Smartphone-Based Rigid Endoscopy Device with Hemodynamic Response Imaging and Laser Speckle Contrast Imaging
Abstract
:1. Introduction
2. Materials and Methods
2.1. Smartphone-Based Rigid Endoscope System Combining LSCI and Hemodynamic Response Imaging
2.2. Installation Development of Smartphone App User Interface for Real-Time Endoscopy and LSCI
2.3. Tissue-Like Flow Phantom Experiment
2.4. In Vivo Rat Ischemia Experiment
3. Results
3.1. Tissue-Like Flow Phantom Experiment
3.2. In Vivo Rat Ischemia Experiment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- John, J.P.; Rodriguez, H. Endoscopy, An Issue of Surgical Clinics; Elsevier Health Sciences: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Kuipers, E.; Haringsma, J. Diagnostic and therapeutic endoscopy. J. Surg. Oncol. 2005, 92, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Gustafson, L.M.; Tami, T.A. Flexible versus rigid esophagoscopy: A practical comparison for otolaryngologists. Curr. Opin. Otolaryngol. Head Neck Surg. 2000, 8, 227–231. [Google Scholar] [CrossRef]
- Schneider, A.; Feussner, H. Diagnostic Procedures, Biomedical Engineering in Gastrointestinal Surgery; Elsevier: Amsterdam, The Netherlands, 2017; pp. 87–220. [Google Scholar]
- Oi, S.; Shibata, M.; Tominaga, J.; Honda, Y.; Shinoda, M.; Takei, F.; Tsugane, R.; Matsuzawa, K.; Sato, O. Efficacy of neuroen-doscopic procedures in minimally invasive preferential management of pineal region tumors: A prospective study. J. Neurosurg. 2000, 93, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Moore, A.H.; England, G. Rigid endoscopy: Urethrocystoscopy and vaginoscopy. In BSAVA Manual of Canine and Feline Endoscopy and Endosurgery; British Small Animal Veterinary Association: Quedgeley, UK, 2008; pp. 142–157. [Google Scholar]
- Unfried, G.; Wieser, F.; Albrecht, A.; Kaider, A.; Nagele, F. Flexible versus rigid endoscopes for outpatient hysteroscopy: A prospective randomized clinical trial. Hum. Reprod. 2001, 16, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Chiu, P.W.-Y. Robotic Endoscopy. Visc. Med. 2018, 34, 45–51. [Google Scholar] [CrossRef]
- Forrester, K.R.; Stewart, C.; Leonard, C.; Tulip, J.; Bray, R.C. Endoscopic laser imaging of tissue perfusion: New instru-mentation and technique. Lasers Surg. Med. 2003, 33, 151–157. [Google Scholar] [CrossRef]
- Bray, R.C.; Forrester, K.R.; Reed, J.; Leonard, C.; Tulip, J. Endoscopic laser speckle imaging of tissue blood flow: Applications in the human knee. J. Orthop. Res. 2006, 24, 1650–1659. [Google Scholar] [CrossRef]
- Kojima, S.; Sakamoto, T.; Nagai, Y.; Matsui, Y.; Nambu, K.; Masamune, K. Laser Speckle Contrast Imaging for Intraoperative Quantitative Assessment of Intestinal Blood Perfusion During Colorectal Surgery: A Prospective Pilot Study. Surg. Innov. 2019, 26, 293–301. [Google Scholar] [CrossRef]
- Piper, H.; Meuter, K.; Schäfer, C. Cellular mechanisms of ischemia-reperfusion injury. Ann. Thorac. Surg. 2003, 75, S644–S648. [Google Scholar] [CrossRef]
- Park, J.L.; Lucchesi, B.R. Mechanisms of myocardial reperfusion injury. Ann. Thorac. Surg. 1999, 68, 1905–1912. [Google Scholar] [CrossRef]
- Senarathna, J.; Rege, A.; Li, N.; Thakor, N.V. Laser Speckle Contrast Imaging: Theory, Instrumentation and Applications. IEEE Rev. Biomed. Eng. 2013, 6, 99–110. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Li, Y.; Liu, S.; Ma, P.; Guo, M.; Zhou, E.; Duan, L.; Fan, J.; Liao, T.; Tan, Q.; et al. Ischemia and reperfusion injury combined with cisplatin induces immunogenic cell death in lung cancer cells. Cell Death Dis. 2022, 13, 9. [Google Scholar] [CrossRef] [PubMed]
