Specific Fluorescent Probes for Imaging DNA in Cell-Free Solution and in Mitochondria in Living Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Optical Spectroscopy
2.3. Preparation of DNA Solutions
2.4. Circular Dichroism
2.5. Thermal DNA Denaturation Studies
2.6. Calculation of the Physicochemical Parameters Log P and W/L
2.7. Cytotoxicity Assay
2.8. Confocal Microscopy
3. Results and Discussion
3.1. Synthesis
3.2. The Optical Properties of Free Dyes 3a-9b
3.3. Interaction of Dyes 3a,b-9a,b with ct-DNA in Cell-Free Solution
3.4. Intracellular Localization of Dyes in Living Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lavis, L.D.; Raines, R.T. Bright Ideas for Chemical Biology. ACS Chem. Biol. 2008, 3, 142–155. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lei, Z.; Zhang, F. Molecular Engineering of NIR-II Fluorophores for Improved Biomedical Detection. Angew. Chemie Int. Ed. 2021, 60, 16294–16308. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Shi, Z.; Zhu, L.; Li, J.; Han, X.; Xu, M.; Hao, S.; Fan, Y.; Shao, T.; Bai, H.; et al. The Design and Bioimaging Applications of NIR Fluorescent Organic Dyes with High Brightness. Adv. Opt. Mater. 2022, 10, 2102514. [Google Scholar] [CrossRef]
- Gao, P.; Pan, W.; Li, N.; Tang, B. Fluorescent probes for organelle-targeted bioactive species imaging. Chem. Sci. 2019, 10, 6035–6071. [Google Scholar] [CrossRef] [Green Version]
- Kowada, T.; Maeda, H.; Kikuchi, K. BODIPY-based probes for the fluorescence imaging of biomolecules in living cells. Chem. Soc. Rev. 2015, 44, 4953–4972. [Google Scholar] [CrossRef]
- Gebhard, J.; Hirsch, L.; Schwechheimer, C.; Wagenknecht, H.-A. Hybridization-Sensitive Fluorescent Probes for DNA and RNA by a Modular “Click” Approach. Bioconj. Chem. 2022, 33, 1634–1642. [Google Scholar] [CrossRef]
- Čipor, I.; Kurutos, A.; Dobrikov, G.M.; Kamounah, F.S.; Majhen, D.; Nestić, D.; Piantanida, I. Structure-dependent mitochondria or lysosome-targeting styryl fluorophores bearing remarkable Stokes shift. Dye. Pigment. 2022, 206, 110626. [Google Scholar] [CrossRef]
- Wang, Z.; Bian, Y.; Liu, C.; He, S.; Zhao, L.; Zeng, X. Mitochondria-targeted fluorescent probe for visualization of exogenous and endogenous methylglyoxal in living cells. Chem. Commun. 2022, 58, 6453–6456. [Google Scholar] [CrossRef]
- Ditmangklo, B.; Taechalertpaisarn, J.; Siriwong, K.; Vilaivan, T. Clickable styryl dyes for fluorescence labeling of pyrrolidinyl PNA probes for the detection of base mutations in DNA. Org. Biomol. Chem. 2019, 17, 9712–9725. [Google Scholar] [CrossRef]
- Abeywickrama, C.S.; Baumann, H.J.; Alexander, N.; Shriver, L.P.; Konopka, M.; Pang, Y. NIR-emitting benzothiazolium cyanines with an enhanced stokes shift for mitochondria imaging in live cells. Org. Biomol. Chem. 2018, 16, 3382–3388. [Google Scholar] [CrossRef]
- Tytler, P.; Ireland, J. The influence of temperature and salinity on the structure and function of mitochondria in chloride cells in the skin of the larvae of the turbot (Scophthalmus maximus). J. Therm. Biol. 1995, 20, 1–14. [Google Scholar] [CrossRef]
