Nanosphere Lithography-Enabled Hybrid Ag-Cu Surface-Enhanced Raman Spectroscopy Substrates with Enhanced Absorption of Excitation Light
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. SERS Substrates Preparation
2.3. Characterization and Measurement
3. Results and Discussion
3.1. Fabrication and Characterization of Hybrid Ag-Cu SERS Substrate
3.2. Analysis Sensitivity and Repeatability
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, X.; Huang, S.-C.; Hu, S.; Yan, S.; Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, K.; Jiang, S.; Luo, D.; Chen, R.; Xu, C.; Shum, P.; Liu, Y.J. Recent progress on two-dimensional layered materials for surface enhanced Raman spectroscopy and their applications. Mater. Today Phys. 2021, 18, 100378. [Google Scholar] [CrossRef]
- Wang, Z.; Zong, S.; Wang, Y.; Li, N.; Li, L.; Lu, J.; Wang, Z.; Chen, B.; Cui, Y. Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 2018, 10, 9053–9062. [Google Scholar] [CrossRef] [PubMed]
- Albella, P.; Alcaraz de la Osa, R.; Moreno, F.; Maier, S.A. Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies. ACS Photon. 2014, 1, 524–529. [Google Scholar] [CrossRef]
- Lombardi, J.R.; Birke, R.L. A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 2008, 112, 5605–5617. [Google Scholar] [CrossRef]
- Yu, J.; Yang, M.; Li, Z.; Liu, C.; Wei, Y.; Zhang, C.; Man, B.; Lei, F. Hierarchical particle-in-quasicavity architecture for ultratrace in situ Raman sensing and its application in real-time monitoring of toxic pollutants. Anal. Chem. 2020, 92, 14754–14761. [Google Scholar] [CrossRef]
- Cialla-May, D.; Zheng, X.-S.; Weber, K.; Popp, J. Recent progress in surface-enhanced Raman spectroscopy for biological and biomedical applications: From cells to clinics. Chem. Soc. Rev. 2017, 46, 3945–3961. [Google Scholar] [CrossRef]
- Zhuang, J.; Zhao, Z.; Lian, K.; Yin, L.; Wang, J.; Man, S.; Liu, G.; Ma, L. SERS-based CRISPR/cas assay on microfluidic paper analytical devices for supersensitive detection of pathogenic bacteria in foods. Biosens. Bioelectron. 2022, 207, 114167. [Google Scholar] [CrossRef]
- Dong, J.; Yuan, J.; Cai, Y.; Zhao, Y.; Han, Q.; Gao, W.; Li, T.; Zhu, L.; Qi, J. Electrically controllable self-assembly of gold nanorods into a plasmonic nanostructure for highly efficiency SERS. Opt. Lett. 2022, 47, 6365–6368. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, C.; Long, L.; Masaki, T.; Tang, M.; Yang, L.; Liu, J.; Huang, Z.; Li, Z.; Luo, X.; et al. Charge-transfer resonance and electromagnetic enhancement synergistically enabling MXenes with excellent SERS sensitivity for SARS-CoV-2 S protein detection. Nano-Micro Lett. 2021, 13, 52. [Google Scholar] [CrossRef]
- Zhao, X.; Dong, J.; Cao, E.; Han, Q.; Gao, W.; Wang, Y.; Qi, J.; Sun, M. Plasmon-exciton coupling by hybrids between graphene and gold nanorods vertical array for sensor. Appl. Mater. Today 2019, 14, 166–174. [Google Scholar] [CrossRef]
- Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. [Google Scholar] [CrossRef] [PubMed]
- Koo, T.; Chan, S.; Berlin, A. Single-molecule detection of biomolecules by surface-enhanced coherent anti-stokes Raman scattering. Opt. Lett. 2005, 30, 1024–1026. [Google Scholar] [CrossRef] [PubMed]
- Yampolsky, S.; Fishman, D.A.; Dey, S.; Hulkko, E.; Banik, M.; Potma, E.O.; Apkarian, V.A. Seeing a single molecule vibrate through time-resolved coherent anti-stokes Raman scattering. Nat. Photon. 2014, 8, 650–656. [Google Scholar] [CrossRef]
- Keshavarz, M.; Tan, B.; Venkatakrishnan, K. Label-free SERS quantum semiconductor probe for molecular-level and in vitro cellular detection: A noble-metal-free methodology. ACS Appl. Mater. Interfaces 2018, 10, 34886–34904. [Google Scholar] [CrossRef]
