Fabry–Perot Interferometric Fiber-Optic Sensor for Rapid and Accurate Thrombus Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sensor Fabrication and Operation Principle
3. Result
Comparative Analysis: SMF Tip vs. Micro-Tip
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosendaal, F.R. Causes of venous thrombosis. Thromb. J. 2016, 14, 24. [Google Scholar] [CrossRef] [Green Version]
- Beckman, M.G.; Hooper, W.C.; Critchley, S.E.; Ortel, T.L. Venous thromboembolism: A public health concern. Am. J. Prev. Med. 2010, 38, S495–S501. [Google Scholar] [CrossRef] [PubMed]
- Palta, S.; Saroa, R.; Palta, A. Overview of the coagulation system. Indian J. Anaesth. 2014, 58, 515. [Google Scholar] [CrossRef]
- Navarro, S.; Stegner, D.; Nieswandt, B.; Heemskerk, J.W.; Kuijpers, M.J. Temporal roles of platelet and coagulation pathways in collagen-and tissue factor-induced thrombus formation. Int. J. Mol. Sci. 2022, 23, 358. [Google Scholar] [CrossRef]
- Rickles, F.R.; Patierno, S.; Fernandez, P.M. Tissue factor, thrombin, and cancer. Chest 2003, 124, 58S–68S. [Google Scholar] [CrossRef] [PubMed]
- Anand, M.; Rajagopal, K.; Rajagopal, K. A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood. J. Theor. Med. 2003, 5, 183–218. [Google Scholar] [CrossRef] [Green Version]
- Vazquez-Garza, E.; Jerjes-Sanchez, C.; Navarrete, A.; Joya-Harrison, J.; Rodriguez, D. Venous thromboembolism: Thrombosis, inflammation, and immunothrombosis for clinicians. J. Thromb. Thrombolysis 2017, 44, 377–385. [Google Scholar] [CrossRef] [PubMed]
- Lowe, G. Arterial disease and venous thrombosis: Are they related, and if so, what should we do about it? J. Thromb. Haemost. 2006, 4, 1882–1885. [Google Scholar] [CrossRef]
- Bousser, M.-G.; Russell, R. Cerebral venous thrombosis. Primer Cerebrovasc. Dis. 1997, 1, 385–389. [Google Scholar]
- Goldhaber, S.Z. Risk factors for venous thromboembolism. J. Am. Coll. Cardiol. 2010, 56, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Goldhaber, S.Z.; Bounameaux, H. Pulmonary embolism and deep vein thrombosis. Lancet 2012, 379, 1835–1846. [Google Scholar] [CrossRef] [Green Version]
- Lippi, G.; Favaloro, E.J.; Franchini, M. Laboratory diagnostics and therapy in thrombosis and hemostasis: From bedside to bench to bedside. Semin. Thromb. Hemost. 2009, 35, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.-C.; Lin, Y.-H.; Liu, T.-Y.; Lee, P.-Y.; Wang, S.-H. Study of the blood coagulation by ultrasound. J. Med. Biol. Eng. 2011, 31, 79–86. [Google Scholar] [CrossRef]
- Uzlova, S.G.; Guria, K.G.; Guria, G.T. Acoustic determination of early stages of intravascular blood coagulation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 3649–3661. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, M.; Weersink, R.A.; Whelan, W.M. Assessment of thermal coagulation in ex-vivo tissues using Raman spectroscopy. J. Biomed. Opt. 2010, 15, 68001. [Google Scholar] [CrossRef]
- Giangiacomo, R.; Lizzano, R.; Barzaghi, S.; Cattaneo, T.; Barros, A. NIR and other luminometric methods to monitor the primary clotting phase of milk. J. Near Infrared Spectrosc. 1998, 6, 205–211. [Google Scholar] [CrossRef]
- Yang, X.; Yu, P.; Zhang, H.; Zhang, R.; Liu, Y.; Li, H.; Sun, P.; Liu, X.; Wu, Y.; Jia, X. Deep Learning Algorithm Enables Cerebral Venous Thrombosis Detection with Routine Brain Magnetic Resonance Imaging. Stroke 2023, 54, 1357–1366. [Google Scholar] [CrossRef]
