikoo, G.A.; Awan, T.; Dar, R.A.; Arshad, F.; Tabidi, M.A.; Das, R.; Ahmed, W.; Asiri, A.M.; et al. A review on recent advances in hierarchically porous metal and metal oxide nanostructures as electrode materials for supercapacitors and non-enzymatic glucose sensors. J. Saudi Chem. Soc. 2021, 25, 101228. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Dong, Y.; Mu, P.; Yang, Y.; Liu, X.; Lin, C.; Huang, Q. Effect of size and crystalline phase of TiO2 nanotubes on cell behaviors: A high throughput study using gradient TiO2 nanotubes. Bioact. Mater. 2020, 5, 1062–1070. [Google Scholar] [CrossRef]
- Durdu, S.; Cihan, G.; Yalcin, E.; Altinkok, A. Characterization and mechanical properties of TiO2 nanotubes formed on titanium by anodic oxidation. Ceram. Int. 2020, 47, 10972–10979. [Google Scholar] [CrossRef]
- Tremel, W. Inorganic nanotubes. Angew. Chem. Int. Ed. 1999, 38, 2175–2179. [Google Scholar] [CrossRef]
- Fraoucene, H.; Sugiawati, V.A.; Hatem, D.; Belkaid, M.S.; Vacandio, F.; Eyraud, M.; Pasquinelli, M.; Djenizian, T. Optical and Electrochemical Properties of Self-Organized TiO2 Nanotube Arrays From Anodized Ti−6Al−4V Alloy. Front. Chem. 2019, 7, 66. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Wang, W.; Wu, L.; Li, X.; Wang, T.; Liao, S. Effect of confinement of TiO2 nanotubes over the Ru nanoparticles on Fischer-Tropsch syn-thesis. Appl. Catal. A: Gen. 2016, 526, 45–52. [Google Scholar] [CrossRef]
- Yang, X.; Wu, L.; Ma, L.; Li, X.; Wang, T.; Liao, S. Pd nano-particles (NPs) confined in titanate nanotubes (TNTs) for hydrogenation of cinnamal-dehyde. Catal. Commun. 2015, 59, 184–188. [Google Scholar] [CrossRef]
- Chen, X.; Wu, N.; Zhang, G.; Feng, S.; Xu, K.; Liu, W.; Pan, H. Functionalized TiO2 nanotubes as three-dimensional support for loading Au@ Pd nanopar-ticles: Facile preparation and enhanced materials for electrochemical sensor. Int. J. Electrochem. Sci. 2017, 12, 593–609. [Google Scholar] [CrossRef]
- Pisarek, M.; Kędzierzawski, P.; Andrzejczuk, M.; Hołdyński, M.; Mikołajczuk-Zychora, A.; Borodziński, A.; Janik-Czachor, M. TiO2 nanotubes with Pt and Pd nanoparticles as catalysts for electro-oxidation of formic acid. Materials 2020, 13, 1195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rizwan, M.; Elma, S.; Lim, S.A.; Ahmed, M.U. AuNPs/CNOs/SWCNTs/chitosan-nanocomposite modified electrochemical sensor for the label-free detection of carcinoembryonic antigen. Biosens. Bioelectron. 2018, 107, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Di, J.; Ma, J.; Ma, Z. Highly sensitive detection of cancer cells by electrochemical impedance spectroscopy. Electrochim. Acta 2012, 61, 179–184. [Google Scholar] [CrossRef]
- Kafi, A.; Wu, G.; Benvenuto, P.; Chen, A. Highly sensitive amperometric H2O2 biosensor based on hemoglobin modified TiO2 nanotubes. J. Electroanal. Chem. 2011, 662, 64–69. [Google Scholar] [CrossRef]