- Abeywickrama, C.S.; Li, Y.; Ramanah, A.; Owitipana, D.N.; Wijesinghe, K.J.; Pang, Y. Albumin-induced large fluorescence turn ON in 4-(diphenylamino)benzothiazolium dyes for clinical applications in protein detection. Sens. Actuators B Chem. 2022, 368, 132199. [Google Scholar] [CrossRef]
- Ustimova, M.A.; Fedorov, Y.V.; Chmelyuk, N.S.; Abakumov, M.A.; Fedorova, O.A. Fluorescence turn-on probes for intracellular DNA/RNA distribution based on asymmetric bis(styryl) dyes. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121446. [Google Scholar] [CrossRef] [PubMed]
- Botti, V.; Cesaretti, A.; Ban, Ž.; Crnolatac, I.; Consiglio, G.; Elisei, F.; Piantanida, I. Fine structural tuning of styryl-based dyes for fluorescence and CD-based sensing of various ds-DNA/RNA sequences. Org. Biomol. Chem. 2019, 17, 8243–8258. [Google Scholar] [CrossRef]
- Lakowicz, J.R. Instrumentation for Fluorescence Spectroscopy. In Principles of Fluorescence Spectroscopy; Lakowicz, J.R., Ed.; Springer: Boston, MA, USA, 2006; pp. 27–61. ISBN 978-0-387-46312-4. [Google Scholar]
- Reynolds, G.; Drexhage, K. New coumarin dyes with rigidized structure for flashlamp-pumped dye lasers. Opt. Commun. 1975, 13, 222–225. [Google Scholar] [CrossRef]
- Connors, K.A. Binding Constants: The Measurement of Molecular Complex Stability; Wiley: New York, NY, USA, 1987; ISBN 978-0-471-83083-2. [Google Scholar]
- Beck, M.T.; Nagypal, I. Chemistry of Complex Equilibria; Ellis Horwood Series in Inorganic Chemistry; Horwood: Hemel Hempstead, UK, 1990; ISBN 9780470214992. [Google Scholar]
- Berdnikova, D.V.; Fedorova, O.A.; Tulyakova, E.V.; Li, H.; Kölsch, S.; Ihmels, H. Interaction of Crown Ether-Annelated Styryl Dyes with Double-Stranded DNA. Photochem. Photobiol. 2015, 91, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Stewart, J.J.P. Optimization of parameters for semiempirical methods VI: More modifications to the NDDO approximations and re-optimization of parameters. J. Mol. Model. 2012, 19, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Kabatc, J.; Pączkowski, J. Three-cationic carbocyanine dyes as sensitizers in very efficient photoinitiating systems for multifunctional monomer polymerization. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 4636–4654. [Google Scholar] [CrossRef]
- Demchenko, A.P.; Yesylevskyy, S.O. Interfacial Behavior of Fluorescent Dyes. In Advanced Fluorescence Reporters in Chemistry and Biology III: Applications in Sensing and Imaging; Demchenko, A.P., Ed.; Springer: Berlin, Heidelberg, 2011; pp. 3–62. ISBN 978-3-642-18035-4. [Google Scholar]
- Efimova, A.S.; Ustimova, M.A.; Maksimova, M.A.; Frolova, A.Y.; Martynov, V.I.; Deyev, S.M.; Pakhomov, A.A.; Fedorov, Y.V.; Fedorova, O.A. Synthesis and optical characteristics of 4-styrylpyridinium dyes and their conjugates with antibody. Mendeleev Commun. 2023, 33, 384–386. [Google Scholar] [CrossRef]