- Zhang, W.; Li, M.; Wang, X.; Li, P.; Tang, B. Application of Near-Infrared Fluorescence Imaging in Thrombosis Detection. Anal. Sens. 2023, 3, e202200045. [Google Scholar] [CrossRef]
- Leitão, C.; Pereira, S.O.; Marques, C.; Cennamo, N.; Zeni, L.; Shaimerdenova, M.; Ayupova, T.; Tosi, D. Cost-Effective Fiber Optic Solutions for Biosensing. Biosensors 2022, 12, 575. [Google Scholar] [CrossRef]
- Marazuela, M.; Moreno-Bondi, M. Fiber-optic biosensors–an overview. Anal. Bioanal. Chem. 2002, 372, 664–682. [Google Scholar] [CrossRef]
- Kim, B.; Jeong, H.; Lee, Y.S.; Hong, S.; Oh, K. Spatially selective DNA deposition on the fiber core by optically trapping an aqueous droplet and its application for ultra-compact DNA Fabry-Perot temperature sensor. Sens. Actuators Rep. 2021, 3, 100038. [Google Scholar] [CrossRef]
- Mishra, V.; Singh, N.; Tiwari, U.; Kapur, P. Fiber grating sensors in medicine: Current and emerging applications. Sens. Actuators A Phys. 2011, 167, 279–290. [Google Scholar] [CrossRef]
- Dziuda, Ł. Fiber-optic sensors for monitoring patient physiological parameters: A review of applicable technologies and relevance to use during magnetic resonance imaging procedures. J. Biomed. Opt. 2015, 20, 10901. [Google Scholar] [CrossRef] [Green Version]
- Nedoma, J.; Kepak, S.; Fajkus, M.; Cubik, J.; Siska, P.; Martinek, R.; Krupa, P. Magnetic resonance imaging compatible non-invasive fibre-optic sensors based on the Bragg gratings and interferometers in the application of monitoring heart and respiration rate of the human body: A comparative study. Sensors 2018, 18, 3713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matsumoto, H.; Saegusa, M.; Saito, K.; Mizoi, K. The development of a fibre optic catheter tip pressure transducer. J. Med. Eng. Technol. 1978, 2, 239–242. [Google Scholar] [CrossRef]
- Parthibavarman, M.; Renganathan, B.; Sastikumar, D. Development of high sensitivity ethanol gas sensor based on Co-doped SnO2 nanoparticles by microwave irradiation technique. Curr. Appl. Phys. 2013, 13, 1537–1544. [Google Scholar] [CrossRef]
- Beaudette, K.; Li, J.; Lamarre, J.; Majeau, L.; Boudoux, C. Double-clad fiber-based multifunctional biosensors and multimodal bioimaging systems: Technology and applications. Biosensors 2022, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Biran, I.; Rissin, D.M.; Ron, E.Z.; Walt, D.R. Optical imaging fiber-based live bacterial cell array biosensor. Anal. Biochem. 2003, 315, 106–113. [Google Scholar] [CrossRef]
- Presti, D.L.; Massaroni, C.; Leitão, C.S.J.; Domingues, M.D.F.; Sypabekova, M.; Barrera, D.; Floris, I.; Massari, L.; Oddo, C.M.; Sales, S. Fiber bragg gratings for medical applications and future challenges: A review. IEEE Access 2020, 8, 156863–156888. [Google Scholar] [CrossRef]
- Li, Z.; Liao, C.; Chen, D.; Song, J.; Jin, W.; Peng, G.-D.; Zhu, F.; Wang, Y.; He, J.; Wang, Y. Label-free detection of bovine serum albumin based on an in-fiber Mach-Zehnder interferometric biosensor. Opt. Express 2017, 25, 17105–17113. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Chen, N.; Zhou, X.; Gong, P.; Wang, S.; Zhang, Y.; Zhao, Y. A review of specialty fiber biosensors based on interferometer configuration. J. Biophotonics 2021, 14, e202100068. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shibru, H.; Cooper, K.L.; Wang, A. Miniature fiber-optic multicavity Fabry–Perot interferometric biosensor. Opt. Lett. 2005, 30, 1021–1023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Islam, M.R.; Ali, M.M.; Lai, M.-H.; Lim, K.-S.; Ahmad, H. Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: A review. Sensors 2014, 14, 7451–7488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.-C.; Shyu, L.-H.; Chang, C.-P. The comparison of environmental effects on Michelson and Fabry-Perot interferometers utilized for the displacement measurement. Sensors 2010, 10, 2577–2586. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Gong, Z.; Guo, M.; Yu, S.; Qu, C.; Zhou, X.; Yu, Q. Fiber-optic Fabry-Perot interferometer based high sensitive cantilever microphone. Sens. Actuators A Phys. 2018, 279, 107–112. [Google Scholar] [CrossRef]
- Gangopadhyay, T.K. Progress on Optical Fiber Sensor for the Measurement of Physical Parameters and Chemical Sensing. In Photonics and Fiber Optics; CRC Press: Boca Raton, FL, USA, 2019; pp. 89–129. [Google Scholar]
- Chen, Z.; Xiong, S.; Gao, S.; Zhang, H.; Wan, L.; Huang, X.; Huang, B.; Feng, Y.; Liu, W.; Li, Z. High-temperature sensor based on Fabry-Perot interferometer in microfiber tip. Sensors 2018, 18, 202. [Google Scholar] [CrossRef] [Green Version]
- Gao, S.; Zhang, W.; Bai, Z.-Y.; Zhang, H.; Lin, W.; Wang, L.; Li, J. Microfiber-enabled in-line Fabry–Pérot interferometer for high-sensitive force and refractive index sensing. J. Light. Technol. 2014, 32, 1682–1688. [Google Scholar] [CrossRef]
- Halip, N.M.; Isa, N.; Latif, A.; Mahdi, M.; Bakar, M.A. Asymmetric fiber taper for narrow linewidth comb filter. J. Teknol. 2016, 78, 117–121. [Google Scholar] [CrossRef] [Green Version]
- Zubiate Orzanco, P.; Urrutia Azcona, A.; Ruiz Zamarreño, C.; Egea Urra, J.; Fernández Irigoyen, J.; Giannetti, A.; Baldini, F.; Díaz Lucas, S.; Matías Maestro, I.; Arregui San Martín, F.J. Fiber-based early diagnosis of venous thromboembolic disease by label-free D-dimer detection. Biosens. Bioelectron. 2019, 2019, 100026. [Google Scholar]
- Bourrienne, M.-C.; Loyau, S.; Benichi, S.; Gay, J.; Solo-Nomenjanahary, M.; Journé, C.; Di Meglio, L.; Freiherr von Seckendorff, A.; Desilles, J.-P.; Ho-Tin-Noé, B. A novel mouse model for cerebral venous sinus thrombosis. Transl. Stroke Res. 2021, 12, 1055–1066. [Google Scholar] [CrossRef]
- Wei, T.; Han, Y.; Li, Y.; Tsai, H.-L.; Xiao, H. Temperature-insensitive miniaturized fiber inline Fabry-Perot interferometer for highly sensitive refractive index measurement. Opt. Express 2008, 16, 5764–5769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Zhao, Z.; Chen, N.; Pang, F.; Chen, Z.; Liu, Y.; Wang, T. Temperature characteristics of silicon core optical fiber Fabry–Perot interferometer. Opt. Lett. 2015, 40, 1362–1365. [Google Scholar] [CrossRef]
- Song, S.; Jung, A.; Hong, S.; Oh, K. Strain-Insensitive biocompatible temperature sensor based on DNA solid film on an optical microfiber. IEEE Photonics Technol. Lett. 2019, 31, 1925–1928. [Google Scholar] [CrossRef]
- Gonzáles, R.E.R.; Chillcce, E.F.; Barbosa, L.C. Micro-size tapered silica fibers for sensing applications. In Proceedings of the Photonic Fiber and Crystal Devices: Advances in Materials and Innovations in Device Applications V, San Diego, CA, USA, 21–25 August 2011; pp. 147–153. [Google Scholar]
- SCCSR Test. LFS-4000 LARGE DIAMETER FIBER SPLICER. Available online: https://www.researchgate.net/profile/Kevin-Farley-3/publication/272101250_Design_and_experimental_demonstration_of_a_large_pedestal_thulium-doped_fibre/links/568aad3708ae051f9afa68a1/Design-and-experimental-demonstration-of-a-large-pedestal-thulium-doped-fibre.pdf (accessed on 4 January 2016).