- Tian, M.; Adams, B.; Wen, J.; Asmussen, R.M.; Chen, A. Photoelectrochemical oxidation of salicylic acid and salicylaldehyde on titanium dioxide nanotube arrays. Electrochimica Acta 2009, 54, 3799–3805. [Google Scholar] [CrossRef]
- Suchomel, P.; Kvitek, L.; Prucek, R.; Panacek, A.; Halder, A.; Vajda, S.; Zboril, R. Simple size-controlled synthesis of Au nanoparticles and their size-dependent catalytic activity. Sci. Rep. 2018, 8, 4589. [Google Scholar] [CrossRef] [Green Version]
- Khatun, F.; Aziz, A.A.; Sim, L.C.; Monir, M.U. Plasmonic enhanced Au decorated TiO2 nanotube arrays as a visible light active catalyst towards photocatalytic CO2 conversion to CH4. J. Environ. Chem. Eng. 2019, 7, 103233. [Google Scholar] [CrossRef]
- Mers, S.S.; Kumar, E.T.; Ganesh, V. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione. Int. J. Nanomed. 2015, 10, 171–182. [Google Scholar]
- Hosseini, S.G.; Safshekan, S. Electrochemical detection of chlorate on a novel nano-Au/TiO2NT electrode. Mater. Res. Bull. 2017, 93, 290–295. [Google Scholar] [CrossRef]
- Jin, W.; Wu, G.; Chen, A. Sensitive and selective electrochemical detection of chromium(vi) based on gold nanoparticle-decorated titania nanotube arrays. Analyst 2014, 139, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Bagheri, S.; Julkapli, N.M.; Hamid, S.B.A. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. Sci. World J. 2014, 2014, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, G.; Peng, X.; Zeng, M.; Yu, L.; Wang, K.; Li, X.; Wang, G. The preparation of Au@TiO2 yolk-shell nanostructure and its applications for degradation and detection of methylene blue. Nanoscale Res. Lett. 2017, 12, 535. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiu, W.-T.; Chang, T.-F.M.; Sone, M.; Tixier-Mita, A.; Toshiyoshi, H. Electrocatalytic activity enhancement of Au NPs-TiO2 electrode via a facile redis-tribution process towards the non-enzymatic glucose sensors. Sens. Actuators B Chem. 2020, 319, 128279. [Google Scholar] [CrossRef]
- Mathivanan, D.; Shalini Devi, K.S.; Sathiyan, G.; Tyagi, A.; da Silva, V.A.O.P.; Janegitz, B.C.; Prakash, J.; Gupta, R.K. Novel polypyrrole-graphene oxide-gold nanocomposite for high performance hydrogen peroxide sensing application. Sens. Actuators A Phys. 2021, 328, 112769. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, Y.; Liu, J.; Wang, H.; Hou, S. Non-enzymatic amperometric hydrogen peroxide sensor using a glassy carbon electrode modified with gold nanoparticles deposited on CVD-grown graphene. Microchim. Acta 2017, 184, 4723–4729. [Google Scholar] [CrossRef]
- Qi, C.; Kan, Z.; Zhang, D.; Tang, J.; Ren, Z.; Jia, X.; Li, C.; Wang, F. Poly(1,3,5-tris(4-ethynylphenyl)-benzene) Conjugated Polymers as Electrochemical Sensors for Hydrogen Peroxide Detection. ACS Appl. Polym. Mater. 2020, 2, 685–690. [Google Scholar] [CrossRef]