- Bajorek, A.; Trzebiatowska, K.; Jędrzejewska, B.; Pietrzak, M.; Gawinecki, R.; Pączkowski, J. Developing of Fluorescence Probes Based on Stilbazolium Salts for Monitoring Free Radical Polymerization Processes. II. J. Fluoresc. 2004, 14, 295–307. [Google Scholar] [CrossRef]
- Grabowski, Z.R.; Rotkiewicz, K.; Rettig, W. Structural Changes Accompanying Intramolecular Electron Transfer: Focus on Twisted Intramolecular Charge-Transfer States and Structures. Chem. Rev. 2003, 103, 3899–4032. [Google Scholar] [CrossRef]
- A Haidekker, M.; A Theodorakis, E. Environment-sensitive behavior of fluorescent molecular rotors. J. Biol. Eng. 2010, 4, 11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, T.-B.; Xu, W.; Zhang, W.; Zhang, X.-X.; Wang, Z.-Y.; Xiang, Z.; Yuan, L.; Zhang, X.-B. A General Method To Increase Stokes Shift by Introducing Alternating Vibronic Structures. J. Am. Chem. Soc. 2018, 140, 7716–7722. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Das, P.; Basak, S.; Chattopadhyay, N. Binding Interaction of Cationic Phenazinium Dyes with Calf Thymus DNA: A Comparative Study. J. Phys. Chem. B 2008, 112, 9243–9249. [Google Scholar] [CrossRef]
- Cosa, G.; Focsaneanu, K.-S.; McLean, J.R.N.; McNamee, J.P.; Scaiano, J.C. Photophysical Properties of Fluorescent DNA-dyes Bound to Single- and Double-stranded DNA in Aqueous Buffered Solution. Photochem. Photobiol. 2007, 73, 585–599. [Google Scholar] [CrossRef]
- Rodger, A.; Nordén, B. Circular Dichroism and Linear Dichroism; Oxford University Press: Oxford, UK, 1997; Volume 1, ISBN 019855897X. [Google Scholar]
- Kurutos, A.; Crnolatac, I.; Orehovec, I.; Gadjev, N.; Piantanida, I.; Deligeorgiev, T. Novel synthetic approach to asymmetric monocationic trimethine cyanine dyes derived from N-ethyl quinolinum moiety. Combined fluorescent and ICD probes for AT-DNA labelling. J. Lumin. 2016, 174, 70–76. [Google Scholar] [CrossRef]
- Bloomfield, V.; Crothers, D.M. Nucleic Acids: Structures, Properties and Functions; University Science Books: Sausalito, CA, UK, 2000; ISBN 0935702490. [Google Scholar]
- Aliyeu, T.M.; Berdnikova, D.V.; Fedorova, O.A.; Gulakova, E.N.; Stremmel, C.; Ihmels, H. Regiospecific Photocyclization of Mono- and Bis-Styryl-Substituted N-Heterocycles: A Synthesis of DNA-Binding Benzo[c]quinolizinium Derivatives. J. Org. Chem. 2016, 81, 9075–9085. [Google Scholar] [CrossRef] [PubMed]
- Larsson, A.; Carlsson, C.; Jonsson, M.; Albinsson, B. Characterization of the Binding of the Fluorescent Dyes YO and YOYO to DNA by Polarized Light Spectroscopy. J. Am. Chem. Soc. 1994, 116, 8459–8465. [Google Scholar] [CrossRef]
- Hannah, K.C.; Armitage, B.A. DNA-Templated Assembly of Helical Cyanine Dye Aggregates: A Supramolecular Chain Polymerization. Acc. Chem. Res. 2004, 37, 845–853. [Google Scholar] [CrossRef]
- Demeunynck, M.; Bailly, C.; Wilson, D.W. Small Molecule DNA and RNA Binders: From Synthesis to Nucleic Acid Complexes; Wiley-VCH: Weinheim, Germany, 2003; Volume 1, ISBN 3527305955. [Google Scholar]
