Nanodroplet-Based Reagent Delivery into Water-in-Fluorinated-Oil Droplets
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Copper Ion Nanodroplets
2.3. Analysis of the Nanodroplet Size with Dynamic Light Scattering
2.4. Generation of Alkaline Water-in-Fluorinated-Oil Microdroplets and Nanodroplet Delivery
2.5. Generation of Immunosensor-Encapsulated Microdroplets and Nanodroplet Delivery
2.6. Measurement of Dose–Response Curve of p53 Quenchbody
3. Results and Discussion
3.1. Preparation and Characterization of Microdroplets and Copper Ion Nanodroplets
3.2. Copper Ion Delivery and Confirmation with Crystal Formation
3.3. Peptide Delivery and Confirmation Using a Fluorescent Immunosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tawfik, D.S.; Griffiths, A.D. Man-made cell-like compartments for molecular evolution. Nat. Biotechnol. 1998, 16, 652–656. [Google Scholar] [CrossRef]
- Zhu, B.; Mizoguchi, T.; Kojima, T.; Nakano, H. Ultra-High-Throughput Screening of an In Vitro-Synthesized Horseradish Peroxidase Displayed on Microbeads Using Cell Sorter. PLoS ONE 2015, 10, e0127479. [Google Scholar] [CrossRef] [Green Version]
- Griffiths, A.D.; Tawfik, D.S. Directed evolution of an extremely fast phosphotriesterase by in vitro compartmentalization. EMBO J. 2003, 22, 24–35. [Google Scholar] [CrossRef] [Green Version]
- Bernath, K.; Magdassi, S.; Tawfik, D.S. Directed evolution of protein inhibitors of DNA-nucleases by in vitro compartmentalization (IVC) and nano-droplet delivery. J. Mol. Biol. 2005, 345, 1015–1026. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, A.D.; Tawfik, D.S. Miniaturising the laboratory in emulsion droplets. Trends Biotechnol. 2006, 24, 395–402. [Google Scholar] [CrossRef]
- Gielen, F.; Hours, R.; Emond, S.; Fischlechner, M.; Schell, U.; Hollfelder, F. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS). Proc. Natl. Acad. Sci. USA 2016, 113, E7383–E7389. [Google Scholar] [CrossRef]
- Vallapurackal, J.; Stucki, A.; Liang, A.D.; Klehr, J.; Dittrich, P.S.; Ward, T.R. Ultrahigh-Throughput Screening of an Artificial Metalloenzyme using Double Emulsions. Angew. Chem. Int. Ed. Engl. 2022, 61, e202207328. [Google Scholar] [CrossRef]
- Vallejo, D.; Nikoomanzar, A.; Paegel, B.M.; Chaput, J.C. Fluorescence-Activated Droplet Sorting for Single-Cell Directed Evolution. ACS Synth. Biol. 2019, 8, 1430–1440. [Google Scholar] [CrossRef]
- Gan, R.; Cabezas, M.D.; Pan, M.; Zhang, H.; Hu, G.; Clark, L.G.; Jewett, M.C.; Nicol, R. High-Throughput Regulatory Part Prototyping and Analysis by Cell-Free Protein Synthesis and Droplet Microfluidics. ACS Synth. Biol. 2022, 11, 2108–2120. [Google Scholar] [CrossRef]
- Bowman, E.K.; Wagner, J.M.; Yuan, S.F.; Deaner, M.; Palmer, C.M.; D’Oelsnitz, S.; Cordova, L.; Li, X.; Craig, F.F.; Alper, H.S. Sorting for secreted molecule production using a biosensor-in-microdroplet approach. Proc. Natl. Acad. Sci. USA 2021, 118, e2106818118. [Google Scholar] [CrossRef]
- Schaerli, Y.; Hollfelder, F. The potential of microfluidic water-in-oil droplets in experimental biology. Mol. Biosyst. 2009, 5, 1392–1404. [Google Scholar] [CrossRef] [PubMed]
- Schmitz, C.H.J.; Rowat, A.C.; Koster, S.; Weitz, D.A. Dropspots: A picoliter array in a microfluidic device. Lab Chip 2009, 9, 44–49. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo, L.M.; Abell, C.; Huck, W.T.S. Surface-induced droplet fusion in microfluidic devices. Lab Chip 2007, 7, 984–986. [Google Scholar] [CrossRef] [PubMed]
- Holtze, C.; Rowat, A.C.; Agresti, J.J.; Hutchison, J.B.; Angile, F.E.; Schmitz, C.H.; Koster, S.; Duan, H.; Humphry, K.J.; Scanga, R.A.; et al. Biocompatible surfactants for water-in-fluorocarbon emulsions. Lab Chip 2008, 8, 1632–1639. [Google Scholar] [CrossRef]
- Baret, J.C. Surfactants in droplet-based microfluidics. Lab Chip 2012, 12, 422–433. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Ricco, R.; Tokudome, Y.; Styles, M.J.; Hill, A.J.; Takahashi, M.; Falcaro, P. Copper Conversion into Cu(OH)(2) Nanotubes for Positioning Cu-3 (BTC)(2) MOF Crystals: Controlling the Growth on Flat Plates, 3D Architectures, and as Patterns. Adv. Funct. Mater. 2014, 24, 1969–1977. [Google Scholar] [CrossRef]
