LSPR-Based Aptasensor for Rapid Urinary Detection of NT-proBNP
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Gold Nanoparticles
2.3. Preparation of Aptamer Solution and NT-proBNP Solution Series
2.4. Procedure for Detecting NT-proBNP Using AuNPs
2.5. Characterization of the Aptamer and NT-proBNP by Circular Dichroism
2.6. Specificity for NT-proBNP
2.7. Collection of Urine and Saliva
2.8. Calibration Curves for NT-proBNP in Biofluids
2.9. Instrumentation
2.10. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Gold Nanoparticles
3.2. Detection of NT-proBNP Using Aptamer and AuNPs
3.3. Interaction of Aptamer with NT-proBNP
3.4. Selectivity Studies
3.5. Effect of Biofluids on NT-proBNP Detection
3.6. Detection of NT-proBNP in Urine
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Atkinson, A.J.; Colburn, W.A.; DeGruttola, V.G.; DeMets, D.L.; Downing, G.J.; Hoth, D.F.; Oates, J.A.; Peck, C.C.; Schooley, R.T.; Spilker, B.A.; et al. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Ahmad, T.; Fiuzat, M.; Felker, G.M.; O’Connor, C. Novel biomarkers in chronic heart failure. Nat. Rev. Cardiol. 2012, 9, 347–359. [Google Scholar] [CrossRef]
- Nymo, S.H.; Aukrust, P.; Kjekshus, J.; McMurray, J.J.V.; Cleland, J.G.F.; Wikstrand, J.; Muntendam, P.; Wienhues-Thelen, U.; Latini, R.; Askevold, E.T.; et al. Limited added value of circulating inflammatory biomarkers in chronic heart failure. JACC Hear. Fail. 2017, 5, 256–264. [Google Scholar] [CrossRef]
- Januzzi, J.L.; Camargo, C.A.; Anwaruddin, S.; Baggish, A.L.; Chen, A.A.; Krauser, D.G.; Tung, R.; Cameron, R.; Nagurney, J.T.; Chae, C.U.; et al. The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. Am. J. Cardiol. 2005, 95, 948–954. [Google Scholar] [CrossRef]
- Ndumele, C.E.; Matsushita, K.; Sang, Y.; Lazo, M.; Agarwal, S.K.; Nambi, V.; Deswal, A.; Blumenthal, R.S.; Ballantyne, C.M.; Coresh, J.; et al. NT-proBNP predicts incident heart failure among individuals in all BMI categories. Circulation 2014, 129, AP021. [Google Scholar] [CrossRef]
- Daubert, M.A.; Yow, E.; Barnhart, H.; Douglas, P.S.; Rimmer, S.; Norris, C.; Copper, L.; Leifer, E.; Ezekowitz, J.; Desvigne-Nickens, P.; et al. Abstract 15360: Biomarker-guided heart failure therapy results in significant reverse left ventricular remodeling among patients achieving NT-proBNP goal: Insights from the GUIDE-IT trial. Circulation 2017, 136, A15360. [Google Scholar] [CrossRef]
- Harrison, T.G.; Shukalek, C.B.; Hemmelgarn, B.R.; Zarnke, K.B.; Ronksley, P.E.; Iragorri, N.; Graham, M.M.; James, M.T. Association of NT-proBNP and BNP with future clinical outcomes in patients with ESKD: A systematic review and meta-analysis. Am. J. Kidney Dis. 2020, 76, 233–247. [Google Scholar] [CrossRef]
- Foo, J.Y.Y.; Wan, Y.; Kostner, K.; Arivalagan, A.; Atherton, J.; Cooper-White, J.; Dimeski, G.; Punyadeera, C. NT-ProBNP levels in saliva and its clinical relevance to heart failure. PLoS ONE 2012, 7, e48452. [Google Scholar] [CrossRef] [Green Version]
- Glezeva, N.; Gallagher, J.; Ledwidge, M.; McDonald, K.; Watson, C. Is an NTproBNP saliva test paving a new avenue for diagnosis and therapy monitoring of heart failure patients—Insights from the KardiaTool study. Heart 2021, 107, A34–A35. [Google Scholar] [CrossRef]
- Yamasaki, K.; Hata, J.; Ide, T.; Nagata, T.; Sakata, S.; Yoshida, D.; Honda, T.; Hirakawa, Y.; Nakano, T.; Kitazono, T.; et al. Urinary N-terminal pro–B-type natriuretic peptide as a biomarker for cardiovascular events in a general Japanese population: The Hisayama Study. Environ. Health Prev. Med. 2021, 26, 47. [Google Scholar] [CrossRef]
