Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO2 Measurement with High Sensitivity and Low Power Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Monte Carlo Simulation for Ring-Type Pulse Oximeters
2.2. Determination of Number of Photons for Accurate Simulation
2.3. Experimental Conditions for Ring-Type Pulse Oximeters
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Monte Carlo Simulation
Tissue Layers | Sa | Sb | fRay | λ0 | g |
---|---|---|---|---|---|
Epidermis | 66.7 | 0.69 | 0.29 | 500 | 0.92 |
Dermis | 43.6 | 0.56 | 0.41 | 500 | 0.92 |
Blood | 825 | 1.23 | 0 | 700 | 0.98 |
Bone | 8.37 | 0.64 | 0 | 600 | 0.93 |
Subcutaneous fat | 19.3 | 0.45 | 0.17 | 500 | 0.95 |
Appendix B. Absorption Coefficient of Tissues
Dermis | Ch,sys (Cm,sys in Epidermis) | Ch,dia (Cm,dia in Epidermis) | γ (βm in Epidermis) |
---|---|---|---|
Epidermis | 0.001 | 0.001 | 0.5 |
Papillary dermis | 0.05 | 0.076 | 0.75 × SpO2 |
Upper blood net dermis | 0.2 | 0.304 | 0.75 × SpO2 |
Reticular dermis | 0.04 | 0.061 | 0.75 × SpO2 |
Deep blood net dermis | 0.1 | 0.152 | 0.75 × SpO2 |
Tissue Layers | Bsys | Bdia | S | W | F | M | C |
---|---|---|---|---|---|---|---|
Blood | 1 | 1 | SpO2 | 0.21 | 0 | 0 | 0 |
Bone | 0.02 | 0.02 | 0.87 × SpO2 | 0.31 | 0.8 | 0 | 0.041 |
Subcutaneous fat | 0.07 | 0.11 | 0.82 × SpO2 | 0.35 | 0.65 | 0.65 | 0 |
Appendix C. SpO2 Calculation
References
- El-Hajj, C.; Kyriacou, P.A. A review of machine learning techniques in photoplethysmography for the non-invasive cuff-less measurement of blood pressure. Biomed. Signal Process. Control 2020, 58, 101870. [Google Scholar] [CrossRef]
- Mendelson, Y.; Cheung, P.W.; Neuman, M.R.; Fleming, D.G.; Cahn, S.D. Advances in Experimental Medicine and Biology; Springer: Berlin/Heidelberg, Germany, 1983. [Google Scholar]
- Chang, E.Y.; Hopwood, M.B.; Kay, J. Forehead pulse oximetry compared with finger pulse oximetry and arterial blood gas measurement. J. Clin. Monit. 1988, 4, 223. [Google Scholar] [CrossRef] [PubMed]
- Madhan, P.M.; Nagarajan, V.; Das, S.R. Heart rate measurement from wearable photoplethysmographic sensor using spot and tracking methods. In Proceedings of the International Conference on Communication and Signal Processing, Melmaruvathur, India, 2–4 April 2015; IEEE: Manhattan, NY, USA, 2016; pp. 1276–1280. [Google Scholar]
- Ho, M.L.; Brass, S.D. Obstructive sleep apnea. Neurol. Int. 2011, 29, e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansor, H.; Shukor, M.H.A.; Meskam, S.S.; Rusli, N.Q.A.M.; Zamery, N.S. Body temperature measurement for remote health monitoring system. In Proceedings of the IEEE International Conference on Smart Instrumentation, Measurement and Applications, Kuala Lumpur, Malaysia, 25–27 November 2013; IEEE: Manhattan, NY, USA, 2013; pp. 771–774. [Google Scholar]
- Nogawa, M.; Kaiwa, T.; Takatani, S. A novel hybrid reflectance pulse oximeter sensor with improved linearity and general applicability to various portions of the body. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Hong Kong, China, 1 November 1998; IEEE: Manhattan, NY, USA, 1998; pp. 1858–1861. [Google Scholar]
- Savage, M.; Pujary, C.; Mendelson, Y. Optimizing power consumption in the design of a wearable wireless telesensor: Comparison of pulse oximeter modes. In Proceedings of the Annual Northeast Bioengineering Conference, Newark, NJ, USA, 22–23 March 2003; IEEE: Manhattan, NY, USA, 2003; pp. 150–151. [Google Scholar]
- Sinex, J.E. Pulse oximetry: Principles and limitations. Am. J. Emerg. Med. 1999, 17, 59. [Google Scholar] [CrossRef]
- Clarke, G.W.J. Signal quality analysis in pulse oximetry: Modelling and detection of motion artifact. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2015. [Google Scholar]
- Zhou, C.; Wang, H.; Zhang, Y.; Ye, X. Study of a ring-type surgical pleth index monitoring system based on flexible PPG sensor. IEEE Sens. J. 2021, 21, 14360. [Google Scholar] [CrossRef]
- Huang, C.-Y.; Chan, M.-C.; Chen, C.-Y.; Lin, B.-S. Novel wearable and wireless ring-type pulse oximeter with multi-detectors. Sensors 2014, 14, 17586. [Google Scholar] [CrossRef] [Green Version]
- Sandberg, M.; Zhang, Q.; Styf, J.; Gerdle, B.; Lindberg, L.-G. Non-invasive monitoring of muscle blood perfusion by photoplethysmography: Evaluation of a new application. Acta Physiol. Scand. 2005, 183, 335. [Google Scholar] [CrossRef]
- Pälve, H. Reflection and transmission pulse oximetry during compromised peripheral perfusion. J. Clin. Monit. 1992, 8, 12. [Google Scholar] [CrossRef]