- Mennes, O.A.; van Netten, J.J.; van Baal, J.G.; Steenbergen, W. Assessment of microcirculation in the diabetic foot with laser speckle contrast imaging. Physiol. Meas. 2019, 40, 6. [Google Scholar] [CrossRef]
- Dunn, A.K. Laser Speckle Contrast Imaging of Cerebral Blood Flow. Ann. Biomed. Eng. 2011, 40, 367–377. [Google Scholar] [CrossRef] [Green Version]
- Katsui, S.; Inoue, Y.; Yamamoto, Y.; Igari, K.; Kudo, T.; Uetake, H. In Patients with Severe Peripheral Arterial Disease, Re-vascularization-Induced Improvement in Lower Extremity Ischemia Can Be Detected by Laser Speckle Contrast Imaging of the Fluctuation in Blood Perfusion after Local Heating. Ann. Vasc. Surg. 2018, 48, 67–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Miao, P.; Bo, B.; Li, Y.; Tong, S. A prototype system of portable laser speckle imager based on embedded graphics processing unit platform. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 3919–3922. [Google Scholar]
- Kong, P.; Xu, H.; Li, R.; Huang, G.; Liu, W. Laser Speckle Contrast Imaging Based on a Mobile Phone Camera. IEEE Access 2021, 9, 76730–76737. [Google Scholar] [CrossRef]
- Eckle, T.; Gayat, E.; Aulagnier, J.; Matthieu, E.; Boisson, M.; Fischler, M. Non-Invasive Measurement of Hemoglobin: As-sessment of Two Different Point-of-Care Technologies. PLoS ONE 2012, 7, 1. [Google Scholar]
- Banerjee, A.; Bhattacharyya, N.; Ghosh, R.; Singh, S.; Adhikari, A.; Mondal, S.; Roy, L.; Bajaj, A.; Ghosh, N.; Bhushan, A.; et al. Non-invasive estimation of hemoglobin, bilirubin and oxygen saturation of neonates simultaneously using whole optical spectrum analysis at point of care. Sci. Rep. 2023, 13, 2370. [Google Scholar] [CrossRef]
- Xu, X.; Akay, A.; Wei, H.; Wang, S.; Pingguan-Murphy, B.; Erlandsson, B.-E.; Li, X.; Lee, W.; Hu, J.; Wang, L.; et al. Advances in Smartphone-Based Point-of-Care Diagnostics. Proc. IEEE 2015, 103, 236–247. [Google Scholar] [CrossRef]
- Hu, J.; Cui, X.; Gong, Y.; Xu, X.; Gao, B.; Wen, T.; Lu, T.J.; Xu, F. Portable microfluidic and smartphone-based devices for monitoring of cardiovascular diseases at the point of care. Biotechnol. Adv. 2016, 34, 305–320. [Google Scholar] [CrossRef]
- Purohit, B.; Kumar, A.; Mahato, K.; Chandra, P. Smartphone-assisted personalized diagnostic devices and wearable sensors. Curr. Opin. Biomed. Eng. 2020, 13, 42–50. [Google Scholar] [CrossRef]
- Quimby, A.E.; Kohlert, S.; Caulley, L.; Bromwich, M. Smartphone adapters for flexible Nasolaryngoscopy: A systematic review. J. Otolaryngol. Head Neck Surg. 2018, 47, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alawsi, T.; Al-Bawi, Z. A review of smartphone point-of-care adapter design. Eng. Rep. 2019, 1, e12039. [Google Scholar] [CrossRef]
- Kim, Y.; Oh, J.; Choi, S.-H.; Jung, A.; Lee, J.-G.; Lee, Y.S.; Kim, J.K. A Portable Smartphone-Based Laryngoscope System for High-Speed Vocal Cord Imaging of Patients with Throat Disorders: Instrument Validation Study. JMIR mHealth uHealth 2021, 9, e25816. [Google Scholar] [CrossRef] [PubMed]
- Boas, D.A.; Dunn, A.K. Laser speckle contrast imaging in biomedical optics. J. Biomed. Opt. 2010, 15, 011109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, H.; Yan, Y.; Duong, T.Q. Temporal statistical analysis of laser speckle images and its application to retinal blood-flow imaging. Opt. Express 2008, 16, 10214–10219. [Google Scholar] [CrossRef] [Green Version]