- Celik, I.H.; Erdeve, O.; Demrel, G.; Canpolat, F.E.; Dilmen, U. Elevated urinary NT-proBNP after pharmacological closure of patent ductus arteriosus in very low birth weight infants. Early Hum. Dev. 2013, 89, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Naeem, B.; Ayub, A.; Aly, A.M.; Malloy, M.H.; Okorodudu, A.O.; Jain, S.K. Urinary NT-proBNP as a potential noninvasive biomarker for screening of pulmonary hypertension in preterm infants: A pilot study. J. Perinatol. 2020, 40, 628–632. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.; Sun, H.; Wang, P.; Han, Y.; Wang, X. Recent and potential developments of biofluid analyses in metabolomics. J. Proteom. 2012, 75, 1079–1088. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Liu, L.; Liu, X.; Chen, Y.; Wang, X.; Fan, D.; Kuang, X.; Sun, X.; Wei, Q.; Ju, H. Highly-sensitive electrochemiluminescence biosensor for NT-proBNP using MoS2@Cu2S as signal-enhancer and multinary nanocrystals loaded in mesoporous UiO-66-NH2 as novel luminophore. Sens. Actuators B Chem. 2020, 307, 127619. [Google Scholar] [CrossRef]
- Pollok, N.E.; Rabin, C.; Walgama, C.T.; Smith, L.; Richards, I.; Crooks, R.M. Electrochemical detection of NT-proBNP using a metalloimmunoassay on a paper electrode platform. ACS Sensors 2020, 5, 853–860. [Google Scholar] [CrossRef]
- Xu, R.; Li, J.; Liu, L.; Liu, X.; Fan, D.; Cao, W.; Ma, H.; Wei, Q. Original signal amplification assay for N-Terminal pro-brain natriuretic peptide detection based on Bi2MoO6 photosensitive matrix. Anal. Chim. Acta 2020, 1101, 58–64. [Google Scholar] [CrossRef]
- Sinha, A.; Gopinathan, P.; Chung, Y.-D.; Shiesh, S.-C.; Lee, G.-B. Simultaneous detection of multiple NT-proBNP clinical samples utilizing an aptamer-based sandwich assay on an integrated microfluidic system. Lab Chip 2019, 19, 1676–1685. [Google Scholar] [CrossRef]
- Qiu, C.; Wang, X.; Zhang, X.; Li, Z.; Zhou, Y.; Kang, J. Sensitive determination of NT-proBNP for diagnosing abdominal aortic aneurysms incidence on interdigitated electrode sensor. Biotechnol. Appl. Biochem. 2021, 68, 865–870. [Google Scholar] [CrossRef]
- Aldewachi, H.; Chalati, T.; Woodroofe, M.N.; Bricklebank, N.; Sharrack, B.; Gardiner, P. Gold nanoparticle-based colorimetric biosensors. Nanoscale 2018, 10, 18–33. [Google Scholar] [CrossRef] [Green Version]
- Si, P.; Razmi, N.; Nur, O.; Solanki, S.; Pandey, C.M.; Gupta, R.K.; Malhotra, B.D.; Willander, M.; De La Zerda, A. Gold nanomaterials for optical biosensing and bioimaging. Nanoscale Adv. 2021, 3, 2679–2698. [Google Scholar] [CrossRef]
- António, M.; Vitorino, R.; Daniel-da-Silva, A.L. Gold nanoparticles-based assays for biodetection in urine. Talanta 2021, 230, 122345. [Google Scholar] [CrossRef] [PubMed]
- Robenek, H. Colloidal Gold: Principles, Methods, and Applications; Hayat, M.A., Ed.; Academic Press, Inc.: New York, NY, USA, 1989; Volume 12. [Google Scholar]
- Shukla, R.; Bansal, V.; Chaudhary, M.; Basu, A.; Bhonde, R.R.; Sastry, M. Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: A microscopic overview. Langmuir 2005, 21, 10644–10654. [Google Scholar] [CrossRef]
- Chen, Y.; Xianyu, Y.; Jiang, X. Surface modification of gold nanoparticles with small molecules for biochemical analysis. Acc. Chem. Res. 2017, 50, 310–319. [Google Scholar] [CrossRef]
- Zhou, W.; Gao, X.; Liu, D.; Chen, X. Gold nanoparticles for in vitro diagnostics. Chem. Rev. 2015, 115, 10575–10636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liz-Marzán, L.M. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 2006, 22, 32–41. [Google Scholar] [CrossRef]
- Ou, J.; Zhou, Z.; Chen, Z.; Tan, H. Optical diagnostic based on functionalized gold nanoparticles. Int. J. Mol. Sci. 2019, 20, 4346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baptista, P.V.; Koziol-Montewka, M.; Paluch-Oles, J.; Doria, G.; Franco, R. Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples. Clin. Chem. 2006, 52, 1433–1434. [Google Scholar] [CrossRef]
- António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A.L. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta 2020, 214, 120868. [Google Scholar] [CrossRef]
- António, M.; Lima, T.; Ferreira, R.; Fardilha, M.; Bastos, J.M.; Vitorino, R.; Daniel-da-Silva, A. Gold Nanoparticle Probes for Colorimetric Detection of Plasma Galectin-3: A simple and rapid approach. Anal. Methods 2023, 15, 2905–2914. [Google Scholar] [CrossRef]
