Ultrasensitive Electrochemical Aptasensing of Malathion Based on Hydroxylated Black Phosphorus/Poly-L-Lysine Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Preparation of hBP/PLL
2.3. Fabrication of Malathion-Aptamer Electrochemical Sensor
2.4. Malathion Detection on hBP/PLL-Modified Electrodes
3. Results and Discussion
3.1. Characterization of hBP/PLL Composite
3.2. Feasibility of the Prepared Biosensor
3.3. Optimization of Incubation Time
3.4. Electrochemical Response and Calibration Curves
3.5. Selectivity, Stability, and Reproducibility of the Proposed Aptasensor
3.6. Practical Application
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bala, R.; Kumar, M.; Bansal, K.; Sharma, R.K.; Wangoo, N. Ultrasensitive aptamer biosensor for malathion detection based on cationic polymer and gold nanoparticles. Biosens. Bioelectron. 2016, 85, 445–449. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Shi, J.; Guo, Y.; Zha, L.; Lan, L.; Chang, Y.; Ding, Y. A novel aptasensor for malathion blood samples detection based on DNA–Silver nanocluster. Anal. Methods 2018, 10, 1928–1934. [Google Scholar] [CrossRef]
- Kaur, N.; Thakur, H.; Prabhakar, N. Multi walled carbon nanotubes embedded conducting polymer based electrochemical aptasensor for estimation of malathion. Microchem. J. 2019, 147, 393–402. [Google Scholar] [CrossRef]
- Barahona, F.; Bardliving, C.L.; Phifer, A.; Bruno, J.G.; Batt, C.A. An aptasensor based on polymer-gold nanoparticle composite microspheres for the detection of malathion using surface-enhanced Raman spectroscopy. Ind. Biotechnol. 2013, 9, 42–50. [Google Scholar] [CrossRef]
- Xu, J.; Qiao, X.; Wang, Y.; Sheng, Q.; Yue, T.; Zheng, J.; Zhou, M. Electrostatic assembly of gold nanoparticles on black phosphorus nanosheets for electrochemical aptasensing of patulin. Microchim. Acta 2019, 186, 238. [Google Scholar] [CrossRef]
- Stine, K.J. Biosensor Applications of Electrodeposited Nanostructures. Appl. Sci. 2019, 9, 797. [Google Scholar] [CrossRef]
- Xiang, Y.; Camarada, M.B.; Wen, Y.; Wu, H.; Chen, J.; Li, M.; Liao, X. Simple voltammetric analyses of ochratoxin A in food samples using highly-stable and anti-fouling black phosphorene nanosensor. Electrochim. Acta 2018, 282, 490–498. [Google Scholar] [CrossRef]
- Prabhakar, N.; Thakur, H.; Bharti, A.; Kaur, N. Chitosan-iron oxide nanocomposite based electrochemical aptasensor for determination of malathion. Anal. Chim. Acta 2016, 939, 108–116. [Google Scholar] [CrossRef]
- Song, Z.; Ma, Y.; Ye, J. Preparation of stable black phosphorus nanosheets and their electrochemical catalytic study. J. Electroanal. Chem. 2020, 856, 113595. [Google Scholar] [CrossRef]
- Wu, L.; Xu, Z.; Meng, Q.; Xiao, Y.; Cao, Q.; Rathi, B.; Liu, H.; Han, G.; Zhang, J.; Yan, J. A new aptamer/black phosphorous interdigital electrode for malachite green detection. Anal. Chim. Acta 2020, 1099, 39–45. [Google Scholar] [CrossRef]
