Designing a Graphene Metasurface Organic Material Sensor for Detection of Organic Compounds in Wastewater
Abstract
:1. Introduction
2. Modeling and Design
Refractive Indices (RIs) of Alcohol Samples
3. Results and Discussion
3.1. Optimization of Parameters
3.1.1. Variation in CSRR Gap
3.1.2. Variation in CSRR Radius
3.1.3. Variation in Radius of the CS
3.1.4. Variation in GCP
3.2. Detection
3.3. Electric Field Analysis for the Best-Performing Design (GMOMS3)
3.4. Encoding for the GMOMS Sensor
3.5. Comparison of the Sensor with Other Similar Works
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scognamiglio, V.; Arduini, F.; Palleschi, G.; Rea, G. Biosensing technology for sustainable food safety. TrAC Trends Anal. Chem. 2014, 62, 1–10. [Google Scholar] [CrossRef]
- Jawaid, M.; Bouhfid, R.; Qaiss, A. Functionalized Graphene Nanocomposites and Their Derivatives: Synthesis, Processing and Applications; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780128145487. [Google Scholar]
- Johnson, A.P.; Gangadharappa, H.V.; Pramod, K. Graphene nanoribbons: A promising nanomaterial for biomedical applications. J. Control. Release 2020, 325, 141–162. [Google Scholar] [CrossRef] [PubMed]
- Magna, G.; Mandoj, F.; Stefanelli, M.; Pomarico, G.; Monti, D.; Di Natale, C.; Paolesse, R.; Nardis, S. Recent advances in chemical sensors using porphyrin-carbon nanostructure hybrid materials. Nanomaterials 2021, 11, 997. [Google Scholar] [CrossRef] [PubMed]
- Tung, T.T.; Tran, M.T.; Feller, J.F.; Castro, M.; Van Ngo, T.; Hassan, K.; Nine, M.J.; Losic, D. Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers. Carbon 2020, 159, 333–344. [Google Scholar] [CrossRef]
- Tung, T.T.; Tran, M.T.; Feller, J.F.; Castro, M.; Van Ngo, T.; Hassan, K.; Nine, M.J.; Losic, D. Corrigendum to “Graphene and metal organic frameworks (MOFs) hybridization for tunable chemoresistive sensors for detection of volatile organic compounds (VOCs) biomarkers” [Carbon 159 (2020) 333–344] (Carbon (2020) 159 (333–344), (S000862231931245X). Carbon 2020, 162, 662. [Google Scholar] [CrossRef]
- Aghaei, S.M.; Aasi, A.; Farhangdoust, S.; Panchapakesan, B. Graphene-like BC6N nanosheets are potential candidates for detection of volatile organic compounds (VOCs) in human breath: A DFT study. Appl. Surf. Sci. 2021, 536, 147756. [Google Scholar] [CrossRef]
- Tripathi, K.M.; Kim, T.Y.; Losic, D.; Tung, T.T. Recent advances in engineered graphene and composites for detection of volatile organic compounds (VOCs) and non-invasive diseases diagnosis. Carbon 2016, 110, 97–129. [Google Scholar] [CrossRef]
- Wang, X.; Gu, D.; Li, X.; Lin, S.; Zhao, S.; Rumyantseva, M.N.; Gaskov, A.M. Reduced graphene oxide hybridized with WS2 nanoflakes based heterojunctions for selective ammonia sensors at room temperature. Sens. Actuators B Chem. 2019, 282, 290–299. [Google Scholar] [CrossRef]
- Elfadil, D.; Silveri, F.; Palmieri, S.; Della Pelle, F.; Sergi, M.; Del Carlo, M.; Amine, A.; Compagnone, D. Liquid-phase exfoliated 2D graphene nanoflakes electrochemical sensor coupled to molecularly imprinted polymers for the determination of citrinin in food. Talanta 2023, 253, 124010. [Google Scholar] [CrossRef]
- Van Quang, V.; Hung, V.N.; Tuan, L.A.; Phan, V.N.; Huy, T.Q.; Van Quy, N. Graphene-coated quartz crystal microbalance for detection of volatile organic compounds at room temperature. Thin Solid Film. 2014, 568, 6–12. [Google Scholar] [CrossRef]
