High-Performance Au@Ag Nanorods Substrate for SERS Detection of Malachite Green in Aquatic Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent
2.2. Synthesis of Au@Ag NRs Substrate
2.3. Characterization of Au@Ag NRs Substrate
2.4. SERS Detection Based on Au@Ag NRs Substrate
2.5. Detection of Real Samples Based on Au@Ag NRs Substrate
2.6. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Au@Ag NRs Substrate
3.2. SERS Enhancement Evaluation of Au@Ag NRs Substrates with Different Silver Thickness
3.3. SERS Detection Sensitivity of 4-MBA Based on Au@Ag NRs Substrate
3.4. Detection Performance Evaluation of Real Samples Based on Au@Ag NRs Substrate
3.4.1. Optimization of SERS Detection for Malachite Green
3.4.2. Detection Sensitivity and Accuracy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, W.; Ma, J.; Sun, D.-W. Raman spectroscopic techniques for detecting structure and quality of frozen foods: Principles and applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 2623–2639. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Jiang, X.; Rong, Y.; Wei, W.; Wu, S.; Jiao, T.; Chen, Q. Label-free detection of trace level zearalenone in corn oil by surface-enhanced Raman spectroscopy (SERS) coupled with deep learning models. Food Chem. 2023, 414, 135705. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, M.; Shen, L.; Sun, X.; Shi, G.; Ma, W.; Yan, X. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing. Appl. Surf. Sci. 2018, 436, 391–397. [Google Scholar] [CrossRef]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. [Google Scholar] [CrossRef] [Green Version]
- Zheng, J.; He, L. Surface-enhanced Raman spectroscopy for the chemical analysis of food. Compr. Rev. Food Sci. Food Saf. 2014, 13, 317–328. [Google Scholar] [PubMed]
- Creedon, N.C.; Lovera, P.; Furey, A.; O’Riordan, A. Transparent polymer-based SERS substrates templated by a soda can. Sens. Actuators B Chem. 2018, 259, 64–74. [Google Scholar] [CrossRef]
- Yang, L.; Zhen, S.J.; Li, Y.F.; Huang, C.Z. Silver nanoparticles deposited on graphene oxide for ultrasensitive surface-enhanced Raman scattering immunoassay of cancer biomarker. Nanoscale 2018, 10, 11942–11947. [Google Scholar] [CrossRef]
- Li, H.; Geng, W.; Zheng, Z.; Haruna, S.A.; Chen, Q. Flexible SERS sensor using AuNTs-assembled PDMS film coupled chemometric algorithms for rapid detection of chloramphenicol in food. Food Chem. 2023, 418, 135998. [Google Scholar] [CrossRef]
- Bai, S.; Du, Y.; Wang, C.; Wu, J.; Sugioka, K. Reusable surface-enhanced Raman spectroscopy substrates made of silicon nanowire array coated with silver nanoparticles fabricated by metal-assisted chemical etching and photonic reduction. Nanomaterials 2019, 9, 1531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gill, H.S.; Thota, S.; Li, L.; Ren, H.; Mosurkal, R.; Kumar, J. Reusable SERS active substrates for ultrasensitive molecular detection. Sens. Actuators B Chem. 2015, 220, 794–798. [Google Scholar] [CrossRef] [Green Version]
- Chien, Y.-S.; Chang, C.-W.; Huang, C.-C. Differential surface partitioning for an ultrasensitive solid-state SERS sensor and its application to food colorant analysis. Food Chem. 2022, 383, 132415. [Google Scholar] [CrossRef] [PubMed]
- Nie, S.; Emory, S.R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 1997, 275, 1102–1106. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Pu, H.; Huang, L.; Sun, D.-W. Plasmonic nanoparticles on metal-organic framework: A versatile SERS platform for adsorptive detection of new coccine and orange II dyes in food. Food Chem. 2020, 328, 127105. [Google Scholar] [CrossRef]