- Cai, J.; Gou, X.; Sun, B.; Li, W.; Li, D.; Liu, J.; Hu, F.; Li, Y. Porous graphene-black phosphorus nanocomposite modified electrode for detection of leptin. Biosens. Bioelectron. 2019, 137, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Chandra Barman, S.; Sharifuzzaman, M.; Zahed, M.A.; Park, C.; Yoon, S.H.; Zhang, S.; Kim, H.; Yoon, H.; Park, J.Y. A highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for Interleukin-6 biomarker detection. Biosens. Bioelectron. 2021, 186, 113287. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Qi, X.; Wu, J.; Xu, L.; Wan, X.; Liu, Y.; Chen, Y.; Li, Q. Ultrasensitive, label-free voltammetric determination of norfloxacin based on molecularly imprinted polymers and Au nanoparticle-functionalized black phosphorus nanosheet nanocomposite. J. Hazard. Mater. 2022, 436, 129107. [Google Scholar] [CrossRef]
- Wu, L.; Meng, Q.; Xu, Z.; Cao, Q.; Xiao, Y.; Liu, H.; Han, G.; Wei, S. Passivation of black phosphorus as organic-phase enzyme platform for bisphenol a determination. Anal. Chim. Acta 2020, 1095, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Yu, J.G. Nafion-stabilized black phosphorus nanosheets-maltosyl-beta-cyclodextrin as a chiral sensor for tryptophan enantiomers. Mater. Sci. Eng. C 2020, 112, 110910. [Google Scholar] [CrossRef]
- Durai, L.; Gopalakrishnan, A.; Vishnu, N.; Badhulika, S. Polyaniline sheathed black phosphorous: A novel, advanced platform for electrochemical sensing applications. Electroanalysis 2019, 32, 238–247. [Google Scholar] [CrossRef]
- Li, K.; Qiao, X.; Zhao, H.; He, Y.; Sheng, Q.; Yue, T. Ultrasensitive and label-free electrochemical aptasensor based on carbon dots-black phosphorus nanohybrid for the detection of Ochratoxins A. Microchem. J. 2021, 168, 106378. [Google Scholar] [CrossRef]
- Niu, X.; Weng, W.; Yin, C.; Niu, Y.; Li, G.; Dong, R.; Men, Y.; Sun, W. Black phosphorene modified glassy carbon electrode for the sensitive voltammetric detection of rutin. J. Electroanal. Chem. 2018, 811, 78–83. [Google Scholar] [CrossRef]
- Wang, G.; Qian, G.; Yao, J.; Cai, W.; Peng, S.; Shuai, C. Polydopamine-decorated black phosphorous to enhance stability in polymer scaffold. Nanotechnology 2021, 32, 455701. [Google Scholar] [CrossRef]
- Cai, J.; Sun, B.; Li, W.; Gou, X.; Gou, Y.; Li, D.; Hu, F. Novel nanomaterial of porous graphene functionalized black phosphorus as electrochemical sensor platform for bisphenol A detection. J. Electroanal. Chem. 2019, 835, 1–9. [Google Scholar] [CrossRef]
- Guo, W.; Hu, C.; Li, S.; Wei, D.; Zhou, J.; Liu, X.; Chen, H.; Li, S.; Deng, Y. Selection and electrochemical-sensor application of an DNA-aptamer for methyl parathion detection. Anal. Chim. Acta 2023, 1241, 340780. [Google Scholar] [CrossRef]
- Wei, D.; Guo, W.; Zhou, J.; Hu, C.; Li, S.; Liu, X.; Tan, P.; Chen, H.; Deng, Y. Cd2+-Specific Aptamer Screening and Application in Based-Black Phosphorus Electrochemical Aptasensor. Sci. Adv. Mater. 2022, 14, 1271–1276. [Google Scholar] [CrossRef]
- Sun, Y.; Jin, H.; Jiang, X.; Gui, R. Assembly of black phosphorus nanosheets and MOF to form functional hybrid thin-film for precise protein capture, dual-signal and intrinsic self-calibration sensing of specific cancer-derived exosomes. Anal. Chem. 2020, 92, 2866–2875. [Google Scholar] [CrossRef]
- Guo, W.; Wei, D.; Wang-Ngai Chow, F.; Hang-Mei Leung, P.; Wang, H.; Cai, L.; Hori, M.; Chen, Z.; Li, S.; Deng, Y. Phoxim-specific DNA aptamer screening, characterization and application in a multiple complementary strands fluorescent aptasensor. Smart Mater. Med. 2022, 3, 289–296. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, G.; Li, T.; Deng, Y.; Chen, Z.; He, N. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection. Chin. Chem. Lett. 2021, 32, 1957–1962. [Google Scholar] [CrossRef]