- Simioni, N.B.; Silva, T.A.; Oliveira, G.G.; Fatibello-Filho, O. A nanodiamond-based electrochemical sensor for the determination of pyra-zinamide antibiotic. Sens. Actuators B Chem. 2017, 250, 315–323. [Google Scholar] [CrossRef]
- Bharathi, S.; Nogami, M.; Ikeda, S. Novel electrochemical interfaces with a tunable kinetic barrier by self-assembling organically modified silica gel and gold nanoparticles. Langmuir 2001, 17, 1–4. [Google Scholar] [CrossRef]
- Lu, J.; Hu, Y.; Wang, P.; Liu, P.; Chen, Z.; Sun, D. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in-situ monitoring of H2O2 released from H9C2 cardiac cells. Sens. Actuators B Chem. 2020, 311, 127909. [Google Scholar] [CrossRef]
- Yin, D.; Tang, J.; Bai, R.; Yin, S.; Jiang, M.; Kan, Z.; Li, H.; Wang, F.; Li, C. Cobalt Phosphide (Co2P) with Notable Electrocatalytic Activity Designed for Sensitive and Selective Enzymeless Bioanalysis of Hydrogen Peroxide. Nanoscale Res. Lett. 2021, 16, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Elewi, A.S.; Al-Shammaree, S.A.W.; Al Sammarraie, A.K.M.A. Hydrogen peroxide biosensor based on hemoglobin-modified gold nanoparticles–screen printed carbon electrode. Sens. Bio-Sens. Res. 2020, 28, 100340. [Google Scholar] [CrossRef]
- Huo, D.; Li, D.; Xu, S.; Tang, Y.; Xie, X.; Li, D.; Song, F.; Zhang, Y.; Li, A.; Sun, L. Disposable stainless-steel wire-based electrochemical microsensor for in vivo continuous monitoring of hydrogen peroxide in vein of tomato leaf. Biosensors 2022, 12, 35. [Google Scholar] [CrossRef] [PubMed]
- Garate, O.; Veiga, L.S.; Tancredi, P.; Medrano, A.V.; Monsalve, L.N.; Ybarra, G. High-performance non-enzymatic hydrogen peroxide electrochemical sensor prepared with a magnetite-loaded carbon nanotube waterborne ink. J. Electroanal. Chem. 2022, 915, 116372. [Google Scholar] [CrossRef]
- Rashed, M.; Ahmed, J.; Faisal, M.; Alsareii, S.; Jalalah, M.; Tirth, V.; Harraz, F.A. Surface modification of CuO nanoparticles with conducting polythiophene as a non-enzymatic amperometric sensor for sensitive and selective determination of hydrogen peroxide. Surf. Interfaces 2022, 31, 101998. [Google Scholar] [CrossRef]
- Subramanian, B.T.; Thomas, S.; Gumpu, M.B.; Biju, V.M.N. Aromatic carboxylic acid derived bimetallic nickel/cobalt electrocatalysts for oxygen evolution reaction and hydrogen peroxide sensing applications. J. Electroanal. Chem. 2022, 925, 116904. [Google Scholar] [CrossRef]
- Saeed, A.A.; Abbas, M.N.; El-Hawary, W.F.; Issa, Y.M.; Singh, B. A core-shell Au@TiO2 and multi-walled carbon nanotube-based sensor for the electroanalytical determination of H2O2 in human blood serum and saliva. Biosensors 2022, 12, 778. [Google Scholar] [CrossRef]
- Liu, D.; Cao, W.; Li, F.; Ding, Y.; Fan, B. Green facile synthesis of biowaste-converted Cu-Cu2O/BPC for non-enzymatic hydrogen peroxide sensing. Diam. Relat. Mater. 2022, 130, 109458. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, X.; Fu, K.; Zhou, N.; Xiong, J.; Su, Z. Fabrication of Co3O4/NiCo2O4 nanocomposite for detection of H2O2 and dopamine. Biosensors 2021, 11, 452. [Google Scholar] [CrossRef]
