The Electrochemical Detection of Ochratoxin A in Apple Juice via MnCO3 Nanostructures Incorporated into Carbon Fibers Containing a Molecularly Imprinting Polymer
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Apparatus
2.2. Production of MnCO3NS and MnCO3NS/CF Composite
2.3. Production of MnCO3NS/CF Modified Glassy Carbon Electrode (MnCO3NS/CF/GCE)
2.4. OTA Imprinted Sensor and OTA Removal
2.5. Sample Preparation
3. Results and Discussion
3.1. Characterizations of MnCO3NS/CF
3.2. Electrochemical Characterizations of MnCO3NS and MnCO3NS/CF Composite Modified Electrodes
3.3. Fabrication of OTA Imprinted Polymer on MnCO3NS/CF/GCE
3.4. Optimization Studies
3.4.1. pH Effect
3.4.2. Mole Ratio OTA to Py Monomer Effect
3.4.3. Desorption Time Effect
3.4.4. Scan Cycle Effect
3.5. Quantification Limit (LOQ) and LOD Values
3.6. Recovery Assessment
3.7. Selectivity, Stability, Repeatability and Reproducibility Performances of MIP/MnCO3NS/CF/GCE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Richard, J.L. Some major mycotoxins and their mycotoxicoses—An overview. Int. J. Food Microbiol. 2007, 119, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Al-Anati, L.; Petzinger, E. Immunotoxic activity of ochratoxin A. J. Vet. Pharmacol. Ther. 2006, 29, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Li, X.J.; Ma, W.; Ma, Z.Y.; Zhang, Q.H.; Li, H.M. Recent progress in determination of ochratoxin a in foods by chromatographic and mass spectrometry methods. Crit. Rev. Food Sci. Nutr. 2022, 62, 5444–5461. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Xiong, Z.W.; Oh, S.H.; Ren, Y.R.; Wang, Q.; Yang, L.Z. Two-color, ultra-sensitive fluorescent strategy for Ochratoxin A detection based on hybridization chain reaction and DNA tweezers. Food Chem. 2021, 356, 129663. [Google Scholar] [CrossRef] [PubMed]
- Song, L.C.; Li, J.L.; Li, H.; Chang, Y.W.; Dai, S.J.; Xu, R.M.; Dou, M.H.; Li, Q.J.; Lv, G.P.; Zheng, T.S. Highly sensitive SERS detection for Aflatoxin B1 and Ochratoxin A based on aptamer-functionalized photonic crystal microsphere array. Sens. Actuators B-Chem. 2022, 364, 131778. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, B.B.; Ye, Y.F.; Qi, X.Y.; Zhang, Y.T.; Xia, X.L.; Wang, X.L.; Zhou, N.D. A fluorescence and surface-enhanced Raman scattering dual-mode aptasensor for rapid and sensitive detection of ochratoxin A. Biosens. Bioelectron. 2022, 207, 114164. [Google Scholar] [CrossRef]
- Gupta, B.; Perillo, M.L.; Siegenthaler, J.R.; Christensen, I.E.; Welch, M.P.; Rechenberg, R.; Banna, G.M.H.U.; Galstyan, D.; Becker, M.F.; Li, W.; et al. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry. Biosensors 2023, 13, 576. [Google Scholar] [CrossRef]
- Erdem, A.; Eksin, E. Zip Nucleic Acid-Based Genomagnetic Assay for Electrochemical Detection of microRNA-34a. Biosensors 2023, 13, 144. [Google Scholar] [CrossRef]
- Zhong, W.; Zou, J.; Yu, Q.; Gao, Y.; Qu, F.; Liu, S.; Zhou, H.; Lu, L. Ultrasensitive indirect electrochemical sensing of thiabendazole in fruit and water by the anodic stripping voltammetry of Cu2+ with hierarchical Ti3C2Tx-TiO2 for signal amplification. Food Chem. 2023, 402, 134379. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, S.; Lin, X.; Liu, J.; Wang, K. Label-Free Electrochemical Aptasensor Based on the Vertically-Aligned Mesoporous Silica Films for Determination of Aflatoxin B1. Biosensors 2023, 13, 661. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, L.; Yan, F.; Wang, K. Vertically-Ordered Mesoporous Silica Film Based Electrochemical Aptasensor for Highly Sensitive Detection of Alpha-Fetoprotein in Human Serum. Biosensors 2023, 13, 628. [Google Scholar] [CrossRef]