- Liu, Y.; Li, T.; Yang, G.; Deng, Y.; Mou, X.; He, N. A simple AuNPs-based colorimetric aptasensor for chlorpyrifos detection. Chin. Chem. Lett. 2022, 33, 1913–1916. [Google Scholar] [CrossRef]
- Guo, W.; Zhang, C.; Ma, T.; Liu, X.; Chen, Z.; Li, S.; Deng, Y. Advances in aptamer screening and aptasensors’ detection of heavy metal ions. J. Nanobiotechnol. 2021, 19, 166. [Google Scholar] [CrossRef]
- Liang, S.; Wu, L.; Liu, H.; Li, J.; Chen, M.; Zhang, M. Organic molecular passivation of phosphorene: An aptamer-based biosensing platform. Biosens. Bioelectron. 2019, 126, 30–35. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, C.; Zhou, J.; Wei, D.; Ma, T.; Guo, W.; Liu, X.; Li, S.; Deng, Y. Label-Free Aptasensor for Detection of Fipronil Based on Black Phosphorus Nanosheets. Biosensors 2022, 12, 775. [Google Scholar] [CrossRef]
- He, L.; Huang, R.; Xiao, P.; Liu, Y.; Jin, L.; Liu, H.; Li, S.; Deng, Y.; Chen, Z.; Li, Z.; et al. Current signal amplification strategies in aptamer-based electrochemical biosensor: A review. Chin. Chem. Lett. 2021, 32, 1593–1602. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Y.H.; Zhuge, Z.; Tang, Y.H.; Tao, J.W.; Chen, Y. Synthesis of a Poly-l-Lysine/Black Phosphorus Hybrid for Biosensors. Anal. Chem. 2018, 90, 3149–3155. [Google Scholar] [CrossRef]
- Sanchez-Ballester, N.M.; Sciortino, F.; Mir, S.H.; Rydzek, G. Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. Molecules 2022, 27, 3263. [Google Scholar] [CrossRef]
- Tuteja, S.K.; Neethirajan, S. Exploration of two-dimensional bio-functionalized phosphorene nanosheets (black phosphorous) for label free haptoglobin electro-immunosensing applications. Nanotechnology 2018, 29, 135101. [Google Scholar] [CrossRef]
- Liu, S.; Luo, J.; Jiang, X.; Li, X.; Yang, M. Gold nanoparticle-modified black phosphorus nanosheets with improved stability for detection of circulating tumor cells. Microchim. Acta 2020, 187, 397. [Google Scholar] [CrossRef]
- Al’Abri, A.M.; Abdul Halim, S.N.; Abu Bakar, N.K.; Saharin, S.M.; Sherino, B.; Rashidi Nodeh, H.; Mohamad, S. Highly sensitive and selective determination of malathion in vegetable extracts by an electrochemical sensor based on Cu-metal organic framework. J. Environ. Sci. Health Part B 2019, 54, 930–941. [Google Scholar] [CrossRef] [PubMed]
- Yaman, Y.T.; Bolat, G.; Abaci, S.; Saygin, T.B. Peptide nanotube functionalized molecularly imprinted polydopamine based single-use sensor for impedimetric detection of malathion. Anal. Bioanal. Chem. 2022, 414, 1115–1128. [Google Scholar] [CrossRef]
- Aghoutane, Y.; Diouf, A.; Osterlund, L.; Bouchikhi, B.; El Bari, N. Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bioelectrochemistry 2020, 132, 107404. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Yu, Y.; Lu, L.; Ma, X.; Gong, L.; Huang, X.; Liu, G.; Yu, Y. CuO nanoparticles decorated 3D graphene nanocomposite as non-enzymatic electrochemical sensing platform for malathion detection. J. Electroanal. Chem. 2018, 812, 82–89. [Google Scholar] [CrossRef]
- Xu, G.; Huo, D.; Hou, J.; Zhang, C.; Zhao, Y.; Hou, C.; Bao, J.; Yao, X.; Yang, M. An electrochemical aptasensor of malathion based on ferrocene/DNA-hybridized MOF, DNA coupling-gold nanoparticles and competitive DNA strand reaction. Microchem. J. 2021, 162, 105829. [Google Scholar] [CrossRef]