- Gupta, M.; Athirah, N.; Hawari, H.F. Graphene derivative coated QCM-based gas sensor for volatile organic compound (VOC) detection at room temperature. Indones. J. Electr. Eng. Comput. Sci. 2020, 18, 1279–1286. [Google Scholar] [CrossRef]
- Hughes, S.; Dasary, S.S.R.; Begum, S.; Williams, N.; Yu, H. Meisenheimer complex between 2,4,6-trinitrotoluene and 3-aminopropyltriethoxysilane and its use for a paper-based sensor. Sens. Bio-Sens. Res. 2015, 5, 37–41. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Zhang, S.; Zhang, L.; Zhang, Y.; Zhang, H.; Zhang, C.; Xuan, X.; Wang, M.; Zhang, J.; Yuan, Y. A Novel Graphene-Based Nanomaterial Modified Electrochemical Sensor for the Detection of Cardiac Troponin I. Front. Chem. 2021, 9, 680593. [Google Scholar] [CrossRef]
- Shen, S.; Liu, X.; Shen, Y.; Qu, J.; Pickwell-MacPherson, E.; Wei, X.; Sun, Y. Recent Advances in the Development of Materials for Terahertz Metamaterial Sensing. Adv. Opt. Mater. 2022, 10, 2101008. [Google Scholar] [CrossRef]
- Crowe, T.W.; Bishop, W.L.; Porterfield, D.W.; Hesler, J.L.; Weikle, R.M. Opening the terahertz window with integrated diode circuits. IEEE J. Solid State Circuits 2005, 40, 2104–2109. [Google Scholar] [CrossRef]
- Blain, A.W.; Smail, I.; Ivison, R.J.; Kneib, J.P.; Frayer, D.T. Submillimeter galaxies. Phys. Rep. 2002, 369, 111–176. [Google Scholar] [CrossRef] [Green Version]
- Wilmink, G.J.; Ibey, B.L.; Tongue, T.; Schulkin, B.; Laman, N.; Peralta, X.G.; Roth, C.C.; Cerna, C.Z.; Rivest, B.D.; Grundt, J.E.; et al. Development of a compact terahertz time-domain spectrometer for the measurement of the optical properties of biological tissues. J. Biomed. Opt. 2011, 16, 047006. [Google Scholar] [CrossRef]
- Xie, W.; Li, J.; Pei, J. THz-TDS signal analysis and substance identification. J. Phys. Conf. Ser. 2011, 276, 012227. [Google Scholar] [CrossRef]
- Bulu, I.; Caglayan, H. Designing Materials With Desired. Microw. Opt. 2006, 48, 2611–2615. [Google Scholar] [CrossRef]
- Saadeldin, A.S.; Hameed, M.F.O.; Elkaramany, E.M.A.; Obayya, S.S.A. Highly Sensitive Terahertz Metamaterial Sensor. IEEE Sens. J. 2019, 19, 7993–7999. [Google Scholar] [CrossRef]
- Pickles, A.J.; Kilgore, I.M.; Steer, M.B. Automated creation of complex three-dimensional composite mixtures for use in electromagnetic simulation. IEEE Access 2013, 1, 248–251. [Google Scholar] [CrossRef]
- Gómez Rivas, J.; Sánchez-Gil, J.A.; Kuttge, M.; Haring Bolivar, P.; Kurz, H. Optically switchable mirrors for surface plasmon polaritons propagating on semiconductor surfaces. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 245324. [Google Scholar] [CrossRef] [Green Version]
- Auston, D.H.; Nuss, M.C. Electrooptic Generation and Detection of Femtosecond Electrical Transients. IEEE J. Quantum Electron. 1988, 24, 184–197. [Google Scholar] [CrossRef]
- Rudd, J.V.; Zimdars, D.A.; Warmuth, M.W. Compact fiber-pigtailed terahertz imaging system. Commer. Biomed. Appl. Ultrafast Lasers II 2000, 3934, 27. [Google Scholar] [CrossRef]