- Ramirez-San-Juan, J.C.; Regan, C.; Coyotl-Ocelotl, B.; Choi, B. Spatial versus temporal laser speckle contrast analyses in the presence of static optical scatterers. J. Biomed. Opt. 2014, 19, 106009. [Google Scholar] [CrossRef] [Green Version]
- Qin, J.; Reif, R.; Zhi, Z.; Dziennis, S.; Wang, R. Hemodynamic and morphological vasculature response to a burn moni-tored using a combined dual-wavelength laser speckle and optical microangiography imaging system. Biomed. Opt. Express 2012, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Goldfain, A.M.; Lemaillet, P.; Allen, D.W.; Briggman, K.A.; Hwang, J. Polydimethylsiloxane tissue-mimicking phantoms with tunable optical properties. J. Biomed. Opt. 2021, 27, 074706. [Google Scholar] [CrossRef]
- Hwang, J.; Kim, H.-J.; Lemaillet, P.; Wabnitz, H.; Grosenick, D.; Yang, L.; Gladytz, T.; McClatchy, D.; Allen, D.; Briggman, K.; et al. Polydimethylsiloxane tissue-mimicking phantoms for quantitative optical medical imaging standards. In Design and Quality for Biomedical Technologies X; SPIE: Bellingham, WA, USA, 2017. [Google Scholar] [CrossRef]
- Tumanov, A.V.; Jobin, C.; Koroleva, E.P.; Perez-Chanona, E.; Gubernatorova, E.O. Murine Model of Intestinal Ische-mia-reperfusion Injury. J. Vis. Exp. 2016, 111, 53881. [Google Scholar]
- Choi, B.; Ramirez-San-Juan, J.C.; Lotfi, J.; Nelson, J.S. Linear response range characterization and in vivo application of laser speckle imaging of blood flow dynamics. J. Biomed. Opt. 2006, 11, 041129. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.R.; Ashour, R.; Sullender, C.T.; Dunn, A.K. Continuous blood flow visualization with laser speckle contrast imaging during neurovascular surgery. Neurophotonics 2022, 9, 021908. [Google Scholar] [CrossRef] [PubMed]
- Wildeboer, A.; Heeman, W.; van der Bilt, A.; Hoff, C.; Calon, J.; Boerma, E.C.; Al-Taher, M.; Bouvy, N. Laparoscopic Laser Speckle Contrast Imaging Can Visualize Anastomotic Perfusion: A Demonstration in a Porcine Model. Life 2022, 12, 1251. [Google Scholar] [CrossRef] [PubMed]
- Oh, E.; Kim, W.W.; Nam, S.-H.; Cheon, G.W.; Ning, B.; Cha, J. Development of a portable imager for intraoperative real-time localization of parathyroid glands. In Advanced Biomedical and Clinical Diagnostic and Surgical Guidance Systems XVIII; SPIE: Bellingham, WA, USA, 2020. [Google Scholar] [CrossRef]
- Zheng, C.; Lau, L.W.; Cha, J. Dual-display laparoscopic laser speckle contrast imaging for real-time surgical assistance. Biomed. Opt. Express 2018, 9, 5962–5981. [Google Scholar] [CrossRef] [PubMed]
- Heeman, W.; Dijkstra, K.; Hoff, C.; Koopal, S.; Pierie, J.-P.; Bouma, H.; Boerma, E.C. Application of laser speckle contrast imaging in laparoscopic surgery. Biomed. Opt. Express 2019, 10, 2010–2019. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Choi, W.J.; Oh, J.; Kim, J.K. Compact Smartphone-Based Laser Speckle Contrast Imaging Endoscope Device for Point-of-Care Blood Flow Monitoring. Biosensors 2022, 12, 398. [Google Scholar] [CrossRef]
- Lu, G.; Fei, B. Medical hyperspectral imaging: A review. J. Biomed. Opt. 2014, 19, 010901. [Google Scholar] [CrossRef]
- Calin, M.A.; Parasca, S.V.; Savastru, D.; Manea, D. Hyperspectral Imaging in the Medical Field: Present and Future. Appl. Spectrosc. Rev. 2013, 49, 435–447. [Google Scholar] [CrossRef]