- Supabowornsathit, K.; Faikhruea, K.; Ditmangklo, B.; Jaroenchuensiri, T.; Wongsuwan, S.; Junpra-Ob, S.; Choopara, I.; Palaga, T.; Aonbangkhen, C.; Somboonna, N.; et al. Dicationic styryl dyes for colorimetric and fluorescent detection of nucleic acids. Sci. Rep. 2022, 12, 14250. [Google Scholar] [CrossRef]
- Del Castillo, P.; Horobin, R.; Blázquez-Castro, A.; Stockert, J. Binding of cationic dyes to DNA: Distinguishing intercalation and groove binding mechanisms using simple experimental and numerical models. Biotech. Histochem. 2010, 85, 247–256. [Google Scholar] [CrossRef]
- Wang, W.; Liu, Y.; Niu, J.; Lin, W. Discriminating normal and inflammatory models by viscosity changes with a mitochondria-targetable fluorescent probe. Analyst 2019, 144, 6247–6253. [Google Scholar] [CrossRef] [PubMed]
- Horobin, R.W.; Stockert, J.C.; Rashid-Doubell, F. Uptake and localisation of small-molecule fluorescent probes in living cells: A critical appraisal of QSAR models and a case study concerning probes for DNA and RNA. Histochem. Cell Biol. 2013, 139, 623–637. [Google Scholar] [CrossRef] [PubMed]
- Demchenko, A.P.; Mély, Y.; Duportail, G.; Klymchenko, A.S. Monitoring Biophysical Properties of Lipid Membranes by Environment-Sensitive Fluorescent Probes. Biophys. J. 2009, 96, 3461–3470. [Google Scholar] [CrossRef] [Green Version]
- Bondelli, G.; Paternò, G.M.; Lanzani, G. (INVITED) Fluorescent probes for optical investigation of the plasma membrane. Opt. Mater. X 2021, 12, 100085. [Google Scholar] [CrossRef]
- Loving, G.; Imperiali, B. A Versatile Amino Acid Analogue of the Solvatochromic Fluorophore 4-N,N-Dimethylamino-1,8-naphthalimide: A Powerful Tool for the Study of Dynamic Protein Interactions. J. Am. Chem. Soc. 2008, 130, 13630–13638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, T.; Kawai, K.; Majima, T. Probing the microenvironments in the grooves of Z-DNA using dan-modified oligonucleotides. Chem. Commun. 2006, 1542–1544. [Google Scholar] [CrossRef]
- Hou, J.-T.; Yang, J.; Li, K.; Liao, Y.-X.; Yu, K.-K.; Xie, Y.-M.; Yu, X.-Q. A Highly Selective Water-Soluble Optical Probe for Endogenous Peroxynitrite. Chem. Commun. 2014, 50, 9947–9950. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; Hu, W.; Liu, Z. A Mitochondrial-Targeting Near-Infrared Fluorescent Probe for Visualizing and Monitoring Viscosity in Live Cells and Tissues. Anal. Chem. 2019, 91, 10302–10309. [Google Scholar] [CrossRef]
- Meng, F.; Liu, Y.; Niu, J.; Lin, W. Novel Alkyl Chain-Based Fluorescent Probes with Large Stokes Shifts Used for Imaging the Cell Membrane and Mitochondria in Different Living Cell Lines. RSC Adv. 2017, 7, 16087–16091. [Google Scholar] [CrossRef] [Green Version]
- Shiraishi, Y.; Miyamoto, R.; Hirai, T. A Hemicyanine-Conjugated Copolymer as a Highly Sensitive Fluorescent Thermometer. Langmuir 2008, 24, 4273–4279. [Google Scholar] [CrossRef]
- Allain, C.; Schmidt, F.; Lartia, R.; Bordeau, G.; Fiorini-Debuisschert, C.; Charra, F.; Tauc, P.; Teulade-Fichou, M.-P. Vinyl-Pyridinium Triphenylamines: Novel Far-Red Emitters with High Photostability and Two-Photon Absorption Properties for Staining DNA. ChemBioChem 2007, 8, 424–433. [Google Scholar] [CrossRef] [PubMed]