- Mendelson, Y.; Pujary, C. Measurement site and photodetector size considerations in optimizing power consumption of a wearable reflectance pulse oximeter. In Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Cancun, Mexico, 17–21 September 2003; IEEE: Manhattan, NY, USA, 2003; pp. 3016–3019. [Google Scholar]
- Coutrot, M.; Dudoignon, E.; Joachim, J.; Gayat, E.; Vallée, F.; Dépret, F. Perfusion index: Physical principles, physiological meanings and clinical implications in anaesthesia and critical care. Biomed. Eng. Online 2021, 40, 100964. [Google Scholar] [CrossRef]
- Tapar, H.; Karaman, S.; Dogru, S.; Karaman, T.; Sahin, A.; Tapar, G.G.; Altiparmak, F.; Suren, M. The effect of patient positions on perfusion index. BMC Anesthesiol. 2018, 18, 111. [Google Scholar] [CrossRef]
- Lima, A.P.; Beelen, P.; Bakker, J. Use of a peripheral perfusion index derived from the pulse oximetry signal as a noninvasive indicator of perfusion. Crit. Care Med. 2002, 30, 1210. [Google Scholar] [CrossRef] [PubMed]
- Hasanin, A.; Mohamed, S.A.R.; El-Adawy, A. Evaluation of perfusion index as a tool for pain assessment in critically ill patients. J. Clin. Monit. Comput. 2016, 31, 961. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, M.; Janssen, L.; Noble, J.I.; Foudraine, N. Facing SpO2 and SaO2 discrepancies in ICU patients: Is the perfusion index helpful? J. Clin. Monit. Comput. 2020, 34, 693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, B.-S.; Huang, C.-Y.; Chen, C.-Y.; Lin, J.-H. Design of a finger base-type pulse oximeter. Rev. Sci. Instrum. 2016, 87, 013108. [Google Scholar] [CrossRef] [PubMed]
- Hummler, H.D.; Engelmann, A.; Pohlandt, F.; Högel, J.; Franz, A.R. Decreased accuracy of pulse oximetry measurements during low perfusion caused by sepsis: Is the perfusion index of any value? Intensive Care Med. 2006, 32, 1428. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jacques, S.L. Hybrid model of Monte Carlo simulation and diffusion theory for light reflectance by turbid media. J. Opt. Soc. Am. 1993, 10, 1746. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Zhang, C.; Feng, X. Monte Carlo simulation of light scattering in tissue for the design of skin-like optical devices. Biomed. Opt. Exp. 2019, 10, 868. [Google Scholar] [CrossRef]
- Althobaiti, M.; Al-Naib, I. Optimization of dual-channel near-infrared non-invasive glucose level measurement sensors based on Monte-Carlo simulations. IEEE Photonics J. 2021, 13, 3700109. [Google Scholar] [CrossRef]
- Tuchin, V.V. Tissue optics and photonics: Light-tissue interaction. J. Biomed. Photonics Eng. 2015, 1, 98. [Google Scholar] [CrossRef] [Green Version]
- Dermin, V.; Zherebtsov, E.; Bykov, A.; Popov, A.; Doronin, A.; Meglinski, I. Influence of Blood Pulsation on Diagnostic Volume in Pulse Oximetry and Photoplethysmography Measurements. Appl. Opt. 2019, 58, 9398. [Google Scholar] [CrossRef]
- Calabro, K. Modeling Biological Tissues in Lighttools. Tech. Rep. Synopsys 2020. [Google Scholar]
- Donner, C.; Jensen, H.W. A Spectral BSSRDF for Shading Human Skin. In Proceedings of the Eurographics Symposium on Rendering Eurographics, 2006, Vienna, Austria, 4–8 September 2006; pp. 409–417. [Google Scholar]
- Wang, L.; Ansari, S.; Najarian, K.; Ward, K.R.; Oldham, K.R. Estimation of Peripheral Artery Radius Using Non-Invasive Sensors and Kalman Filtering of Local Dynamics. In Proceedings of the American Controls Conference, Seattle, WA, USA, 24–26 May 2017; IEEE: Manhattan, NY, USA, 2017; pp. 807–812. [Google Scholar]
- Bass, M.; Enoch, J.M.; Stryland, E.W.; Wolfe, W.L. Handbook of Optics; Optical Society of America: Washington, DC, USA, 2000. [Google Scholar]
- Guo, T.; Cao, Z.; Zhang, Z.; Li, D.; Yu, M. Reflective Oxygen Saturation Monitoring at Hypothenar and Its Validation by Human Hypoxia Experiment. Biomed. Eng. Online 2015, 14, 76. [Google Scholar] [CrossRef] [Green Version]
- Kiruthiga, A.; Annamol, A.; Balamugesh, T.; Parbhu, R.D.; Christopher, D.J.; Preejith, S.P.; Jayaraj, J.; Mohanasankar, S. Reflectance Pulse Oximetry for Blood Oxygen Saturation Measurement from Diverse Locations—A Preliminary Analysis. In Proceedings of the IEEE International Symposium on Medical Measurements and Applications, Rome, Italy, 11–13 June 2018; IEEE: Manhattan, NY, USA, 2018. [Google Scholar]
- Baek, H.J.; Shin, J.; Cho, J. The Effect of Optical Crosstalk on Accuracy of Reflectance-Type Pulse Oximeter for Mobile Healthcare. J. Healthc. Eng. 2018, 2018, 3521738. [Google Scholar] [CrossRef] [Green Version]
- SFH 7013 Datashee; OSRAM: Munich, Germany, 2021.
