Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Appearance and Working Principle of Solution-Processed Oxide TFT
2.2. Fabrication of Solution-Processed Oxide TFT
2.3. TFT Biosensor Modification
2.4. RPA Sample Preparation
2.5. Evaluation of the Effects of Proteinase K Treatment on Experimental Outcomes
2.6. Detection of Leishmania Using the TFT Biosensor
3. Results and Discussion
3.1. Structure and Working Principle of Solution-Processed Oxide TFT
3.2. RPA Reaction System Optimization on Experimental Outcomes
3.3. Leishmania HSP70 Detection by the TFT Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, K.F.; Sax, D.F.; Gaines, S.D.; Guernier, V.; Guégan, J.F. Globalization of human infectious disease. Ecology 2007, 88, 1903–1910. [Google Scholar] [CrossRef] [PubMed]
- Fardin, M.A. COVID-19 and anxiety: A review of psychological impacts of infectious disease outbreaks. Arch. Clin. Infect. Dis. 2020, 15, e102779. [Google Scholar] [CrossRef] [Green Version]
- Keesing, F.; Belden, L.K.; Daszak, P.; Dobson, A.; Harvell, C.D.; Holt, R.D.; Hudson, P.; Jolles, A.; Jones, K.E.; Mitchell, C.E.; et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 2010, 468, 647–652. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Zuo, X.; Wang, S.; Quan, X.; Chen, D.; Chen, Z.; Jiang, L.; Fan, C.; Xia, F. Lab in a tube: Ultrasensitive detection of MicroRNAs at the single-cell level and in breast cancer patients using quadratic isothermal amplification. J. Am. Chem. Soc. 2013, 135, 4604–4607. [Google Scholar] [CrossRef] [PubMed]
- Oladepo, S.A.; Nzila, A.; Aminu, A.; Sankaran, S. Non-enzymatic detection of miR-21 in cancer cells using a homogeneous mix-and-read smart probe assay. Anal. Biochem. 2022, 645, 114601. [Google Scholar] [CrossRef]
- Min, X.; Zhuang, Y.; Zhang, Z.; Jia, Y.; Hakeem, A.; Zheng, F.; Cheng, Y.; Tang, B.Z.; Lou, X.; Xia, F. Lab in a Tube: Sensitive Detection of MicroRNAs in Urine Samples from Bladder Cancer Patients Using a Single-Label DNA Probe with AIEgens. ACS Appl. Mater. Interfaces 2015, 7, 16813–16818. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Pan, R.; Wan, X.; Tan, Y.; Xu, L.; Ho, C.S.; Ho, R.C. Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. Int. J. Environ. Res. Public Health 2020, 17, 1729. [Google Scholar] [CrossRef] [Green Version]
- Veigas, B.; Fortunato, E.; Baptista, P.V. Field effect sensors for nucleic acid detection: Recent advances and future perspectives. Sensors 2015, 15, 10380–10398. [Google Scholar] [CrossRef] [Green Version]
- Krsihna, B.V.; Ahmadsaidulu, S.; Teja, S.S.T.; Jayanthi, D.; Navaneetha, A.; Reddy, P.R.; Prakash, M.D. Design and development of graphene FET biosensor for the detection of SARS-CoV-2. Silicon 2022, 14, 5913–5921. [Google Scholar] [CrossRef]
- Wang, S.; Hossain, M.Z.; Shinozuka, K.; Shimizu, N.; Kitada, S.; Suzuki, T.; Ichige, R.; Kuwana, A.; Kobayashi, H. Graphene field-effect transistor biosensor for detection of biotin with ultrahigh sensitivity and specificity. Biosens. Bioelectron. 2020, 165, 112363. [Google Scholar] [CrossRef]
- Park, J.; Nguyen, H.H.; Woubit, A.; Kim, M. Applications of field-effect transistor (FET)-type biosensors. Appl. Sci. Converg. Technol. 2014, 23, 61–71. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.; Zhang, L.; Wang, B.; Ruoff, R.S. Chemical vapor deposition of graphene on thin-metal films. Cell Rep. Phys. Sci. 2021, 2, 100372. [Google Scholar] [CrossRef]