- Bruce, D.W.; Grayson, M.; Lagadec, R.L.; Pickup, B.T.; Thornton, A.; Denning, R.G.; Lai, K.K. Macroscopic Non-Linearities of Some Stilbazolium Derivatives and the Calculatium Derivatives and the Calculation of Their Molecular Hyperpolarisability. Adv. Mater. Opt. Electron. 1994, 4, 293–301. [Google Scholar] [CrossRef]
- Venkata Suseela, Y.; Sengupta, P.; Roychowdhury, T.; Panda, S.; Talukdar, S.; Chattopadhyay, S.; Chatterjee, S.; Govindaraju, T. Targeting Oncogene Promoters and Ribosomal RNA Biogenesis by G-Quadruplex Binding Ligands Translate to Anticancer Activity. ACS Bio Med Chem Au 2022, 2, 125–139. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; He, L.; Lin, W. Engineering a Double-Rotor-Based Fluorescent Molecule to Sensitively Track Mitochondrial Viscosity in Living Cells and Zebrafish with High Signal-to-Background Ratio (S/B). J. Photochem. Photobiol. A Chem. 2020, 401, 112789. [Google Scholar] [CrossRef]
- Li, Y.; Xu, D.; Ho, S.-L.; Li, H.-W.; Yang, R.; Wong, M.S. A Theranostic Agent for in Vivo Near-Infrared Imaging of β-Amyloid Species and Inhibition of β-Amyloid Aggregation. Biomaterials 2016, 94, 84–92. [Google Scholar] [CrossRef]
- Vasilev, A.; Deligeorgiev, T.; Gadjev, N.; Kaloyanova, S.; Vaquero, J.J.; Alvarez-Builla, J.; Baeza, A.G. Novel Environmentally Benign Procedures for the Synthesis of Styryl Dyes. Dye. Pigment. 2008, 77, 550–555. [Google Scholar] [CrossRef] [Green Version]
Compound | ελ/l·mol−1·cm−1 | cm−1 | ϕfl/% | |||
---|---|---|---|---|---|---|
3a | 419 | 29,647 | 595 | 176 | 7060 | 1.68 |
4a | 430 | 28,160 | 637 | 207 | 7557 | 0.16 |
5a | 446 | 25,601 | 638 | 192 | 6748 | 0.16 |
6a (DASPI) | 449 | 28,818 | 616 | 167 | 6038 | 0.22 |
7a | 451 | 21,202 | 650 | 199 | 6788 | 0.06 |
8a | 485 | 33,179 | 632 | 147 | 4796 | 0.23 |
9a | 491 | 21,724 | 644 | 153 | 4839 | 0.14 |
3b | 459 | 23,061 | 658 | 199 | 6589 | 0.32 |
4b | 484 | 16,155 | 726 | 242 | 6887 | 0.03 |
5b | 505 | 10,055 | 718 | 213 | 5874 | 0.05 |
6b | 510 | 21,515 | 694 | 184 | 5199 | 0.05 |
7b | 494 | 6371 | 728 | 234 | 6507 | 0.04 |
8b | 554 | 22,022 | 713 | 159 | 4025 | 0.07 |
9b | 568 | 18,707 | 730 | 162 | 3907 | 0.05 |
Solvents | 3a | 4a | 5a | 6a (DASPI) | 7a | 8a | 9a |
Water | 1.68 | 0.16 | 0.16 | 0.22 | 0.06 | 0.23 | 0.14 |
Methanol | 22.6 | 0.18 | 0.25 | 0.63 | 0.29 | 0.48 | 0.3 |
Acetonitrile | 25 | 0.09 | 0.15 | 0.36 | 0.16 | 0.28 | 0.22 |
EtOAc | 6.95 | 0.18 | 0.72 | 1.02 | 1.13 | 1.41 | 0.97 |
DCM | 22.3 | 1.89 | 0.98 | 8.78 | 2.21 | 1.8 | 0.63 |
Glycerol | 42.1 | 15.2 | 5.82 | 13.4 | 4.61 | 18.4 | 5.54 |
Solvents | 3b | 4b | 5b | 6b | 7b | 8b | 9b |
Water | 0.12 | 0.03 | 0.05 | 0.05 | 0.04 | 0.07 | 0.05 |
Methanol | 6.44 | 0.09 | 0.13 | 0.18 | * | 0.19 | 0.22 |
Acetonitrile | 6.39 | * | * | 0.09 | * | 0.11 | 0.18 |
EtOAc | 3.74 | 0.25 | 0.21 | 0.18 | * | 0.49 | 0.74 |
DCM | 39.5 | 0.28 | 0.44 | 1.89 | * | 0.55 | 1.52 |
Glycerol | 15.2 | 0.89 | 1.12 | 15.2 | 1.7 | 1.9 | 1.28 |