- Haldavnekar, R.; Venkatakrishnan, K.; Tan, B. Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection. Nat. Commun. 2018, 9, 3065. [Google Scholar] [CrossRef]
- Song, G.; Sun, H.; Chen, J.; Chen, Z.; Liu, B.; Liu, Z.; Cong, S.; Zhao, Z. Quantum effects enter semiconductor-based SERS: Multiresonant MoO3·xH2O quantum dots enabling direct, sensitive SERS detection of small inorganic molecules. Anal. Chem. 2022, 94, 5048–5054. [Google Scholar] [CrossRef]
- Wei, H.; Xu, H. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy. Nanoscale 2013, 5, 10794–10805. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, X.-P.; Xu, Q.-Y.; Nie, X.-G.; Younis, M.R.; Liu, W.-Y.; Xia, X.-H. Importance of hot spots in gold nanostructures on direct plasmon-enhanced electrochemistry. ACS Appl. Nano Mater. 2018, 1, 5805–5811. [Google Scholar] [CrossRef]
- Lin, X.-M.; Cui, Y.; Xu, Y.-H.; Ren, B.; Tian, Z.-Q. Surface-enhanced Raman spectroscopy: Substrate-related issues. Anal. Bioanal. Chem. 2009, 394, 1729–1745. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Tian, J.; Sun, X. Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: Rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Appl. Mater. Interfaces 2010, 2, 2987–2991. [Google Scholar] [CrossRef]
- Hu, L.; Liu, Y.J.; Xu, S.; Li, Z.; Guo, J.; Gao, S.; Lu, Z.; Si, H.; Jiang, S.; Wang, S. Facile and low-cost fabrication of Ag-Cu substrates via replacement reaction for highly sensitive SERS applications. Chem. Phys. Lett. 2017, 667, 351–356. [Google Scholar] [CrossRef]
- Gu, H.-X.; Xue, L.; Zhang, Y.-F.; Li, D.-W.; Long, Y.-T. Facile fabrication of a silver dendrite-integrated chip for surface-enhanced Raman scattering. ACS Appl. Mater. Interfaces 2015, 7, 2931–2936. [Google Scholar] [CrossRef] [PubMed]
- Hu, L.; Liu, Y.J.; Han, Y.; Chen, P.; Zhang, C.; Li, C.; Lu, Z.; Luo, D.; Jiang, S. Graphene oxide-decorated silver dendrites for high-performance surface-enhanced Raman scattering applications. J. Mater. Chem. C 2017, 5, 3908–3915. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, C.; Yu, J.; Li, Z.; Liu, L.; Li, C.; Xu, S.; Li, W.; Man, B.; Zhang, C. Hydrophobic multiscale cavities for high-performance and self-cleaning surface-enhanced Raman spectroscopy (SERS) sensing. Nanophotonics 2020, 9, 4761–4773. [Google Scholar] [CrossRef]
- Li, W.; Zamani, R.; Gil, P.R.; Pelaz, B.; Ibanez, M.; Cadavid, D.; Shavel, A.; Alvarez-Puebla, R.A.; Parak, W.J.; Arbiol, J.; et al. CuTe nanocrystals: Shape and size control, plasmonic properties, and use as SERS probes and photothermal agents. J. Am. Chem. Soc. 2013, 135, 7098–7101. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Liao, Z.; Liu, Z.; Liu, X.; Zhou, J.; Liu, G.; Yi, Z.; Wang, J. Recent progresses on metamaterials for optical absorption and sensing: A review. J. Phys. D-Appl. Phys. 2021, 54, 113002. [Google Scholar] [CrossRef]
- Ghobadi, A.; Hajian, H.; Gokbayrak, M.; Dereshgi, S.A.; Toprak, A.; Butun, B.; Ozbay, E. Visible light nearly perfect absorber: An optimum unit cell arrangement for near absolute polarization insensitivity. Opt. Express 2017, 25, 27624–27634. [Google Scholar] [CrossRef]
- Hubarevich, A.; Kukhta, A.; Demir, H.V.; Sun, X.; Wang, H. Ultra-thin broadband nanostructured insulator-metal-insulator-metal plasmonic light absorber. Opt. Express 2015, 23, 9753–9761. [Google Scholar] [CrossRef]
- Aalizadeh, M.; Khavasi, A.; Butun, B.; Ozbay, E. Large-area, cost-effective, ultra-broadband perfect absorber utilizing manganese in metal-insulator-metal structure. Sci. Rep. 2018, 8, 9162. [Google Scholar] [CrossRef]
- Yang, Z.-L.; Li, Q.-H.; Ren, B.; Tian, Z.-Q. Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chem. Commun. 2011, 47, 3909. [Google Scholar] [CrossRef]