- Sicher, C.; Rutkowski, R.; Lutze, S.; von Podewils, S.; Wild, T.; Kretching, M.; Daeschlein, G. Hyperspectral imaging as a possible tool for visualization of changes in hemoglobin oxygenation in patients with deficient hemodynamics—proof of concept. Biomed. Eng. Biomed. Tech. 2018, 63, 609–616. [Google Scholar] [CrossRef]
- Wild, T.; Becker, M.; Winter, J.; Schuhschenk, N.; Daeschlein, G.; Siemers, F. Hyperspectral imaging of tissue perfusion and oxygenation in wounds: Assessing the impact of a micro capillary dressing. J. Wound Care 2018, 27, 38–51. [Google Scholar] [CrossRef]
- Jansen-Winkeln, B.; Holfert, N.; Köhler, H.; Moulla, Y.; Takoh, J.P.; Rabe, S.M.; Mehdorn, M.; Barberio, M.; Chalopin, C.; Neumuth, T.; et al. Determination of the transection margin during colorectal resection with hyperspectral imaging (HSI). Int. J. Color. Dis. 2019, 34, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Namgoong, J.-M.; Kim, Y.; Cha, J.; Kim, J.K. Multimodal Imaging of Laser Speckle Contrast Imaging Combined with Mosaic Filter-Based Hyperspectral Imaging for Precise Surgical Guidance. IEEE Trans. Biomed. Eng. 2022, 69, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Conductscience Laser Speckle Perfusion Imager. Available online: https://conductscience.com/lab/laser-speckle-perfusion-imager/ (accessed on 22 March 2023).
- Omegawave Laser Speckle Perfusion Imager. Available online: http://www.omegawave.co.jp/en/products/oz/price.shtml (accessed on 22 March 2023).
- Uthoff, R.D.; Song, B.; Maarouf, M.; Shi, V.Y.; Liang, R. Point-of-care, multispectral, smartphone-based dermascopes for dermal lesion screening and erythema monitoring. J. Biomed. Opt. 2020, 25, 066004-21. [Google Scholar] [CrossRef]
- Ding, H.; Chen, C.; Zhao, H.; Yue, Y.; Han, C. Smartphone based multispectral imager and its potential for point-of-care testing. Analyst 2019, 144, 4380–4385. [Google Scholar] [CrossRef] [PubMed]
- Hillman, E.M.C. Optical brain imaging in vivo: Techniques and applications from animal to man. J. Biomed. Opt. 2007, 12, 051402. [Google Scholar] [CrossRef]
- Morone, K.A.; Neimat, J.S.; Roe, A.W.; Friedman, R.M. Review of functional and clinical relevance of intrinsic signal optical imaging in human brain mapping. Neurophotonics 2017, 4, 031220. [Google Scholar] [CrossRef] [Green Version]
- Kim, E.; Anguluan, E.; Kim, J.G. Monitoring cerebral hemodynamic change during transcranial ultrasound stimulation using optical intrinsic signal imaging. Sci. Rep. 2017, 7, 13148. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Choi, W.J.; Oh, J.; Lee, K.; Kim, J.K. Smartphone-Based Rigid Endoscopy Device with Hemodynamic Response Imaging and Laser Speckle Contrast Imaging. Biosensors 2023, 13, 816. https://doi.org/10.3390/bios13080816
Kim Y, Choi WJ, Oh J, Lee K, Kim JK. Smartphone-Based Rigid Endoscopy Device with Hemodynamic Response Imaging and Laser Speckle Contrast Imaging. Biosensors. 2023; 13(8):816. https://doi.org/10.3390/bios13080816
Chicago/Turabian StyleKim, Youngkyu, Woo June Choi, Jeongmin Oh, Kwanhee Lee, and Jun Ki Kim. 2023. "Smartphone-Based Rigid Endoscopy Device with Hemodynamic Response Imaging and Laser Speckle Contrast Imaging" Biosensors 13, no. 8: 816. https://doi.org/10.3390/bios13080816
APA StyleKim, Y., Choi, W. J., Oh, J., Lee, K., & Kim, J. K. (2023). Smartphone-Based Rigid Endoscopy Device with Hemodynamic Response Imaging and Laser Speckle Contrast Imaging. Biosensors, 13(8), 816. https://doi.org/10.3390/bios13080816