Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Instruments Used
2.3. Enzyme Activity and Triglyceride Quantification
2.3.1. Enzyme Activity Using p-NPB as a Substrate
- A = kinetic slope (Abs/min);
- = reaction volume (L);
- = sample volume (L);
- = molar extinction coefficient (min/mol);
- = appropriate sample dilution.
2.3.2. Enzymatic Activity Using TGs and p-Nitrophenol as a Reaction Indicator and Calculation Process of TG Quantification
- = triglyceride concentration ();
- = enzyme activity (U);
- = fatty acid chains in the triglycerides (3);
- = molecular weight of triglyceride (470.68 );
- = reaction time (10 min);
- = conversion factor (0.1 ).
2.4. Enzyme Immobilization with Ethylene-Vinyl Acetate (EVA) Polymer by Physical Adsorption
2.5. Construction of Optical TG Biosensor and Response Measurement
3. Results and Discussion
3.1. Characterization Immobilization of the CalB Lipase in EVA by Physic Adsorption
3.2. TG Biosensor Fabrication
3.3. Response of the TG Optical Biosensor
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TGs | triglycerides |
TG | triglyceride |
EVA | ethylene-vinyl acetate |
PLA | polylactic acid |
CalB | Candida antarctica lipase B |
p-NPB | p-nitrophenol butyrate |
p-NP | p-nitrophenol |
MOPS | 3-(N-morpholino) propane sulfonic acid |
ANOVA | analysis of variance |
VA | vinyl acetate |
LED | light-emitting diode |
References
- Bayly, G.R. Lipids and disorders of lipoprotein metabolism. In Clinical Biochemistry: Metabolic and Clinical Aspects, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 702–736. [Google Scholar] [CrossRef]
- Banerjee, Y.; Taranikanti, V.; Bayoumi, R. Triglyceride-mediated pathways and coronary heart disease. Lancet 2010, 376, 956. [Google Scholar] [CrossRef]
- Mondal, K.; Ali, M.A.; Singh, C.; Sumana, G.; Malhotra, B.D.; Sharma, A. Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sens. Actuators B Chem. 2017, 246, 202–214. [Google Scholar] [CrossRef]
- Pundir, C.S.; Sandeep, B.; Narang, J. Construction of an amperometric triglyceride biosensor using PVA membrane bound enzymes. Clin. Biochem. 2010, 43, 467–472. [Google Scholar] [CrossRef]
- Ponte, C.I. Redescubriendo los triglicéridos como factor de riesgo cardiovascular. Av. Cardiol 2009, 29, 367–376. [Google Scholar]
- Cascio, G.; Schiera, G.; Di Liegro, I. Dietary Fatty Acids in Metabolic Syndrome, Diabetes and Cardiovascular Diseases. Curr. Diabetes Rev. 2012, 8, 2–17. [Google Scholar] [CrossRef]
- Perez, A.K.; Iliná, A.; Sandoval, J.; Zon, M.A.; Arévalo, F.J.; Segura, E.P.; José, L. Biosensores Electroquímicos para la Detección de Triglicéridos Basados en el Uso de la Enzima Lipasa. Rev. Cient. De La Univ. Autónoma De Coahuila 2015, 7, 1–13. [Google Scholar]
- González-Becerra, K.; Ramos-Lopez, O.; Barrón-Cabrera, E.; Riezu-Boj, J.; Milagro, F.; Martínez-López, E.; Martínez, J. Fatty acids, epigenetic mechanisms and chronic diseases: A systematic review. Lipids Health Dis. 2019, 18, 178. [Google Scholar] [CrossRef]
- Pundir, C.S.; Narwal, V. Biosensing methods for determination of triglycerides: A review. Biosens. Bioelectron. 2018, 100, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Narwal, V.; Pundir, C.S. An improved amperometric triglyceride biosensor based on co-immobilization of nanoparticles of lipase, glycerol kinase and glycerol 3-phosphate oxidase onto pencil graphite electrode. Enzym. Microb. Technol. 2017, 100, 11–16. [Google Scholar] [CrossRef]
- Ibadullaeva, S.Z.; Appazov, N.O.; Tarahovsky, Y.S.; Zamyatina, E.A.; Fomkina, M.G.; Kim, Y.A. Amperometric Multi-Enzyme Biosensors: Development and Application, a Short Review. Biophys. Russ. Fed. 2019, 64, 696–707. [Google Scholar] [CrossRef]
- Alawsi, T.; Mattia, G.P.; Al-Bawi, Z.; Beraldi, R. Smartphone-based colorimetric sensor application for measuring biochemical material concentration. Sens. Bio-Sens. Res. 2021, 32, 100404. [Google Scholar] [CrossRef]
- Hasanah, U.; Md Sani, N.D.; Heng, L.Y.; Idroes, R.; Safitri, E. Construction of a hydrogel pectin-based triglyceride optical biosensor with immobilized lipase enzymes. Biosensors 2019, 9, 135. [Google Scholar] [CrossRef]