- Dai, Y.C.; Sato, Y.; Zhu, B.; Kitaguchi, T.; Kimura, H.; Ghadessy, F.J.; Ueda, H. Intra Q-body: An antibody-based fluorogenic probe for intracellular proteins that allows live cell imaging and sorting. Chem. Sci. 2022, 13, 9739–9748. [Google Scholar] [CrossRef]
- Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015, 5, 123–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azeem, A.; Rizwan, M.; Ahmad, F.J.; Iqbal, Z.; Khar, R.K.; Aqil, M.; Talegaonkar, S. Nanoemulsion components screening and selection: A technical note. AAPS PharmSciTech 2009, 10, 69–76. [Google Scholar] [CrossRef]
- Gupta, A.; Eral, H.B.; Hatton, T.A.; Doyle, P.S. Nanoemulsions: Formation, properties and applications. Soft Matter 2016, 12, 2826–2841. [Google Scholar] [CrossRef] [Green Version]
- Kishishita, S.; Okajima, T.; Kim, M.; Yamaguchi, H.; Hirota, S.; Suzuki, S.; Kuroda, S.; Tanizawa, K.; Mure, M. Role of copper ion in bacterial copper amine oxidase: Spectroscopic and crystallographic studies of metal-substituted enzymes. J. Am. Chem. Soc. 2003, 125, 1041–1055. [Google Scholar] [CrossRef] [PubMed]
- Rolland, M.; Truong, N.P.; Parkatzidis, K.; Pilkington, E.H.; Torzynski, A.L.; Style, R.W.; Dufresne, E.R.; Anastasaki, A. Shape-Controlled Nanoparticles from a Low-Energy Nanoemulsion. JACS Au 2021, 1, 1975–1986. [Google Scholar] [CrossRef]
- Bian, K.; Chen, F.; Humulock, Z.T.; Tang, Q.; Li, D. Copper Inhibits the AlkB Family DNA Repair Enzymes under Wilson’s Disease Condition. Chem. Res. Toxicol. 2017, 30, 1794–1796. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.K.; Li, Z.; Abate, A.R.; Agresti, J.J.; Weitz, D.A.; Psaltis, D.; Whitesides, G.M. A multi-color fast-switching microfluidic droplet dye laser. Lab Chip 2009, 9, 2767–2771. [Google Scholar] [CrossRef] [Green Version]
- 3M™ Novec™ 7500 Engineered Fluid. Available online: https://multimedia.3m.com/mws/media/65496O/3m-novec-7500-engineered-fluid.pdf (accessed on 9 April 2023).
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Stucki, A.; Juskova, P.; Nuti, N.; Schmitt, S.; Dittrich, P.S. Synchronized Reagent Delivery in Double Emulsions for Triggering Chemical Reactions and Gene Expression. Small Methods 2021, 5, e2100331. [Google Scholar] [CrossRef]
- Li, L.; Zhang, R.; Chen, L.; Tian, X.; Li, T.; Pu, B.; Ma, C.; Ji, X.; Ba, F.; Xiong, C.; et al. Permeability-Engineered Compartmentalization Enables In Vitro Reconstitution of Sustained Synthetic Biology Systems. Adv. Sci. 2022, 9, 22203652. [Google Scholar] [CrossRef]
- Leonaviciene, G.; Mazutis, L. RNA cytometry of single-cells using semi-permeable microcapsules. Nucleic Acids Res. 2023, 51, e2. [Google Scholar] [CrossRef]
- Kellner, M.J.; Koob, J.G.; Gootenberg, J.S.; Abudayyeh, O.O.; Zhang, F. SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat. Protoc. 2019, 14, 2986–3012. [Google Scholar] [CrossRef]
- Yoshimi, K.; Takeshita, K.; Yamayoshi, S.; Shibumura, S.; Yamauchi, Y.; Yamamoto, M.; Yotsuyanagi, H.; Kawaoka, Y.; Mashimo, T. CRISPR-Cas3-based diagnostics for SARS-CoV-2 and influenza virus. iScience 2022, 25, 103830. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, B.; Du, Z.; Dai, Y.; Kitaguchi, T.; Behrens, S.; Seelig, B. Nanodroplet-Based Reagent Delivery into Water-in-Fluorinated-Oil Droplets. Biosensors 2023, 13, 768. https://doi.org/10.3390/bios13080768
Zhu B, Du Z, Dai Y, Kitaguchi T, Behrens S, Seelig B. Nanodroplet-Based Reagent Delivery into Water-in-Fluorinated-Oil Droplets. Biosensors. 2023; 13(8):768. https://doi.org/10.3390/bios13080768
Chicago/Turabian StyleZhu, Bo, Zhe Du, Yancen Dai, Tetsuya Kitaguchi, Sebastian Behrens, and Burckhard Seelig. 2023. "Nanodroplet-Based Reagent Delivery into Water-in-Fluorinated-Oil Droplets" Biosensors 13, no. 8: 768. https://doi.org/10.3390/bios13080768
APA StyleZhu, B., Du, Z., Dai, Y., Kitaguchi, T., Behrens, S., & Seelig, B. (2023). Nanodroplet-Based Reagent Delivery into Water-in-Fluorinated-Oil Droplets. Biosensors, 13(8), 768. https://doi.org/10.3390/bios13080768