- Grabar, K.C.; Freeman, R.G.; Hommer, M.B.; Natan, M.J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743. [Google Scholar] [CrossRef]
- Williamson, J.H. Least-squares fitting of a straight line. Can. J. Phys. 1968, 46, 1845–1847. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21. [Google Scholar] [CrossRef]
- Bhattacharjee, S. DLS and zeta potential—What they are and what they are not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Gattuso, H.; Spinello, A.; Terenzi, A.; Assfeld, X.; Barone, G.; Monari, A. Circular Dichroism of DNA G-Quadruplexes: Combining Modeling and Spectroscopy to Unravel Complex Structures. J. Phys. Chem. B 2016, 120, 3113–3121. [Google Scholar] [CrossRef] [PubMed]
- Soengas, M.S.; Mateo, C.R.; Rivas, G.; Salas, M.; Acuna, A.U.; Gutierrez, C. Structural features of φ29 single-stranded DNA-binding protein. II. Global conformation of φ29 single-stranded DNA-binding protein and the effects of complex formation on the protein and the single-stranded DNA. J. Biol. Chem. 1997, 272, 303–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gray, D.M. Circular Dichroism of Protein-Nucleic Acid Interactions. In Circular Dichroism and the Conformational Analysis of Biomolecules; Fasman, G.D., Ed.; Springer: Boston, MA, USA, 1996; pp. 469–500. ISBN 978-1-4757-2508-7. [Google Scholar]
- Wang, G.; Yan, C.; Gao, S.; Liu, Y. Surface chemistry of gold nanoparticles determines interactions with bovine serum albumin. Mater. Sci. Eng. C 2019, 103, 109856. [Google Scholar] [CrossRef] [PubMed]
- Vahidi, S.H.; Bozorgmehr, M.R.; Morsali, A.; Beyramabadi, S.A. Study of alpha-amylase and gold nanoparticles interaction at two different temperatures through molecular dynamics. J. Mol. Graph. Model. 2019, 88, 273–281. [Google Scholar] [CrossRef]
- António, M.; Lima, T.; Vitorino, R.; Daniel-da-Silva, A.L. Interaction of colloidal gold nanoparticles with urine and saliva biofluids: An exploratory study. Nanomaterials 2022, 12, 4434. [Google Scholar] [CrossRef]
- Abcam Human NT-proBNP ELISA Kit Ab263877. Available online: https://www.abcam.com/human-nt-probnp-elisa-kit-ab263877.html (accessed on 21 October 2022).
- Invitrogen, T.F.S. Human proBNP (NPPB) ELISA Kit. Available online: https://www.thermofisher.com/document-connect/document-connect.html?url=https://assets.thermofisher.com/TFS-Assets%2FLSG%2Fmanuals%2FEHPRONPPB.pdf (accessed on 21 October 2022).
- R&D Systems Human NT Pro-BNP DuoSet ELISA. Available online: https://resources.rndsystems.com/pdfs/datasheets/dy3604.pdf?v=20230206&_ga=2.153616888.1304570867.1675692977-1476376389.1675692977&_gac=1.238676532.1675692977.EAIaIQobChMIn9ze3oqB_QIVt49oCR0TPQRAEAAYBCAAEgIILvD_BwE (accessed on 21 October 2022).
Method | LOD | Detection Range | Time to Result | Cost (96 Tests) | Ref. |
---|---|---|---|---|---|
ELISA (1) | 11.5 ng·L−1 | 21.9–1400 ng·L−1 | 1 h 30 | 740 euros | [41] |
ELISA (2) | 0.14 µg·L−1 | 0.137–100 µg·L−1 | 4 h 45 | 479 euros | [42] |
ELISA (3) | - | 0.312–10 µg·L−1 | ~9 h | 76 euros | [43] |
Apt-AuNPs | 0.417 µg·L−1 | 0.589–6 µg·L−1 | ~25 min | ~15 euros 1 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
António, M.; Vitorino, R.; Daniel-da-Silva, A.L. LSPR-Based Aptasensor for Rapid Urinary Detection of NT-proBNP. Biosensors 2023, 13, 736. https://doi.org/10.3390/bios13070736
António M, Vitorino R, Daniel-da-Silva AL. LSPR-Based Aptasensor for Rapid Urinary Detection of NT-proBNP. Biosensors. 2023; 13(7):736. https://doi.org/10.3390/bios13070736
Chicago/Turabian StyleAntónio, Maria, Rui Vitorino, and Ana L. Daniel-da-Silva. 2023. "LSPR-Based Aptasensor for Rapid Urinary Detection of NT-proBNP" Biosensors 13, no. 7: 736. https://doi.org/10.3390/bios13070736
APA StyleAntónio, M., Vitorino, R., & Daniel-da-Silva, A. L. (2023). LSPR-Based Aptasensor for Rapid Urinary Detection of NT-proBNP. Biosensors, 13(7), 736. https://doi.org/10.3390/bios13070736