- Cano, J.B.; Buonasera, K.; Pezzotti, G. Transduction methods used on biosensors: Amperometry and fluorescence. Rev. Fac. De Ing. 2014, 2198558, 104–115. [Google Scholar]
- Polat, E.O.; Cetin, M.M.; Tabak, A.F.; Güven, E.B.; Uysal, B.Ö.; Arsan, T.; Kabbani, A.; Hamed, H.; Gül, S.B. Transducer Technologies for Biosensors and Their Wearable Applications. Biosensors 2022, 12, 385. [Google Scholar] [CrossRef] [PubMed]
- Di Tocco, A.; Robledo, S.N.; Osuna, Y.; Sandoval-Cortez, J.; Granero, A.M.; Vettorazzi, N.R.; Martínez, J.L.; Segura, E.P.; Iliná, A.; Zon, M.A.; et al. Development of an electrochemical biosensor for the determination of triglycerides in serum samples based on a lipase/magnetite-chitosan/copper oxide nanoparticles/multiwalled carbon nanotubes/pectin composite. Talanta 2018, 190, 30–37. [Google Scholar] [CrossRef]
- Fernandez, R.E.; Hareesh, V.; Bhattacharya, E.; Chadha, A. Comparison of a potentiometric and a micromechanical triglyceride biosensor. Biosens. Bioelectron. 2009, 24, 1276–1280. [Google Scholar] [CrossRef]
- Damborský, P.; Švitel, J.; Katrlík, J. Optical biosensors. Essays Biochem. 2016, 60, 91–100. [Google Scholar] [CrossRef]
- Gao, R.; Wu, Y.; Huang, J.; Song, L.; Qian, H.; Song, X.; Cheng, L.; Wang, R.; bao Luo, L.; Zhao, G.; et al. Development of a portable and sensitive blood serum test system using LED-based absorption photometry and pump-free microfluidic technology. Sens. Actuators B Chem. 2019, 286, 86–93. [Google Scholar] [CrossRef]
- Srinivasan, V.; Pamula, V.K.; Fair, R.B. An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. Lab A Chip 2004, 4, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Husser, M.C.; Vo, P.Q.; Sinha, H.; Ahmadi, F.; Shih, S.C. An Automated Induction Microfluidics System for Synthetic Biology. ACS Synth. Biol. 2018, 7, 933–944. [Google Scholar] [CrossRef]
- Yamaguchi, H.; Miyazaki, M. Enzyme-immobilized microfluidic devices for biomolecule detection. TrAC Trends Anal. Chem. 2023, 159, 116908. [Google Scholar] [CrossRef]
- Narang, J.; Minakshi; Bhambi, M.; Pundir, C.S. Fabrication of an amperometric triglyceride biosensor based on PVC membrane. Anal. Lett. 2010, 43, 1–11. [Google Scholar] [CrossRef]
- Reddy, R.R.K.; Chadha, A.; Bhattacharya, E. Porous silicon based potentiometric triglyceride biosensor. Biosens. Bioelectron. 2001, 16, 313–317. [Google Scholar] [CrossRef] [PubMed]
- Narang, J.; Chauhan, N.; Rani, P.; Pundir, C.S. Construction of an amperometric TG biosensor based on AuPPy nanocomposite and poly (indole-5-carboxylic acid) modified Au electrode. Bioprocess Biosyst. Eng. 2012, 36, 425–432. [Google Scholar] [CrossRef]
- Pundir, C.S.; Narang, J. Determination of triglycerides with special emphasis on biosensors: A review. Int. J. Biol. Macromol. 2013, 61, 379–389. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Zaen, R.; Oktiani, R.; Abdullah, A.G.; Riza, L.S. A simple, rapid analysis, portable, low-cost, and Arduino-based spectrophotometer with white LED as a light source for analyzing solution concentration. Telkomnika Telecommun. Comput. Electron. Control. 2018, 16, 580–585. [Google Scholar] [CrossRef]
- Mitra, S.; Basak, M.; Biswas, S.; Gooh Pattader, P.S. Digital electronic based portable device for colorimetric quantification of ketones and glucose level in human urine. Measurement 2023, 214, 112848. [Google Scholar] [CrossRef]
- Iyer, M.B.; Chattopadhyay, S. Colourimetric detection of triglycerides using porcine pancreatic lipase immobilized nanocomposite biosensor. Biomass Conv. Bioref. 2023. [Google Scholar] [CrossRef]
- Weston, M.; Kuchel, R.P.; Chandrawati, R. A Polydiacetylene-Based Colorimetric Sensor as an Active Use-By Date for Plant-Based Milk Alternatives. Macromol. Rapid Commun. 2020, 41, 1–7. [Google Scholar] [CrossRef]
- Weston, M. Colourimetric Sensors for Rapid Detection of Contaminants and Food Quality. Ph.D. Thesis, UNSW, Sydney, Australia, 2022. Available online: https://unsworks.unsw.edu.au/entities/publication/bc6d7c05-e180-4562-af7b-83b2dcb263bd/full (accessed on 7 August 2023).