- Tsuchizawa, T.; Yamada, K.; Fukuda, H.; Watanabe, T.; Takahashi, J.-I.; Takahashi, M.; Shoji, T.; Tamechika, E.; Itabashi, S.-I.; Morita, H. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 2005, 11, 232–240. [Google Scholar] [CrossRef]
- Li, J.; Li, Z.; Yang, J.; Zhang, Y.; Ren, C. Microfiber Fabry-Perot interferometer used as a temperature sensor and an optical modulator. Opt. Laser Technol. 2020, 129, 106296. [Google Scholar] [CrossRef]
- Snyder, A.W.; Love, J.D. Optical Waveguide Theory; Chapman and Hall London: London, UK, 1983; Volume 175. [Google Scholar]
- Ghatak, A.; Thyagarajan, K. An Introduction to Fiber Optics; Cambridge University Press: Cambridge, UK, 1998. [Google Scholar]
- Marcuse, D. Field deformation and loss caused by curvature of optical fibers. JOSA 1976, 66, 311–320. [Google Scholar] [CrossRef]
- Li, J.; Sun, L.-P.; Gao, S.; Quan, Z.; Chang, Y.-L.; Ran, Y.; Jin, L.; Guan, B.-O. Ultrasensitive refractive-index sensors based on rectangular silica microfibers. Opt. Lett. 2011, 36, 3593–3595. [Google Scholar] [CrossRef] [PubMed]
- Bosch, M.E.; Sánchez, A.J.R.; Rojas, F.S.; Ojeda, C.B. Recent development in optical fiber biosensors. Sensors 2007, 7, 797–859. [Google Scholar] [CrossRef]
- Ma, W.; Wang, R.; Rong, Q.; Shao, Z.; Zhang, W.; Guo, T.; Wang, J.; Qiao, X. CO2 Gas Sensing Using Optical Fiber Fabry–Perot Interferometer Based on Polyethyleneimine/Poly (Vinyl Alcohol) Coating. IEEE Photonics J. 2017, 9, 1–8. [Google Scholar]
- Sharma, A.K.; Gupta, J.; Sharma, I. Fiber optic evanescent wave absorption-based sensors: A detailed review of advancements in the last decade (2007–18). Optik 2019, 183, 1008–1025. [Google Scholar] [CrossRef]
- Pahurkar, V.; Tamgadge, Y.; Gambhire, A.; Muley, G. Evanescent wave absorption based polyaniline cladding modified fiber optic intrinsic biosensor for glucose sensing application. Measurement 2015, 61, 9–15. [Google Scholar] [CrossRef]
- Peterson, J.I.; Vurek, G.G. Fiber-optic sensors for biomedical applications. Science 1984, 224, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Wang, W.; Wu, N.; Zou, X.; Guthy, C.; Wang, X. A miniature fiber optic refractive index sensor built in a MEMS-based microchannel. Sensors 2011, 11, 1078–1087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reid, C.B.; Reese, G.; Gibson, A.P.; Wallace, V.P. Terahertz time-domain spectroscopy of human blood. IEEE Trans. Terahertz Sci. Technol. 2013, 3, 363–367. [Google Scholar] [CrossRef] [Green Version]
- Nahmad-Rohen, A.; Contreras-Tello, H.; Morales-Luna, G.; García-Valenzuela, A. On the effective refractive index of blood. Phys. Scr. 2015, 91, 15503. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghasemi, M.; Oh, J.; Jeong, S.; Lee, M.; Bohlooli Darian, S.; Oh, K.; Kim, J.K. Fabry–Perot Interferometric Fiber-Optic Sensor for Rapid and Accurate Thrombus Detection. Biosensors 2023, 13, 817. https://doi.org/10.3390/bios13080817
Ghasemi M, Oh J, Jeong S, Lee M, Bohlooli Darian S, Oh K, Kim JK. Fabry–Perot Interferometric Fiber-Optic Sensor for Rapid and Accurate Thrombus Detection. Biosensors. 2023; 13(8):817. https://doi.org/10.3390/bios13080817
Chicago/Turabian StyleGhasemi, Marjan, Jeongmin Oh, Sunghoon Jeong, Mingyu Lee, Saeed Bohlooli Darian, Kyunghwan Oh, and Jun Ki Kim. 2023. "Fabry–Perot Interferometric Fiber-Optic Sensor for Rapid and Accurate Thrombus Detection" Biosensors 13, no. 8: 817. https://doi.org/10.3390/bios13080817
APA StyleGhasemi, M., Oh, J., Jeong, S., Lee, M., Bohlooli Darian, S., Oh, K., & Kim, J. K. (2023). Fabry–Perot Interferometric Fiber-Optic Sensor for Rapid and Accurate Thrombus Detection. Biosensors, 13(8), 817. https://doi.org/10.3390/bios13080817