- Tian, S.; Zhou, Q.; Gu, Z.; Gu, X.; Zheng, J. Fabrication of a bowl-shaped silver cavity substrate for SERS-based immunoassay. Analyst 2013, 138, 2604. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Zhang, S.; Wang, Y.; Guo, Y.; Sun, L.; Li, K.; Cui, G. Effective plasmon coupling in conical cavities for sensitive surface enhanced Raman scattering with quantitative analysis ability. Nanoscale 2019, 11, 17913–17919. [Google Scholar] [CrossRef] [PubMed]
- Kralchevsky, P.A.; Denkov, N.D. Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 2001, 6, 383–401. [Google Scholar] [CrossRef]
- Correia, E.L.; Brown, N.; Razavi, S. Janus particles at fluid interfaces: Stability and interfacial rheology. Nanomaterials 2021, 11, 374. [Google Scholar] [CrossRef]
- Chandramohan, A.; Sibirev, N.V.; Dubrovskii, V.G.; Petty, M.C.; Gallant, A.J.; Zeze, D.A. Model for large-area monolayer coverage of polystyrene nanospheres by spin coating. Sci. Rep. 2017, 7, 40888. [Google Scholar] [CrossRef] [PubMed]
- Shao, W.; Xu, J.; Chen, J.; Wu, X.; Chen, K. Near-infrared light absorption enhancement in Ge nanostructures prepared by nanosphere lithography. J. Vac. Sci. Technol. B 2018, 36, 041601. [Google Scholar] [CrossRef]
- Yan, Z.; Du, W.; Tu, L.; Gu, P.; Huang, Z.; Zhan, P.; Liu, F.; Wang, Z. A facile high-performance SERS substrate based on broadband near-perfect optical absorption. J. Raman Spectrosc. 2015, 46, 795–801. [Google Scholar] [CrossRef]
- Wallace, G.Q.; Tabatabaei, M.; Hou, R.; Coady, M.J.; Norton, P.R.; Simpson, T.S.; Rosendahl, S.M.; Merlen, A.; Lagugné-Labarthet, F. Superimposed arrays of nanoprisms for multispectral molecular plasmonics. ACS Photon. 2016, 3, 1723–1732. [Google Scholar] [CrossRef]
- Fang, X.; Zheng, C.; Yin, Z.; Wang, Z.; Wang, J.; Liu, J.; Luo, D.; Liu, Y.J. Hierarchically ordered silicon metastructures from improved self-assembly-based nanosphere lithography. ACS Appl. Mater. Interfaces 2020, 12, 12345–12352. [Google Scholar] [CrossRef]
- Lospinoso, D.; Colombelli, A.; Lomascolo, M.; Rella, R.; Manera, M.G. Self-assembled metal nanohole arrays with tunable plasmonic properties for SERS single-molecule detection. Nanomaterials 2022, 12, 380. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.; Mancini, A.; Wang, F.; Liu, J.; Maier, S.A.; De Mello, J.C. High-throughput fabrication of triangular nanogap arrays for surface-enhanced Raman spectroscopy. ACS Nano 2022, 16, 7438–7447. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, J.; Wang, J.; Ma, Z.; Kong, D.; Jiang, S.; Luo, D.; Liu, Y.J. Graphene oxide-coated metal–insulator–metal SERS substrates for trace melamine detection. Nanomaterials 2022, 12, 1202. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Liu, J.; Fang, X.; Wang, J.; Yin, Z.; He, H.; Jiang, S.; Zhao, M.; Yin, Z.; Luo, D.; et al. Plasmonically enhanced photoluminescence of monolayer MoS2 via nanosphere lithography-templated gold metasurfaces. Nanophotonics 2021, 10, 1733–1740. [Google Scholar] [CrossRef]
- Ho, C.-C.; Chen, P.-Y.; Lin, K.-H.; Juan, W.-T.; Lee, W.-L. Fabrication of monolayer of polymer/nanospheres hybrid at a water-air interface. ACS Appl. Mater. Interfaces 2011, 3, 204–208. [Google Scholar] [CrossRef]
- Cossio, G.; Yu, E.T. Zeta potential dependent self-assembly for very large area nanosphere lithography. Nano Lett. 2020, 20, 5090–5096. [Google Scholar] [CrossRef]
- Milenko, K.; Fuglerud, S.S.; Aksnes, A.; Ellingsen, R.; Hjelme, D.R. Optimization of SERS sensing with micro-lensed optical fibers and Au nano-film. J. Lightw. Technol. 2020, 38, 2081–2085. [Google Scholar] [CrossRef]
- Yang, S.; Dai, X.; Stogin, B.B.; Wong, T.-S. Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. USA 2016, 113, 268–273. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, R.J.; Ma, X.; Liu, X.Y.; Zhang, Y.X.; Zhang, J. Ag nanoparticle decorated MnO2 flakes as flexible SERS substrates for Rhodamine 6G detection. RSC Adv. 2018, 8, 37750–37756. [Google Scholar] [CrossRef]