- Yuan, R.; Fu, Z.; He, Y.; Deng, Y.; Xi, J.; Xing, X.; He, H. Size-controlling preparation of covalent organic framework nanospheres for electrochemical impedimetric aptasensing of oxytetracycline. Talanta 2023, 265, 124834. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.-W.; Zhu, Q.-Q.; Yuan, R.; He, H. Crystal engineering of MOF@COF core-shell composites for ultra-sensitively electrochemical detection. Sens. Actuators B Chem. 2021, 329, 129144. [Google Scholar] [CrossRef]
- Bhojane, P.; Sinha, L.; Goutam, U.K.; Shirage, P.M. A 3D mesoporous flowers of nickel carbonate hydroxide hydrate for high-performance electrochemical energy storage application. Electrochim. Acta 2019, 296, 112–119. [Google Scholar] [CrossRef]
- Zhou, L.; Kong, X.; Gao, M.; Lian, F.; Li, B.; Zhou, Z.; Cao, H. Hydrothermal Fabrication of MnCO3@rGO Composite as an Anode Material for High-Performance Lithium Ion Batteries. Inorg. Chem. 2014, 53, 9228–9234. [Google Scholar] [CrossRef]
- Ruan, S.J.; Ma, C.; Wang, J.T.; Qiao, W.M.; Ling, L.C. Facile synthesis of graphene-wrapped porous MnCO3 microspheres with enhanced surface capacitive effects for superior lithium storage. Chem. Eng. J. 2019, 367, 64–75. [Google Scholar] [CrossRef]
- Suo, G.; Cheng, Y.; Zhang, J.; Ahmed, S.M.; Hou, X.; Yang, Y.; Ye, X.; Zhang, L. Interconnected MnCO3 nanostructures anchored on carbon fibers with enhanced potassium storage performance. Mater. Today Chem. 2022, 25, 100904. [Google Scholar] [CrossRef]
- Udayabhanu, G.; Muralikrishna, S.; Kishore, B.; Nagabhushana, H.; Suresh, D.; Sharma, S.C.; Nagaraju, G. One pot green synthesis of MnCO3–rGO composite hybrid superstructure: Application to lithium ion battery and biosensor. New J. Chem. 2017, 41, 12854–12865. [Google Scholar] [CrossRef]
- Forintos, N.; Czigany, T. Multifunctional application of carbon fiber reinforced polymer composites: Electrical properties of the reinforcing carbon fibers—A short review. Compos. Part B Eng. 2019, 162, 331–343. [Google Scholar] [CrossRef]
- Wu, Y.; Deng, P.; Tian, Y.; Ding, Z.; Li, G.; Liu, J.; Zuberi, Z.; He, Q. Rapid recognition and determination of tryptophan by carbon nanotubes and molecularly imprinted polymer-modified glassy carbon electrode. Bioelectrochemistry 2020, 131, 107393. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Li, G.; Tian, Y.; Feng, J.; Xiao, J.; Liu, J.; Liu, X.; He, Q. Electropolymerization of molecularly imprinted polypyrrole film on multiwalled carbon nanotube surface for highly selective and stable determination of carcinogenic amaranth. J. Electroanal. Chem. 2021, 895, 115494. [Google Scholar] [CrossRef]
- BelBruno, J.J. Molecularly Imprinted Polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Vasapollo, G.; Sole, R.D.; Mergola, L.; Lazzoi, M.R.; Scardino, A.; Scorrano, S.; Mele, G. Molecularly Imprinted Polymers: Present and Future Prospective. Int. J. Mol. Sci. 2011, 12, 5908–5945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cormack, P.A.G.; Elorza, A.Z. Molecularly imprinted polymers: Synthesis and characterisation. J. Chromatogr. B 2004, 804, 173–182. [Google Scholar] [CrossRef]