- Migliorini, F.L.; Sanfelice, R.C.; Mercante, L.A.; Facure, M.H.M.; Correa, D.S. Electrochemical sensor based on polyamide 6/polypyrrole electrospun nanofibers coated with reduced graphene oxide for malathion pesticide detection. Mater. Res. Express 2019, 7, 015601. [Google Scholar] [CrossRef]
- Bakytkarim, Y.; Tursynbolat, S.; Huang, J.; Wang, L. Free-enzymatic indirect detection of malathion by SiC@CuO-NPs composite nanomaterial modified glassy carbon electrode. ChemistrySelect 2021, 6, 4056–4062. [Google Scholar] [CrossRef]
- Bolat, G.; Abaci, S. Non-enzymatic electrochemical sensing of malathion pesticide in tomato and apple samples based on gold nanoparticles-chitosan-ionic liquid hybrid nanocomposite. Sensors 2018, 18, 773. [Google Scholar] [CrossRef] [PubMed]
Electrode | Method | Linear Range/μM | LOD/μM | Ref. |
---|---|---|---|---|
Carbon paste electrode | Electrochemical sensor | 6.0 × 10−4–2.4 × 10−2 | 1.7 × 10−4 | [35] |
Graphite electrode | Molecularly imprinted sensor | 3.9 × 10−5–3.9 | 4.2 × 10−6 | [36] |
Screen-printed gold electrode | Molecularly imprinted sensor | 3.0 × 10−7–3 × 10−3 | 1.8 × 10−7 | [37] |
Glassy carbon electrode | Electrochemical sensor | 3.0 × 10−5–1.5 × 10−3 | 1.0 × 10−5 | [38] |
Glassy carbon electrode | Aptamer-based electrochemical biosensor | 7.6 × 10−5–2.6 × 10−3 | 5.2 × 10−5 | [39] |
Glassy carbon electrode | Electrochemical sensor | 1.5–61.0 | 2.4 × 10−3 | [40] |
Glassy carbon electrode | Electrochemical sensor | 3.0 × 10−5–3.0 × 10−3 | 1.0 × 10−5 | [41] |
Pencil graphite electrodes | Electrochemical sensor | 8.9 × 10−4–4.5 × 10−2 | 6.8 × 10−4 | [42] |
Glassy carbon electrode | Aptamer-based electrochemical biosensor | 1.0 × 10−7–1.0 | 2.8 × 10−9 | This work |
Sample | Add (nM) | Found (nM) | Recovery (%) |
---|---|---|---|
Lake water-1 | 0.1 | 0.09356 | 93.56 |
Lake water-2 | 1 | 0.9265 | 92.65 |
Soil-1 | 0.1 | 0.09658 | 96.58 |
Soil-2 | 1 | 0.9544 | 95.44 |
Greengrocery-1 | 0.1 | 0.09363 | 93.63 |
Greengrocery-2 | 1 | 0.931 | 93.10 |
Cabbage-1 | 0.1 | 0.09513 | 95.13 |
Cabbage-2 | 1 | 0.9544 | 95.44 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, T.; Zhou, J.; Wei, D.; Peng, H.; Liu, X.; Guo, W.; Zhang, C.; Liu, X.; Li, S.; Deng, Y. Ultrasensitive Electrochemical Aptasensing of Malathion Based on Hydroxylated Black Phosphorus/Poly-L-Lysine Composite. Biosensors 2023, 13, 735. https://doi.org/10.3390/bios13070735
Ma T, Zhou J, Wei D, Peng H, Liu X, Guo W, Zhang C, Liu X, Li S, Deng Y. Ultrasensitive Electrochemical Aptasensing of Malathion Based on Hydroxylated Black Phosphorus/Poly-L-Lysine Composite. Biosensors. 2023; 13(7):735. https://doi.org/10.3390/bios13070735
Chicago/Turabian StyleMa, Tingting, Jie Zhou, Dan Wei, Hongquan Peng, Xun Liu, Wenfei Guo, Chuanxiang Zhang, Xueying Liu, Song Li, and Yan Deng. 2023. "Ultrasensitive Electrochemical Aptasensing of Malathion Based on Hydroxylated Black Phosphorus/Poly-L-Lysine Composite" Biosensors 13, no. 7: 735. https://doi.org/10.3390/bios13070735
APA StyleMa, T., Zhou, J., Wei, D., Peng, H., Liu, X., Guo, W., Zhang, C., Liu, X., Li, S., & Deng, Y. (2023). Ultrasensitive Electrochemical Aptasensing of Malathion Based on Hydroxylated Black Phosphorus/Poly-L-Lysine Composite. Biosensors, 13(7), 735. https://doi.org/10.3390/bios13070735