- Xu, S.; Jiang, S.; Hu, G.; Wei, J.; Wang, L.; Zhang, J.; Li, Q. Highly ordered graphene-isolated silver nanodot arrays as SERS substrate for detection of urinary nucleosides. Laser Phys. 2015, 25, 115601. [Google Scholar] [CrossRef]
- Jaworska, A.; Wojcik, T.; Malek, K.; Kwolek, U.; Kepczynski, M.; Ansary, A.A.; Chlopicki, S.; Baranska, M. Rhodamine 6G conjugated to gold nanoparticles as labels for both SERS and fluorescence studies on live endothelial cells. Microchim. Acta 2015, 182, 119–127. [Google Scholar] [CrossRef]
- Vančo, Ľ.; Kadlečíková, M.; Breza, J.; Vojs, M.; Michniak, P.; Marton, M. Interference enhancement in SERS spectra of Rhodamine 6G: Relation to reflectance. Vib. Spectrosc. 2017, 90, 31–37. [Google Scholar] [CrossRef]
- Ben-Aryeh, Y. Analytical results for enhancement factor (EF) of surface enhanced Raman spectroscopy (SERS) for two metallic spheres and nano-shells. AIP Adv. 2023, 13, 035236. [Google Scholar] [CrossRef]
- Yan, B.; Zhu, Y.; Wei, Y.; Pei, H. Study on surface enhanced Raman scattering of Au and Au@Al2O3 spherical dimers based on 3D finite element method. Sci. Rep. 2021, 11, 8391. [Google Scholar] [CrossRef]
- Shaikh, I.M.; Sartale, S.D. SILAR grown Ag nanoparticles as an efficient large area SERS substrate. J. Raman Spectrosc. 2018, 49, 1274–1287. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Chen, S.; Gong, T.; Zhu, Y. Surface-enhanced Raman scattering properties of multi-walled carbon nanotubes arrays-Ag nanoparticles. Carbon 2016, 100, 395–407. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, M.; Shen, L.; Sun, X.; Shi, G.; Ma, W.; Yan, X. High-performance flexible surface-enhanced Raman scattering substrates fabricated by depositing Ag nanoislands on the dragonfly wing. Appl. Surf. Sci. 2018, 436, 391–397. [Google Scholar] [CrossRef]
- Cao, H.; Guo, L.; Sun, Z.; Jiao, T.; Wang, M. Surface-enhanced fluorescence and application study based on Ag-wheat leaves. Chin. Phys. B 2022, 31, 037803. [Google Scholar] [CrossRef]
- Beyene, A.B.; Su, W.-N.; Tsai, H.-C.; Tegegne, W.A.; Chen, C.-H.; Huang, C.-C.; Mares, D.; Prajzler, V.; Huang, W.-H.; Hwang, B.J. Cu/Ag nanoparticle-based surface-enhanced Raman scattering substrates for label-free bacterial detection. ACS Appl. Nano Mater. 2022, 5, 11567–11576. [Google Scholar] [CrossRef]
- Yin, Z.; He, H.; Wang, Z.; Fang, X.; Xu, C.; Luo, D.; Jiang, S.; Liu, Y.J. Facile in situ photochemical synthesis of silver nanoaggregates for surface-enhanced Raman scattering applications. Nanomaterials 2020, 10, 685. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Liu, J.; Wang, Z.; Chen, L.; Xu, Y.; Ma, Z.; Kong, D.; Luo, D.; Liu, Y.J. Nanosphere Lithography-Enabled Hybrid Ag-Cu Surface-Enhanced Raman Spectroscopy Substrates with Enhanced Absorption of Excitation Light. Biosensors 2023, 13, 825. https://doi.org/10.3390/bios13080825
Wu Z, Liu J, Wang Z, Chen L, Xu Y, Ma Z, Kong D, Luo D, Liu YJ. Nanosphere Lithography-Enabled Hybrid Ag-Cu Surface-Enhanced Raman Spectroscopy Substrates with Enhanced Absorption of Excitation Light. Biosensors. 2023; 13(8):825. https://doi.org/10.3390/bios13080825
Chicago/Turabian StyleWu, Zixuan, Jianxun Liu, Zhenming Wang, Lei Chen, Yiwei Xu, Zongjun Ma, Delai Kong, Dan Luo, and Yan Jun Liu. 2023. "Nanosphere Lithography-Enabled Hybrid Ag-Cu Surface-Enhanced Raman Spectroscopy Substrates with Enhanced Absorption of Excitation Light" Biosensors 13, no. 8: 825. https://doi.org/10.3390/bios13080825
APA StyleWu, Z., Liu, J., Wang, Z., Chen, L., Xu, Y., Ma, Z., Kong, D., Luo, D., & Liu, Y. J. (2023). Nanosphere Lithography-Enabled Hybrid Ag-Cu Surface-Enhanced Raman Spectroscopy Substrates with Enhanced Absorption of Excitation Light. Biosensors, 13(8), 825. https://doi.org/10.3390/bios13080825