- Yan, H.; Row, K.H. Characteristic and Synthetic Approach of Molecularly Imprinted Polymer. Int. J. Mol. Sci. 2006, 7, 155–178. [Google Scholar] [CrossRef] [Green Version]
- Lu, B.; Xia, J.; Wang, Z.; Zhang, F.; Yang, M.; Li, Y.; Xia, Y. Molecularly imprinted electrochemical sensor based on an electrode modified with an imprinted pyrrole film immobilized on a β-cyclodextrin/gold nanoparticles/graphene layer. RSC Adv. 2015, 5, 82930–82935. [Google Scholar] [CrossRef]
- Chen, H.-J.; Zhang, Z.-H.; Cai, R.; Chen, X.; Liu, Y.-N.; Rao, W.; Yao, S.-Z. Molecularly imprinted electrochemical sensor based on amine group modified graphene covalently linked electrode for 4-nonylphenol detection. Talanta 2013, 115, 222–227. [Google Scholar] [CrossRef]
- Dou, M.; Wang, S.; Li, W.; Li, Q.; Xu, J.; Li, J. High-performance molecularly imprinted polymers grafted magnetic photonic crystal microspheres for selective enrichment of ochratoxin a. J. Chromatogr. A 2023, 1695, 463932. [Google Scholar] [CrossRef]
- Kholová, A.; Lhotská, I.; Erben, J.; Chvojka, J.; Švec, F.; Solich, P.; Šatínský, D. Comparison of nanofibers, microfibers, nano/microfiber graphene doped composites, molecularly imprinted polymers, and restricted access materials for on-line extraction and chromatographic determination of citrinin, zearalenone, and ochratoxin A in plant-based milk beverages. Microchem. J. 2023, 191, 108937. [Google Scholar] [CrossRef]
- Serra, T.; Anfossi, L.; Cavalera, S.; Chiarello, M.; Nardo, F.D.; Testa, V.; Baggiani, C. Ochratoxin A-Imprinted nanoMIPs Prepared by Solid Phase Synthesis: Effect of Mimic Template on Binding Properties. Macromol 2023, 3, 234–244. [Google Scholar] [CrossRef]
- Maier, N.M.; Buttinger, G.; Welhartizki, S.; Gavioli, E.; Lindner, W. Molecularly imprinted polymer-assisted sample clean-up of ochratoxin A from red wine: Merits and limitations. J. Chromatogr. B 2004, 804, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Turan, E.; Şahin, F. Molecularly imprinted biocompatible magnetic nanoparticles for specific recognition of Ochratoxin A. Sens. Actuators B Chem. 2016, 227, 668–676. [Google Scholar] [CrossRef]
- Hu, X.; Xia, Y.; Liu, Y.; Chen, Y.; Zeng, B. An effective ratiometric electrochemical sensor for highly selective and reproducible detection of ochratoxin A: Use of magnetic field improved molecularly imprinted polymer. Sens. Actuators B Chem. 2022, 359, 131582. [Google Scholar] [CrossRef]
- Yola, M.L.; Atar, N.; Qureshi, M.S.; Ustundag, Z.; Solak, A.O. Electrochemically grafted etodolac film on glassy carbon for Pb(II) determination. Sens. Actuators B-Chem. 2012, 171, 1207–1215. [Google Scholar] [CrossRef]
- Yola, M.L. Carbendazim imprinted electrochemical sensor based on CdMoO4/g-C3N4 nanocomposite: Application to fruit juice samples. Chemosphere 2022, 301, 134766. [Google Scholar] [CrossRef] [PubMed]
- Yola, M.L.; Gupta, V.K.; Atar, N. New molecular imprinted voltammetric sensor for determination of ochratoxin A. Mater. Sci. Eng. C-Mater. Biol. Appl. 2016, 61, 368–375. [Google Scholar] [CrossRef]