- Muhammad, M.; Yao, G.; Zhong, J.; Chao, K.; Aziz, M.H.; Huang, Q. A facile and label-free SERS approach for inspection of fipronil in chicken eggs using SiO2@ Au core/shell nanoparticles. Talanta 2020, 207, 120324. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Wang, X.; Waterhouse, G.I.; Qiao, X.; Xu, Z. A surface-imprinted surface-enhanced Raman scattering sensor for histamine detection based on dual semiconductors and Ag nanoparticles. Food Chem. 2022, 369, 130971. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Wang, X.; Dong, Y.; Xie, J.; Gui, X.; Bai, J.; Duan, J.; Liu, J.; Yao, H. Fast synthesis of gold nanostar SERS substrates based on ion-track etched membrane by one-step redox reaction. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 272, 120955. [Google Scholar] [CrossRef]
- Parambath, J.B.; Kim, G.; Han, C.; Mohamed, A.A. SERS performance of cubic-shaped gold nanoparticles for environmental monitoring. Res. Chem. Intermed. 2022, 49, 1259–1271. [Google Scholar] [CrossRef]
- Columbus, S.; Hamdi, A.; Ramachandran, K.; Daoudi, K.; Dogheche, E.H.; Kaidi, M. Rapid and ultralow level SERS detection of ethylparaben using silver nanoprisms functionalized sea urchin-like Zinc oxide nanorod arrays for food safety analysis. Sens. Actuators A Phys. 2022, 347, 113962. [Google Scholar] [CrossRef]
- Liu, B.; Han, G.; Zhang, Z.; Liu, R.; Jiang, C.; Wang, S.; Han, M.-Y. Shell thickness-dependent Raman enhancement for rapid identification and detection of pesticide residues at fruit peels. Anal. Chem. 2012, 84, 255–261. [Google Scholar] [CrossRef]
- Chen, Z.; Sun, Y.; Shi, J.; Zhang, W.; Zhang, X.; Huang, X.; Zou, X.; Li, Z.; Wei, R. Facile synthesis of Au@ Ag core–shell nanorod with bimetallic synergistic effect for SERS detection of thiabendazole in fruit juice. Food Chem. 2022, 370, 131276. [Google Scholar] [CrossRef]
- Pu, H.; Huang, Z.; Xu, F.; Sun, D.-W. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Food Chem. 2021, 343, 128548. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Wang, X.; Huang, Y.; Lai, K.; Fan, Y. Rapid detection of trace methylene blue and malachite green in four fish tissues by ultra-sensitive surface-enhanced Raman spectroscopy coated with gold nanorods. Food Control 2019, 106, 106720. [Google Scholar] [CrossRef]
- Zhao, Q.; Lu, D.; Zhang, G.; Zhang, D.; Shi, X. Recent improvements in enzyme-linked immunosorbent assays based on nanomaterials. Talanta 2021, 223, 121722. [Google Scholar] [CrossRef] [PubMed]
- Pinzaru, S.C.; Magdas, D.A. Ag nanoparticles meet wines: SERS for wine analysis. Food Anal. Methods 2018, 11, 892–900. [Google Scholar] [CrossRef]
- Ouyang, L.; Yao, L.; Zhou, T.; Zhu, L. Accurate SERS detection of malachite green in aquatic products on basis of graphene wrapped flexible sensor. Anal. Chim. Acta 2018, 1027, 83–91. [Google Scholar] [CrossRef]
- ItoItoh, T.; Uchida, T.; Izu, N.; Matsubara, I.; Shin, W. Effect of Core-shell Ceria/Poly(Vinylpyrrolidone) (PVP) Nanoparticles Incorporated in Polymer Films and Their Optical Properties (2): Increasing the Refractive Index. Materials 2017, 6, 2119–2129. [Google Scholar] [CrossRef] [Green Version]
- Hang, Y.; Boryczka, J.; Wu, N. Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: A review. Chem. Soc. Rev. 2022, 51, 329–375. [Google Scholar]