- Govenius, J.; Lake, R.E.; Tan, K.Y.; Möttönen, M. Detection of Zeptojoule Microwave Pulses Using Electrothermal Feedback in Proximity-Induced Josephson Junctions. Phys. Rev. Lett. 2016, 117, 030802. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, Z.; Rodin, A.S.; Andreev, G.O.; Bao, W.; McLeod, A.S.; Wagner, M.; Zhang, L.M.; Zhao, Z.; Thiemens, M.; Dominguez, G.; et al. Gate-tuning of graphene plasmons revealed by infrared nano-imaging. Nature 2012, 486, 82–85. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M.C.; Mastel, S.; Liewald, C.; Columbo, L.L.; Brambilla, M.; Viti, L.; Politano, A.; Zhang, K.; Li, L.; Davies, A.G.; et al. Phase-resolved terahertz self-detection near- field microscopy. Opt. Express 2018, 26, 3430–3438. [Google Scholar] [CrossRef] [Green Version]
- Fan, X.; White, I.M. Optofluidic microsystems for chemical and biological analysis. Nat. Photon. 2011, 5, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Thomson, M.D.; Kreß, M.; Torsten, L. Broadband THz emission from gas plasmas induced by femtosecond optical pulses: From fundamentals to applications. Laser Photonics Rev. 2007, 368, 349–368. [Google Scholar] [CrossRef]
- Yao, Z.; Xu, S.; Hu, D.; Chen, X.; Dai, Q.; Liu, M. Nanoimaging and Nanospectroscopy of Polaritons with Time Resolved s-SNOM. Adv. Opt. Mater. 2019, 8, 1901042. [Google Scholar] [CrossRef]
- Shur, M.; York, N. Recent developments in terahertz sensing technology. In Micro- and Nanotechnology Sensors, Systems, and Applications VIII.; SPIE: Bellingham, WA, USA, 2016; Volume 9836, pp. 494–501. [Google Scholar] [CrossRef]
- Fu, W.; Sun, L.; Cao, H.; Chen, L.; Zhou, M.; Shen, S.; Zhu, Y.; Zhuang, S. Qualitative and Quantitative Recognition of Volatile Organic Compounds in Their Liquid Phase Based on Terahertz Microfluidic EIT Meta-Sensors. IEEE Sens. J. 2023, 23, 12775–12784. [Google Scholar] [CrossRef]
- Ma, Y.; Leng, Y.; Huo, D.; Zhao, D.; Zheng, J.; Yang, H.; Zhao, P.; Li, F.; Hou, C. A sensitive enzyme-free electrochemical sensor based on a rod-shaped bimetallic MOF anchored on graphene oxide nanosheets for determination of glucose in huangshui. Anal. Methods 2023, 15, 2417–2426. [Google Scholar] [CrossRef]
- Wang, Z.; Hu, L.; Zhao, M.; Dai, L.; Hrynsphan, D.; Tatsiana, S.; Chen, J. Bamboo charcoal fused with polyurethane foam for efficiently removing organic solvents from wastewater: Experimental and simulation. Biochar 2022, 4, 28. [Google Scholar] [CrossRef]
- Peng, X.; Mo, S.; Li, R.; Li, J.; Tian, C.; Liu, W.; Wang, Y. Effective removal of the rare earth element dysprosium from wastewater with polyurethane sponge-supported graphene oxide–titanium phosphate. Environ. Chem. Lett. 2021, 19, 719–728. [Google Scholar] [CrossRef]
- Geng, C.; Zhao, F.; Niu, H.; Zhang, J.; Dong, H.; Li, Z.; Chen, H. Enhancing the permeability, anti-biofouling performance and long-term stability of TFC nanofiltration membrane by imidazole-modified carboxylated graphene oxide/polyethersulfone substrate. J. Membr. Sci. 2022, 664, 121099. [Google Scholar] [CrossRef]
- Li, J.; Zheng, J.; Peng, X.; Dai, Z.; Liu, W.; Deng, H.; Xi, B.; Lin, Z. NaCl recovery from organic pollutants-containing salt waste via dual effects of aqueous two-phase systems (ATPS) and crystal regulation with acetone. J. Clean. Prod. 2020, 260, 121044. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, W. Graphene-Based Microwave Metasurfaces and Radio-Frequency Devices. Adv. Photonics Res. 2021, 2, 2100142. [Google Scholar] [CrossRef]