- Xiao, L.; Wang, S.Y.; Wang, Y.F.; Meng, W.; Deng, B.H.; Qu, D.Y.; Xie, Z.Z.; Liu, J.P. High-Capacity and Self-Stabilized Manganese Carbonate Microspheres as Anode Material for Lithium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 25369–25378. [Google Scholar] [CrossRef]
- Suo, G.Q.; Zhang, J.Q.; Li, D.; Yu, Q.Y.; Wan, W.A.; He, M.; Feng, L.; Hou, X.J.; Yang, Y.L.; Ye, X.H.; et al. N-doped carbon/ultrathin 2D metallic cobalt selenide core/sheath flexible framework bridged by chemical bonds for high-performance potassium storage. Chem. Eng. J. 2020, 388, 124396. [Google Scholar] [CrossRef]
- Chong, S.K.; Sun, L.; Shu, C.Y.; Guo, S.W.; Liu, Y.N.; Wang, W.; Liu, H.K. Chemical bonding boosts nano-rose-like MoS2 anchored on reduced graphene oxide for superior potassium-ion storage. Nano Energy 2019, 63, 103868. [Google Scholar] [CrossRef]
- Li, Q.; Liu, Z.W.; Wang, C.; Zhao, Y.H.; Che, R.C. Doping of Ni and Zn Elements in MnCO3: High-Power Anode Material for Lithium-Ion Batteries. Small 2018, 14, 1702574. [Google Scholar] [CrossRef]
- Yao, Y.; Wen, Y.; Zhang, L.; Wang, Z.; Zhang, H.; Xu, J. Electrochemical recognition and trace-level detection of bactericide carbendazim using carboxylic group functionalized poly(3,4-ethylenedioxythiophene) mimic electrode. Anal. Chim. Acta 2014, 831, 38–49. [Google Scholar] [CrossRef]
- Arteshi, Y.; Lima, D.; Tittlemier, S.A.; Kuss, S. Rapid and inexpensive voltammetric detection of ochratoxin A in wheat matrices. Bioelectrochemistry 2023, 152, 108451. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Abbas, F.; Rhouati, A.; Sun, Y.Y.; Chu, X.L.; Cui, S.N.; Sun, B.B.; Xue, C.Y. Design of a Quencher-Free Fluorescent Aptasensor for Ochratoxin A Detection in Red Wine Based on the Guanine-Quenching Ability. Biosensors 2022, 12, 297. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Chen, L.; Li, M.; She, Y.X.; Zhu, C.; Yan, M.M. An Alkyne-Mediated SERS Aptasensor for Anti-Interference Ochratoxin A Detection in Real Samples. Foods 2022, 11, 3407. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.Y.; Liu, R.J.; Sun, W.Y.; Lv, L.; Guo, Z.J. Ochratoxin A detection platform based on signal amplification by Exonuclease III and fluorescence quenching by gold nanoparticles. Sens. Actuators B Chem. 2018, 255, 1640–1645. [Google Scholar] [CrossRef]
- He, Y.; Tian, F.Y.; Zhou, J.; Jiao, B.N. A fluorescent aptasensor for ochratoxin A detection based on enzymatically generated copper nanoparticles with a polythymine scaffold. Microchim. Acta 2019, 186, 199. [Google Scholar] [CrossRef]
- Bi, X.Y.; Luo, L.J.; Li, L.B.; Liu, X.H.; Chen, B.N.; You, T.Y. A FRET-based aptasensor for ochratoxin A detection using graphitic carbon nitride quantum dots and CoOOH nanosheets as donor-acceptor pair. Talanta 2020, 218, 121159. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, J.G.; Castro, M.; Machado, S.; Barroso, M.F.; Nouws, H.P.A.; Delerue-Matos, C. Molecularly imprinted electrochemical sensor for ochratoxin A detection in food samples. Sens. Actuators B Chem. 2015, 215, 107–112. [Google Scholar] [CrossRef]
- Wang, C.K.; Tan, R.; Li, J.Y.; Zhang, Z.X. Exonuclease I-assisted fluorescent method for ochratoxin A detection using iron-doped porous carbon, nitrogen-doped graphene quantum dots, and double magnetic separation. Anal. Bioanal. Chem. 2019, 411, 2405–2414. [Google Scholar] [CrossRef]