- Branche, P.; Mendelson, Y. Signal Quality and Power Consumption of a New Prototype Reflectance Pulse Oximeter Sensor. In Proceedings of the IEEE Annual Northeast Bioengineering Conference, Hoboken, NJ, USA, 2–3 April 2005; IEEE: Manhattan, NY, USA, 2005. [Google Scholar]
- Tavakoli, M.; Turicchia, L.; Sarpeshkar, R. An Ultra-Low-Power Pulse Oximeter Implemented with an Energy-Efficient Transimpedance Amplifier. IEEE Trans. Biomed. Circuits Syst. 2010, 4, 27. [Google Scholar] [CrossRef]
- Gubbi, S.V.; Amrutur, B. Adaptive Pulse Width Control and Sampling for Low Power Pulse Oximetry. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 272. [Google Scholar] [CrossRef]
- Ammar, A.A. Low Power Pulse Oximeter. U.S. Patent 6,697,658 B2, 24 February 2004. [Google Scholar]
- Marti, D.; Aasbjerg, R.N.; Anderson, P.E.; Hansen, A.K. MCmatlab: An Open-Source, User-Friendly, MATLAB-Integrated Three-Dimensional Monte Carlo Light Transport Solver with Heat Diffusion and Tissue Damage. J. Biomed. Opt. 2018, 23, 1. [Google Scholar] [CrossRef]
- Mourant, J.R.; Freyer, J.P.; Hielscher, A.H.; Eick, A.A.; Shen, D.; Johnson, T.M. Mechanisms of Light Scattering from Biological Cells Relevant to Noninvasive Optical-Tissue Diagnostics. Appl. Opt. 1998, 37, 3586. [Google Scholar] [CrossRef]
Geometrical Information | The Center Location of Tissues | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Value | Bone (x) [cm] | Bone (y) [cm] | Vessel (x) [cm] | Vessel (y) [cm] | ||||||||
0 | 0.3 | 0.4 | 0.45 | |||||||||
Geometrical information | Size of geometries | |||||||||||
Value | Bone (x) [cm] | Bone (y) [cm] | Vessel radius (x) [cm] | Ring diameter [cm] | PD surface [cm2] | LED radius [cm] | ||||||
0.5 | 0.3 | 0.08 | 1.7 | 0.3 × 0.3 | 0.15 |
Parameter | Systolic State | Diastolic State |
---|---|---|
Artery radius | 0.08 cm | 0.092 cm |
Blood volume fraction in capillaries (normalized to the systolic state) | 1 | 1.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joo, M.G.; Lim, D.H.; Park, K.-K.; Baek, J.; Choi, J.M.; Baac, H.W. Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO2 Measurement with High Sensitivity and Low Power Consumption. Biosensors 2023, 13, 711. https://doi.org/10.3390/bios13070711
Joo MG, Lim DH, Park K-K, Baek J, Choi JM, Baac HW. Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO2 Measurement with High Sensitivity and Low Power Consumption. Biosensors. 2023; 13(7):711. https://doi.org/10.3390/bios13070711
Chicago/Turabian StyleJoo, Min Gyu, Dae Hyeong Lim, Kyu-Kwan Park, Jiwon Baek, Jong Min Choi, and Hyoung Won Baac. 2023. "Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO2 Measurement with High Sensitivity and Low Power Consumption" Biosensors 13, no. 7: 711. https://doi.org/10.3390/bios13070711
APA StyleJoo, M. G., Lim, D. H., Park, K. -K., Baek, J., Choi, J. M., & Baac, H. W. (2023). Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO2 Measurement with High Sensitivity and Low Power Consumption. Biosensors, 13(7), 711. https://doi.org/10.3390/bios13070711