- Oliveira, M.J.; Rubira, R.J.; Furini, L.N.; Batagin-Neto, A.; Constantino, C.J. Detection of thiabendazole fungicide/parasiticide by SERS: Quantitative analysis and adsorption mechanism. Appl. Surf. Sci. 2020, 517, 145786. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, F.; Li, J.-J.; Zhao, J.-W. The effect of nonhomogeneous silver coating on the plasmonic absorption of Au–Ag core–shell nanorod. Gold Bull. 2014, 47, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Wei, Z.; Cao, X.-y. QuEChERS pretreatment combined with ultra-performance liquid chromatography–tandem mass spectrometry for the determination of four veterinary drug residues in marine products. Food Anal. Methods 2019, 12, 1055–1066. [Google Scholar] [CrossRef]
- Ge, F.; Ga, O.L.; Peng, X.; Li, Q.; Wang, Z. Atmospheric pressure glow discharge optical emission spectrometry coupled with laser ablation for direct solid quantitative determination of Zn, Pb, and Cd in soils. Talanta 2020, 218, 121119. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Liu, H.; Wu, Y. A green, reusable SERS film with high sensitivity for in-situ detection of thiram in apple juice. Appl. Surf. Sci. 2017, 416, 704–709. [Google Scholar] [CrossRef]
- Birke, R.L.; Znamenskiy, V.; Lombardi, J.R. A charge-transfer surface enhanced Raman scattering model from time-dependent density functional theory calculations on a Ag 10-pyridine complex. J. Chem. Phys. 2010, 132, 214707. [Google Scholar] [CrossRef] [PubMed]
- Awada, C.; Dab, C.; Grimaldi, M.; Alshoaibi, A.; Ruffino, F. High optical enhancement in Au/Ag alloys and porous Au using Surface-Enhanced Raman spectroscopy technique. Sci. Rep. 2021, 11, 4714. [Google Scholar] [CrossRef]
- Xu, N.N.; Zhang, Q.; Guo, W.; Li, Q.T.; Xu, J. Au@PVP Core-Shell Nanoparticles Used as Surface-Enhanced Raman Spectroscopic Substrate to Detect Malachite Green. Chin. J. Anal. Chem. 2016, 44, 1378–1384. [Google Scholar] [CrossRef]
- Liu, Y.; Lei, L.; Wu, Y.; Chen, Y.; Yan, J.; Zhu, W.; Tan, X.; Wang, Q. Fabrication of sea urchin-like Au@ SiO2 nanoparticles SERS substrate for the determination of malachite green in tilapia. Vib. Spectrosc. 2022, 118, 103319. [Google Scholar] [CrossRef]
- Yue, X.; Li, Y.; Xu, S.; Li, J.; Li, M.; Jiang, L.; Jie, M.; Bai, Y. A portable smartphone-assisted ratiometric fluorescence sensor for intelligent and visual detection of malachite green. Food Chem. 2022, 371, 131164. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Chen, S.; Pan, Y.; Wang, Y.; Xu, N.; Xue, Y.; Wei, X.; Lu, Y. High-Performance Au@Ag Nanorods Substrate for SERS Detection of Malachite Green in Aquatic Products. Biosensors 2023, 13, 766. https://doi.org/10.3390/bios13080766
Zhou X, Chen S, Pan Y, Wang Y, Xu N, Xue Y, Wei X, Lu Y. High-Performance Au@Ag Nanorods Substrate for SERS Detection of Malachite Green in Aquatic Products. Biosensors. 2023; 13(8):766. https://doi.org/10.3390/bios13080766
Chicago/Turabian StyleZhou, Xiaoxiao, Shouhui Chen, Yi Pan, Yuanfeng Wang, Naifeng Xu, Yanwen Xue, Xinlin Wei, and Ying Lu. 2023. "High-Performance Au@Ag Nanorods Substrate for SERS Detection of Malachite Green in Aquatic Products" Biosensors 13, no. 8: 766. https://doi.org/10.3390/bios13080766
APA StyleZhou, X., Chen, S., Pan, Y., Wang, Y., Xu, N., Xue, Y., Wei, X., & Lu, Y. (2023). High-Performance Au@Ag Nanorods Substrate for SERS Detection of Malachite Green in Aquatic Products. Biosensors, 13(8), 766. https://doi.org/10.3390/bios13080766