- Shao, X.L.; Zhu, L.J.; Feng, Y.X.; Zhang, Y.Z.; Luo, Y.B.; Huang, K.L.; Xu, W.T. Detachable nanoladders: A new method for signal identification and their application in the detection of ochratoxin A (OTA). Anal. Chim. Acta 2019, 1087, 113–120. [Google Scholar] [CrossRef]
- Wei, Y.; Zhang, J.; Wang, X.; Duan, Y.X. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Biosens. Bioelectron. 2015, 65, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.K.; Dong, X.Y.; Liu, Q.; Wang, K. Label-free colorimetric aptasensor for sensitive detection of ochratoxin A utilizing hybridization chain reaction. Anal. Chim. Acta 2015, 860, 83–88. [Google Scholar] [CrossRef] [PubMed]
Material | Linear Range (M, mol L−1) | LOD (M, mol L−1) | Ref. |
---|---|---|---|
Aptasensor | 3.6 × 10−10–6.9 × 10−10 | 3.6 × 10−10 | [43] |
SERS aptasensor | 1.0 × 10−10–4.0 × 10−8 | 3.0 × 10−11 | [44] |
Au NPs/PIL-FMNS/CNT-MoS2 | 5.0 × 10−7–15.0 × 10−6 | 1.4 × 10−8 | [33] |
Fluorescence quenching/AuNPs | 5.0 × 10−9–1.0 × 10−7 | 4.8 × 10−9 | [45] |
CuNPs | 2.5 × 10−9–2.5 × 10−7 | 2.0 × 10−9 | [46] |
g-CNQDs | 1.0 × 10−9–1.4 × 10−7 | 5.0 × 10−10 | [47] |
MIP-MWCNTs | 5.0 × 10−8–1.0 × 10−6 | 4.1 × 10−9 | [48] |
NGQDs-Apt | 1.0 × 10−8–5.0 × 10−6 | 2.3 × 10−9 | [49] |
Graphene oxide | 0.0–2.0 × 10−7 | 1.0 × 10−10 | [50] |
Fluorescent aptasensor | 0.0–1.0 × 10−6 | 2.0 × 10−8 | [51] |
Colorimetric aptasensor | 1.0 × 10−11–3.2 × 10−8 | 1.0 × 10−11 | [52] |
MIP/MnCO3NS/CF/GCE | 1.0 × 10−11–1.0 × 10−9 | 2.0 × 10−12 | This study |
Sample | Added OTA (nmol L−1) | Found OTA (nmol L−1) | * Recovery (%) |
---|---|---|---|
Apple Juice | - | 0.307 ± 0.001 | - |
0.100 | 0.406 ± 0.003 | 99.75 ± 0.06 | |
0.300 | 0.608 ± 0.004 | 100.17 ± 0.08 | |
0.500 | 0.808 ± 0.002 | 100.12 ± 0.05 |
MIP | NIP | ||||
---|---|---|---|---|---|
∆I (µA) | k | ∆I (µA) | k | k′ | |
OTA | 9.50 | - | 1.75 | - | - |
OTB | 1.20 | 7.92 | 0.50 | 3.50 | 2.26 |
AFB1 | 1.00 | 9.50 | 0.40 | 4.38 | 2.17 |
AFB2 | 0.75 | 12.67 | 0.30 | 5.83 | 2.17 |
CIT | 0.50 | 19.00 | 0.20 | 8.75 | 2.17 |
CAT | 0.30 | 31.67 | 0.15 | 11.67 | 2.71 |
RES | 0.20 | 47.50 | 0.10 | 17.50 | 2.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mavioğlu Kaya, M.; Deveci, H.A.; Kaya, İ.; Atar, N.; Yola, M.L. The Electrochemical Detection of Ochratoxin A in Apple Juice via MnCO3 Nanostructures Incorporated into Carbon Fibers Containing a Molecularly Imprinting Polymer. Biosensors 2023, 13, 760. https://doi.org/10.3390/bios13080760
Mavioğlu Kaya M, Deveci HA, Kaya İ, Atar N, Yola ML. The Electrochemical Detection of Ochratoxin A in Apple Juice via MnCO3 Nanostructures Incorporated into Carbon Fibers Containing a Molecularly Imprinting Polymer. Biosensors. 2023; 13(8):760. https://doi.org/10.3390/bios13080760
Chicago/Turabian StyleMavioğlu Kaya, Müge, Haci Ahmet Deveci, İnan Kaya, Necip Atar, and Mehmet Lütfi Yola. 2023. "The Electrochemical Detection of Ochratoxin A in Apple Juice via MnCO3 Nanostructures Incorporated into Carbon Fibers Containing a Molecularly Imprinting Polymer" Biosensors 13, no. 8: 760. https://doi.org/10.3390/bios13080760
APA StyleMavioğlu Kaya, M., Deveci, H. A., Kaya, İ., Atar, N., & Yola, M. L. (2023). The Electrochemical Detection of Ochratoxin A in Apple Juice via MnCO3 Nanostructures Incorporated into Carbon Fibers Containing a Molecularly Imprinting Polymer. Biosensors, 13(8), 760. https://doi.org/10.3390/bios13080760