- Ogawa, S.; Fukushima, S.; Shimatani, M. Graphene plasmonics in sensor applications: A review. Sensors 2020, 20, 3563. [Google Scholar] [CrossRef]
- Armghan, A.; Alsharari, M.; Aliqab, K.; Alsalman, O.; Parmar, J.; Patel, S.K. Graphene Twistronics: Tuning the Absorption Spectrum and Achieving Metamaterial Properties. Mathematics 2023, 11, 1579. [Google Scholar] [CrossRef]
- Al-Dossari, M.; Awasthi, S.K.; Mohamed, A.M.; Abd El-Gawaad, N.S.; Sabra, W.; Aly, A.H. Bio-Alcohol Sensor Based on One-Dimensional Photonic Crystals for Detection of Organic Materials in Wastewater. Materials 2022, 15, 4012. [Google Scholar] [CrossRef]
- Aly, A.H.; Awasthi, S.K.; Mohamed, D.; Matar, Z.S.; Al-Dossari, M.; Amin, A.F. Study on a one-dimensional defective photonic crystal suitable for organic compound sensing applications. RSC Adv. 2021, 11, 32973–32980. [Google Scholar] [CrossRef] [PubMed]
- Taya, S.A.; Sharma, A.; Doghmosh, N.; Colak, I. Detection of water concentration in ethanol solution using a ternary photonic crystal-based sensor. Mater. Chem. Phys. 2022, 279, 125772. [Google Scholar] [CrossRef]
- Fallahi, V.; Kordrostami, Z.; Hosseini, M. A Solution for Detection of Ethanol and Methanol with Overlapping Refractive Indexes Based on Photonic Crystal Ring Resonator Optical Sensors. IEEE Sens. J. 2023, 23, 6791–6798. [Google Scholar] [CrossRef]
- Chauhan, M.; Singh, V.K. TiO2 coated tapered optical fiber SPR sensor for alcohol sensing application. J. Opt. 2023. [Google Scholar] [CrossRef]
- Cheng, R.; Xu, L.; Yu, X.; Zou, L.; Shen, Y.; Deng, X. High-sensitivity biosensor for identification of protein based on terahertz Fano resonance metasurfaces. Opt. Commun. 2020, 473, 125850. [Google Scholar] [CrossRef]
- Parmar, J.; Patel, S.K. Encrypted and tunable graphene-based metasurface refractive index sensor. Microw. Opt. Technol. Lett. 2021, 64, 77–82. [Google Scholar] [CrossRef]
- Patel, S.K.; Surve, J.; Parmar, J. Detection of cancer with graphene metasurface-based highly efficient sensors. Diam. Relat. Mater. 2022, 129, 109367. [Google Scholar] [CrossRef]
Sample | RI (n) |
---|---|
methanol | 1.33 |
acetone | 1.3256 |
propanol | 1.3602 |
ethanol | 1.375 |
butanol | 1.3968 |
pentanol | 1.4087 |
chloroform | 1.444 |
phenol | 1.542 |
GMOMS1 | f(THz) | 0.486 | 0.487 | 0.482 | 0.48 | 0.477 | 0.475 | 0.471 | 0.458 |
n | 1.33 | 1.3256 | 1.3602 | 1.375 | 1.3968 | 1.4087 | 1.444 | 1.542 | |
df | 0.001 | 0.005 | 0.002 | 0.003 | 0.002 | 0.004 | 0.013 | ||
dn | 0.0044 | 0.0346 | 0.0148 | 0.0218 | 0.0119 | 0.0353 | 0.098 | ||
S(GHz/RIU) | 227 | 145 | 135 | 136 | 168 | 113 | 133 | ||
FWHM(THz) | 0.037 | 0.036 | 0.037 | 0.036 | 0.037 | 0.037 | 0.037 | 0.038 | |
FOM(RIU-1) | 6.313 | 3.906 | 3.754 | 3.719 | 4.542 | 3.062 | 3.491 | ||
Q | 13.528 | 13.027 | 13.333 | 12.891 | 12.837 | 12.729 | 12.052 | ||
DL | 0.2587 | 0.282 | 0.366 | 0.334 | 0.304 | 0.38 | 0.25 | ||
DR | 2.567 | 2.506 | 2.53 | 2.46 | 2.45 | 2.447 | 2.349 | ||
DA | 27.778 | 27.027 | 27.778 | 27.027 | 27.027 | 27.027 | 26.316 | ||
SR | 0.058 | 0.041 | 0.049 | 0.046 | 0.051 | 0.043 | 0.033 | ||
GMOMS2 | f(THz) | 1.408 | 1.41 | 1.396 | 1.39 | 1.381 | 1.377 | 1.363 | 1.326 |
n | 1.33 | 1.3256 | 1.3602 | 1.375 | 1.3968 | 1.4087 | 1.444 | 1.542 | |
df | 0.002 | 0.014 | 0.006 | 0.009 | 0.004 | 0.014 | 0.037 | ||
dn | 0.0044 | 0.0346 | 0.0148 | 0.0218 | 0.0119 | 0.0353 | 0.098 | ||