- Sun, C.; Wang, X.; Auwalu, M.A.; Cheng, S.; Hu, W. Organic thin film transistors-based biosensors. EcoMat 2021, 3, e12094. [Google Scholar] [CrossRef]
- Yamashita, Y. Organic semiconductors for organic field-effect transistors. Sci. Technol. Adv. Mater. 2009, 10, 024313. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Tsukada, H.; Miyasako, T.; Tue, P.T.; Akiyama, K.; Nakazawa, H.; Takamura, Y.; Mitani, T.; Shimoda, T. High-transconductance indium oxide transistors with a lanthanum-zirconium gate oxide characteristic of an electrolyte. J. Appl. Phys. 2020, 127, 064504. [Google Scholar] [CrossRef]
- Oxner, E.S. Fet Technology and Application; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar] [CrossRef]
- Lobato, I.M.; O’Sullivan, C.K. Recombinase polymerase amplification: Basics, applications and recent advances. Trends Analyt. Chem. 2018, 98, 19–35. [Google Scholar] [CrossRef]
- Tan, M.; Liao, C.; Liang, L.; Yi, X.; Zhou, Z.; Wei, G. Recent advances in recombinase polymerase amplification: Principle, advantages, disadvantages and applications. Front. Cell Infect. Microbiol. 2022, 12, 1019071. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Li, X.; Si, Y.; Wang, M.; Zhou, Y.; Yang, Y.; Liang, N.; Ying, B.; Wu, P. Specific lateral flow detection of isothermal nucleic acid amplicons for accurate point-of-care testing. Biosens. Bioelectron. 2023, 222, 114989. [Google Scholar] [CrossRef] [PubMed]
- Fraga, J.; Montalvo, A.M.; De Doncker, S.; Dujardin, J.C.; Van der Auwera, G. Phylogeny of Leishmania species based on the heat-shock protein 70 gene. Infect. Genet. Evol. 2010, 10, 238–245. [Google Scholar] [CrossRef]
- da Graça, G.C.; Volpini, A.C.; Romero, G.A.; Oliveira Neto, M.P.; Hueb, M.; Porrozzi, R.; Boité, M.C.; Cupolillo, E. Development and validation of PCR-based assays for diagnosis of American cutaneous leishmaniasis and identification of the parasite species. Mem. Inst. Oswaldo Cruz 2012, 107, 664–674. [Google Scholar] [CrossRef]
- da Silva, L.A.; de Sousa, C.d.S.; da Graça, G.C.; Porrozzi, R.; Cupolillo, E. Sequence analysis and PCR-RFLP profiling of the hsp70 gene as a valuable tool for identifying Leishmania species associated with human leishmaniasis in Brazil. Infect. Genet. Evol. 2010, 10, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Gelanew, T.; Hurissa, Z.; Diro, E.; Kassahun, A.; Kuhls, K.; Schönian, G.; Hailu, A. Case report: Disseminated cutaneous leishmaniasis resembling post-kala-azar dermal leishmaniasis caused by Leishmania donovani in three patients co-infected with visceral leishmaniasis and human immunodeficiency virus/acquired immunodeficiency syndrome in Ethiopia. Am. J. Trop. Med. Hyg. 2011, 84, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Gedda, M.R.; Singh, B.; Kumar, D.; Singh, A.K.; Madhukar, P.; Upadhyay, S.; Singh, O.P.; Sundar, S. Post kala-azar dermal leishmaniasis: A threat to elimination program. PLoS Negl. Trop. Dis. 2020, 14, e0008221. [Google Scholar] [CrossRef] [PubMed]
- Leishmaniasis. Available online: https://www.who.int/news-room/fact-sheets/detail/leishmaniasis (accessed on 29 May 2023).