- Mazzotta, E.; Di Giulio, T.; Mastronardi, V.; Pompa, P.P.; Moglianetti, M.; Malitesta, C. Bare platinum nanoparticles deposited on glassy carbon electrodes for elec-trocatalytic detection of hydrogen peroxide. ACS Appl. Nano Mater. 2021, 4, 7650–7662. [Google Scholar] [CrossRef]
- Tomassetti, M.; Leonardi, C.; Pezzilli, R.; Prestopino, G.; di Natale, C.; Medaglia, P.G. New voltammetric sensor based on LDH and H2O2 for L-proline determination in red and white wines. Crystals 2022, 12, 1474. [Google Scholar] [CrossRef]
- Pan, C.; Zheng, Y.; Yang, J.; Lou, D.; Li, J.; Sun, Y.; Liu, W. Pt–Pd Bimetallic Aerogel as High-Performance Electrocatalyst for Nonenzymatic Detection of Hydrogen Peroxide. Catalysts 2022, 12, 528. [Google Scholar] [CrossRef]
- Wu, B.; Yeasmin, S.; Liu, Y.; Cheng, L.-J. Ferrocene-grafted carbon nanotubes for sensitive non-enzymatic electrochemical detection of hydrogen peroxide. J. Electroanal. Chem. 2022, 908, 116101. [Google Scholar] [CrossRef] [PubMed]
- Haritha, V.; Kumar, S.S.; Rakhi, R. Non-enzymatic electrocatalytic detection of hydrogen peroxide using Tungsten disulphide nanosheets modified electrodes. Mater. Sci. Eng. B 2022, 285, 115932. [Google Scholar] [CrossRef]
- Thi, M.; Pham, V.; Bui, Q.; Ai-Le, P.; Nhac-Vu, H.-T. Novel nanohybrid of blackberry-like gold structures deposited graphene as a free-standing sensor for effective hydrogen peroxide detection. J. Solid State Chem. 2020, 286, 121299. [Google Scholar] [CrossRef]
- Ngamaroonchote, A.; Sanguansap, Y.; Wutikhun, T.; Karn-Orachai, K. Highly branched gold–copper nanostructures for non-enzymatic specific detection of glucose and hydrogen peroxide. Microchim. Acta 2020, 187, 559. [Google Scholar] [CrossRef] [PubMed]
- Dang, W.; Sun, Y.; Jiao, H.; Xu, L.; Lin, M. AuNPs-NH2/Cu-MOF modified glassy carbon electrode as enzyme-free electrochemical sensor detecting H2O2. J. Electroanal. Chem. 2020, 856, 113592. [Google Scholar] [CrossRef]
- Sardaremelli, S.; Hasanzadeh, M.; Razmi, H. Chemical binding of horseradish peroxidase enzyme with poly beta-cyclodextrin and its application as molecularly imprinted polymer for the monitoring of H2O2 in human plasma samples. J. Mol. Recognit. 2021, 34, 2884. [Google Scholar] [CrossRef]
- Riaz, M.A.; Zhai, S.; Wei, L.; Zhou, Z.; Yuan, Z.; Wang, Y.; Huang, Q.; Liao, X.; Chen, Y. Ultralow-platinum-loading nanocarbon hybrids for highly sensitive hydrogen peroxide detection. Sens. Actuators B Chem. 2019, 283, 304–311. [Google Scholar] [CrossRef]
Electrode Materials | Linear Range | Detection Limit | Stability (Days) | Ref. |
---|---|---|---|---|
Au NPs-TiO2 NTs composite | 1–198.47 μM * 297.29–5413 μM * | 104.4 nM | 61 | Current study |
NF-Hb-Cys-Au NPs-SPCE | 3–240 μM | 0.6 µM | 30 | [52] |