S(GHz/RIU) | 455 | 405 | 405 | 413 | 336 | 397 | 378 | ||
FWHM | 0.222 | 0.223 | 0.222 | 0.223 | 0.222 | 0.222 | 0.222 | 0.222 | |
FOM(RIU-1) | 2.038 | 1.823 | 1.818 | 1.86 | 1.514 | 1.786 | 1.701 | ||
Q | 6.322 | 6.288 | 6.233 | 6.221 | 6.203 | 6.14 | 5.973 | ||
DL | 1.063 | 0.73 | 0.905 | 0.8 | 1.202 | 0.745 | 0.614 | ||
DR | 2.986 | 2.963 | 2.944 | 2.931 | 2.922 | 2.893 | 2.814 | ||
DA | 4.484 | 4.505 | 4.484 | 4.505 | 4.504 | 4.505 | 4.505 | ||
SR | 0.483 | 0.295 | 0.367 | 0.33 | 0.404 | 0.295 | 0.232 | ||
GMOMS3 | f(THz) | 1.835 | 1.816 | 1.794 | 1.766 | 1.837 | 1.807 | 1.786 | 1.71 |
n | 1.33 | 1.3256 | 1.3602 | 1.375 | 1.3968 | 1.4087 | 1.444 | 1.542 | |
df | 0.019 | 0.022 | 0.028 | 0.071 | 0.03 | 0.021 | 0.076 | ||
dn | 0.0044 | 0.0346 | 0.0148 | 0.0218 | 0.0119 | 0.0353 | 0.098 | ||
S(GHz/RIU) | 4318 | 635 | 1892 | 3257 | 2521 | 595 | 776 | ||
FWHM | 0.137 | 0.137 | 0.136 | 0.136 | 0.137 | 0.136 | 0.135 | 0.134 | |
FOM(RIU-1) | 31.52 | 4.675 | 13.911 | 23.773 | 18.537 | 4.407 | 5.787 | ||
Q | 13.255 | 13.191 | 12.985 | 13.409 | 13.287 | 13.23 | 12.761 | ||
DL | 0.035 | 0.225 | 0.071 | 0.033 | 0.052 | 0.241 | 0.133 | ||
DR | 4.906 | 4.865 | 4.789 | 4.963 | 4.9 | 4.861 | 4.671 | ||
DA | 7.299 | 7.353 | 7.353 | 7.299 | 7.353 | 7.407 | 7.463 | ||
SR | 0.15 | 0.143 | 0.135 | 0.108 | 0.133 | 0.144 | 0.103 |
Sensor | S (GHz/RIU) | FOM (RIU−1) | DL (RIU) | Q | Detection |
---|---|---|---|---|---|
GMOMS1 | 227 | 6.313 | 0.25 | 13.528 | Detection of organic materials in wastewater |
GMOMS2 | 455 | 2.038 | 0.614 | 6.322 | |
GMOMS3 | 4318 | 31.52 | 0.033 | 13.409 | |
Ref. [42] | 500 nm/RIU | 5000 | 10−4 | 5.34 × 103 | Detection of organic materials in wastewater |
Ref. [43] | 1000 nm/RIU | 102 | 10−5 | 6418.5 | Organic compound sensing applications |
Ref. [44] | 144.369 nm/RIU | - | - | - | Detection of water concentration in ethanol |
Ref. [45] | 756 nm/RIU | 593.9 | - | 1092 | Detection of ethanol and methanol |
Ref. [46] | 2350 nm/RIU | 195 | - | - | Alcohol sensing application |
Ref. [47] | 240 | - | - | - | Detection of protein |
Ref. [48] | 233 | - | - | - | Detection of hemoglobin |
Ref. [49] | 207 | 3.86 | 0.17 | 13.11 | Detection of cancer |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aliqab, K.; Wekalao, J.; Alsharari, M.; Armghan, A.; Agravat, D.; Patel, S.K. Designing a Graphene Metasurface Organic Material Sensor for Detection of Organic Compounds in Wastewater. Biosensors 2023, 13, 759. https://doi.org/10.3390/bios13080759
Aliqab K, Wekalao J, Alsharari M, Armghan A, Agravat D, Patel SK. Designing a Graphene Metasurface Organic Material Sensor for Detection of Organic Compounds in Wastewater. Biosensors. 2023; 13(8):759. https://doi.org/10.3390/bios13080759
Chicago/Turabian StyleAliqab, Khaled, Jacob Wekalao, Meshari Alsharari, Ammar Armghan, Dhruvik Agravat, and Shobhit K. Patel. 2023. "Designing a Graphene Metasurface Organic Material Sensor for Detection of Organic Compounds in Wastewater" Biosensors 13, no. 8: 759. https://doi.org/10.3390/bios13080759
APA StyleAliqab, K., Wekalao, J., Alsharari, M., Armghan, A., Agravat, D., & Patel, S. K. (2023). Designing a Graphene Metasurface Organic Material Sensor for Detection of Organic Compounds in Wastewater. Biosensors, 13(8), 759. https://doi.org/10.3390/bios13080759