Compound | λabs nm (Δλ nm) * | λfl nm (Δ λ nm) * | ϕfl (%) | |
---|---|---|---|---|
3a | 455 (36) | 583 (12) | 26.70 | 16 |
4a | 506 (76) | 638 (1) | 10.00 | 64 |
5a | 485 (39) | 630 (8) | 9.50 | 61 |
6a (DASPI) | 490 (41) | 616 (0) | 19.80 | 89 |
7a | 475 (24) | 633 (17) | 3.74 | 60 |
8a | 514 (29) | 628 (4) | 11.40 | 48 |
9a | 532 (41) | 642 (2) | 10.40 | 74 |
3b | 500 (41) | 622 (36) | 15.32 | 48 |
4b | 562 (78) | 720 (6) | 0.97 | 31 |
5b | 565 (60) | 714 (4) | 1.30 | 27 |
6b | 573 (63) | 689 (5) | 4.91 | 90 |
7b | 537 (43) | 693 (35) | 0.40 | 10 |
8b | 607 (53) | 709 (4) | 4.45 | 66 |
9b | 625 (57) | 728 (2) | 1.59 | 30 |
Compound | Ratio | Compound | Ratio | ||
---|---|---|---|---|---|
CDNA:CDye = 1:1 | CDNA:CDye = 2:1 | CDNA:CDye = 1:1 | CDNA:CDye = 2:1 | ||
3a | 4 | 4 | 3b | 9 | 7 |
4a | 1 | 1 | 4b | 5 | 4 |
5a | 0 | 0 | 5b | 2 | 2 |
6a (DASPI) | 0 | 0 | 6b | 4 | 3 |
7a | 0 | 1 | 7b | 0 | 0 |
8a | 1 | 0 | 8b | 3 | 3 |
9a | 0 | 0 | 9b | 10 | 9 |
Dye | Log P * | Size (Bond Number) | Size (Å) | Dye | Log P* | Size (Bond Number) | Size (Å) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
W | L | W/L | W | L | W/L | W | L | W/L | W | L | W/L | ||||
3a | 0.86 | 3 | 10 | 0.3 | 2.85 | 10.7 | 0.27 | 3b | 2.25 | 4 | 10 | 0.4 | 4.80 | 10.6 | 0.45 |
4a | −1.09 | 2 | 10 | 0.2 | 2.45 | 10.6 | 0.23 | 4b | 0.30 | 4 | 10 | 0.4 | 4.80 | 10.6 | 0.45 |
5a | −1.28 | 2 | 10 | 0.2 | 2.42 | 10.7 | 0.23 | 5b | 0.10 | 4 | 10 | 0.4 | 4.80 | 10.7 | 0.45 |
6a | −1.34 | 2 | 10 | 0.2 | 2.41 | 10.7 | 0.22 | 6b | 0.04 | 4 | 10 | 0.4 | 4.81 | 10.7 | 0.45 |
7a | 2.09 | 6 | 10 | 0.6 | 7.15 | 10.7 | 0.67 | 7b | 3.47 | 6 | 10 | 0.6 | 7.16 | 10.7 | 0.67 |
8a | 0.38 | 2 | 10 | 0.2 | 2.44 | 10.7 | 0.23 | 8b | 1.76 | 4 | 10 | 0.4 | 4.80 | 10.7 | 0.45 |
9a | −0.25 | 2 | 10 | 0.2 | 2.37 | 10.7 | 0.22 | 9b | 1.13 | 4 | 10 | 0.4 | 4.80 | 10.7 | 0.45 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Efimova, A.S.; Ustimova, M.A.; Chmelyuk, N.S.; Abakumov, M.A.; Fedorov, Y.V.; Fedorova, O.A. Specific Fluorescent Probes for Imaging DNA in Cell-Free Solution and in Mitochondria in Living Cells. Biosensors 2023, 13, 734. https://doi.org/10.3390/bios13070734
Efimova AS, Ustimova MA, Chmelyuk NS, Abakumov MA, Fedorov YV, Fedorova OA. Specific Fluorescent Probes for Imaging DNA in Cell-Free Solution and in Mitochondria in Living Cells. Biosensors. 2023; 13(7):734. https://doi.org/10.3390/bios13070734
Chicago/Turabian StyleEfimova, Anna S., Mariya A. Ustimova, Nelly S. Chmelyuk, Maxim A. Abakumov, Yury V. Fedorov, and Olga A. Fedorova. 2023. "Specific Fluorescent Probes for Imaging DNA in Cell-Free Solution and in Mitochondria in Living Cells" Biosensors 13, no. 7: 734. https://doi.org/10.3390/bios13070734
APA StyleEfimova, A. S., Ustimova, M. A., Chmelyuk, N. S., Abakumov, M. A., Fedorov, Y. V., & Fedorova, O. A. (2023). Specific Fluorescent Probes for Imaging DNA in Cell-Free Solution and in Mitochondria in Living Cells. Biosensors, 13(7), 734. https://doi.org/10.3390/bios13070734