Au nanodots/SS electrode | 10 µM–1000 µM | 3.97 μM | 7 | [53] |
Fe3O4–MWCNT ink | 0.001–2 mM | 0.5 µM | 21 | [54] |
Pth-CuO/GCE | 20–3300 μM | 3.86 μM | 15 | [55] |
GCE/Ni-Co ABDC | 0–7 mM | 0.18 mM | 16 | [56] |
Au@TiO2/MWCNTs/GCE | 5–200 µM and 200 µM–6 mM | 1.4 μM | 50 | [57] |
Cu-Cu2O/BPC-1 | 1–2830 μM 2830–8330 μM | 0.35 μM | 30 | [58] |
Co3O4/NiCo2O4 | 0.05–41.7 mM | 0.2578 µM | 9 | [59] |
4 nm PtNPs/GCE | 0.025–0.75 mM | 10 µM | 10 | [60] |
GCE-Ag(paste)-LDH | 125–3200 μM | 85 µM | 5 | [61] |
Pt50Pd50 aerogel | 5.1–3190 μM | 2.21 μM | 6 | [62] |
MWCNTs-FeC/SPCEs | 1–1000 μM | 0.49 μM | 10 | [63] |
WS2/GCE | 10–90 µM | 0.88 µM | 14 | [64] |
Au NPs-CNTs/3DF | 1–296 μM | 1.06 μM | 21 | [65] |
Au-Cu/SPCE | 0.05–10 mM | 10.93 μM | 28 | [66] |
Au NPs-NH2/Cu-MOF/GCE | 5–850 μM | 1.2 μM | 7 | [67] |
HRP/ß-CD/GCE | 1–15 μM | 0.4 μM | 15 | [68] |
Addition No. | H2O2 Added (μM) | H2O2 Found (μM) | Recovery (%) |
---|---|---|---|
1 | 9.996 | 10.968 | 109.72 |
2 | 19.988 | 20.984 | 104.98 |
3 | 29.976 | 30.887 | 103.03 |
4 | 39.96 | 40.211 | 100.62 |
Addition No. | H2O2 Added (μM) | H2O2 Found (μM) | Recovery (%) |
---|---|---|---|
1 | 9.996 | 9.829 | 98.33 |
2 | 19.988 | 20.742 | 103.77 |
3 | 29.976 | 33.321 | 111.15 |
4 | 39.96 | 41.93 | 104.93 |
Addition No. | H2O2 Added (μM) | H2O2 Found (μM) | Recovery (%) |
---|---|---|---|
1 | 10.01 | 9.63 | 96.20 |
2 | 20.02 | 22.65 | 113.13 |
3 | 30.00 | 33.25 | 110.83 |
4 | 39.99 | 41.66 | 104.17 |
Addition No. | H2O2 Added (μM) | H2O2 Found (μM) | Recovery (%) |
---|---|---|---|
1 | 10.01 | 9.52 | 95.10 |
2 | 20.02 | 22.08 | 110.28 |
3 | 30.00 | 33.49 | 111.63 |
4 | 39.99 | 42.91 | 107.30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kader, M.A.; Azmi, N.S.; Kafi, A.K.M.; Hossain, M.S.; Jose, R.; Goh, K.W. Ultrasensitive Nonenzymatic Real-Time Hydrogen Peroxide Monitoring Using Gold Nanoparticle-Decorated Titanium Dioxide Nanotube Electrodes. Biosensors 2023, 13, 671. https://doi.org/10.3390/bios13070671
Kader MA, Azmi NS, Kafi AKM, Hossain MS, Jose R, Goh KW. Ultrasensitive Nonenzymatic Real-Time Hydrogen Peroxide Monitoring Using Gold Nanoparticle-Decorated Titanium Dioxide Nanotube Electrodes. Biosensors. 2023; 13(7):671. https://doi.org/10.3390/bios13070671
Chicago/Turabian StyleKader, Md. Ashraful, Nina Suhaity Azmi, A. K. M. Kafi, Md. Sanower Hossain, Rajan Jose, and Khang Wen Goh. 2023. "Ultrasensitive Nonenzymatic Real-Time Hydrogen Peroxide Monitoring Using Gold Nanoparticle-Decorated Titanium Dioxide Nanotube Electrodes" Biosensors 13, no. 7: 671. https://doi.org/10.3390/bios13070671
APA StyleKader, M. A., Azmi, N. S., Kafi, A. K. M., Hossain, M. S., Jose, R., & Goh, K. W. (2023). Ultrasensitive Nonenzymatic Real-Time Hydrogen Peroxide Monitoring Using Gold Nanoparticle-Decorated Titanium Dioxide Nanotube Electrodes. Biosensors, 13(7), 671. https://doi.org/10.3390/bios13070671