- Leishmaniasis—PAHO/WHO. Pan-American Health Organization. Available online: https://www.paho.org/en/topics/leishmaniasis (accessed on 29 May 2023).
- Saki, J.; Amraee, D.; Ghasemian, M. Comparison of nested-PCR and loop-mediated isothermal amplification for cutaneous leishmaniasis diagnosis. Jundishapur J. Microbiol. 2019, 12, e94171. [Google Scholar] [CrossRef] [Green Version]
- Sereno, D.; Oury, B.; Geiger, A.; Vela, A.; Karmaoui, A.; Desquesnes, M. Isothermal Nucleic Acid Amplification to Detect Infection Caused by Parasites of the Trypanosomatidae Family: A Literature Review and Opinion on the Laboratory to Field Applicability. Int. J. Mol. Sci. 2022, 23, 7543. [Google Scholar] [CrossRef]
- Rathore, H.; Biyani, R.; Kato, H.; Takamura, Y.; Biyani, M. Palm-size and one-inch gel electrophoretic device for reliable and field-applicable analysis of recombinase polymerase amplification. Anal. Methods 2019, 11, 4969–4976. [Google Scholar] [CrossRef]
- Piepenburg, O.; Williams, C.H.; Stemple, D.L.; Armes, N.A. DNA detection using recombination proteins. PLoS Biol. 2006, 4, e204. [Google Scholar] [CrossRef] [PubMed]
- Daher, R.K.; Stewart, G.; Boissinot, M.; Bergeron, M.G. Recombinase Polymerase Amplification for Diagnostic Applications. Clin. Chem. 2016, 62, 947–958. [Google Scholar] [CrossRef] [Green Version]
Name | Sequence |
---|---|
Leishmania Heat shock protein 70 gene | 5′−CATATCACCATCACCAACGACAAGGGCCGACTGAGCAAGGACGAGATCGAGCGCATGGTGAACGATGCGTCGAAGTACGAGCAGGCCGACAAGATGCAGCGCGAGCGCGTGGAGGCGAAGAACGGCCTGGAGAACTACGCGTACTCGATGAAGAACACGGTCTCCGACACGAACGTGTCCGGCAAGCTGGAGGAGAGCGACAGGTCCGCGCTGAACTCGGCGATCGACGCGGCGCTGGAGTGGCTGAACAGCAACCAGGAGGCGTCGAAGGAAGAGTACGAGCA−3′ |
Forward primer | LB-hsp70-sp-Fwd 5′−TACACAGCAC[CCC]CATATCACCATCACCAACG−3′ |
Reverse primer | LB-hsp70-sp-Rev 5′−TGCTCGTACTCTTCCTTCG−3′ |
Probe | Anti-capture-NH2 5′−GTGCTGTGTATTTTTT−[AmC7]−3′ |
a | b | c | d | e | f | |
---|---|---|---|---|---|---|
Template DNA | - | - | - | + | + | + |
Proteinase K | - | + | - | - | + | - |
Purification | - | - | + | - | - | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Biyani, M.; Hirose, D.; Takamura, Y. Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology. Biosensors 2023, 13, 765. https://doi.org/10.3390/bios13080765
Wu W, Biyani M, Hirose D, Takamura Y. Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology. Biosensors. 2023; 13(8):765. https://doi.org/10.3390/bios13080765
Chicago/Turabian StyleWu, Weidong, Manish Biyani, Daisuke Hirose, and Yuzuru Takamura. 2023. "Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology" Biosensors 13, no. 8: 765. https://doi.org/10.3390/bios13080765
APA StyleWu, W., Biyani, M., Hirose, D., & Takamura, Y. (2023). Rapid and Highly Sensitive Detection of Leishmania by Combining Recombinase Polymerase Amplification and Solution-Processed Oxide Thin-Film Transistor Technology. Biosensors, 13(8), 765. https://doi.org/10.3390/bios13080765