- Kordel, M.; Hofmann, B.; Schomburg, D.; Schmid, R.D. Extracellular lipase of Pseudomonas sp. strain ATCC 21808: Purification, characterization, crystallization, and preliminary X-ray diffraction data. J. Bacteriol. 1991, 173, 4836–4841. [Google Scholar] [CrossRef]
- Mateos-Díaz, E.; Rodríguez, J.A.; Ángeles Camacho-Ruiz, M.; Mateos-Díaz, J.C. High-Throughput Screening Method for Lipases/Esterases. Lipases Phospholipases 2012, 861, 89–100. [Google Scholar] [CrossRef]
- Glasser, F.; Doreau, M.; Ferlay, A.; Chilliard, Y. Technical Note: Estimation of Milk Fatty Acid Yield from Milk Fat Data. J. Dairy Sci. 2007, 90, 2302–2304. [Google Scholar] [CrossRef]
- Torres-Sáez, R. Modificacion Quimica en Fase Solida de Lipasa B de Candida antarctica para mejorar sus propiedades de actividad, estabilidad y enantioselectividad. In Revista de la Academia Colombiana de Ciencias Exactas, Fisicas y Naturales; Academia Colombiana de Ciencias Exactas, Fisicas y Naturales: Bogota, Colombia, 2014; Volume 38, pp. 181–204. Available online: https://link.gale.com/apps/doc/A540902122/IFME?u=googlescholar&sid=bookmark-IFME&xid=3a77766f (accessed on 7 August 2023).
- Casas-Godoy, L.; Duquesne, S.; Bordes, F.; Sandoval, G.; Marty, A. Lipases: An Overview BT-Lipases and Phospholipases: Methods and Protocols; Humana Press: Totowa, NJ, USA, 2012; pp. 3–30. [Google Scholar] [CrossRef]
- Sinkūnienė, D.; Adlercreutz, P. Effects of Regioselectivity and Lipid Class Specificity of Lipases on Transesterification, Exemplified by Biodiesel Production. J. Am. Oil Chem. Soc. 2014, 91, 1283–1290. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Funabashi, H.; Kawaguchi, A.; Tomoda, H.; Omura, S.; Okuda, S.; Iwasaki, S. Binding site of cerulenin in fatty acid synthetase. J. Biochem. 1989, 105, 751–755. [Google Scholar] [CrossRef]
- Huynh, F.K.; Green, M.F.; Koves, T.R.; Hirschey, M.D. Measurement of fatty acid oxidation rates in animal tissues and cell lines. Methods Enzymol. 2014, 542, 391–405. [Google Scholar] [CrossRef] [PubMed]
- Pellis, A.; Acero, E.H.; Weber, H.; Obersriebnig, M.; Breinbauer, R.; Srebotnik, E.; Guebitz, G.M. Biocatalyzed approach for the surface functionalization of poly(L-lactic acid) films using hydrolytic enzymes. Biotechnol. J. 2015, 10, 1739–1749. [Google Scholar] [CrossRef]
- Pliego, J.; Mateos, J.C.; Rodriguez, J.; Valero, F.; Baeza, M.; Femat, R.; Camacho, R.; Sandoval, G.; Herrera-López, E.J. Monitoring lipase/esterase activity by stopped flow in a sequential injection analysis system using p-nitrophenyl butyrate. Sensors 2015, 15, 2798–2811. [Google Scholar] [CrossRef]
- Castaño, M.; Paredes, F.; Díaz, J. La patología a Través del Laboratorio de Análisis Clínicos: Algunos Aspectos Experimentales; Universidad de Cádiz, Servicio de Publicaciones: Cádiz, Spain, 2014; p. 1262. [Google Scholar]
- Li, S.; Madan, P.; Lin, S. Application of Capmul MCM and caprylic acid for the development of danazol-loaded SEDDS. Pharm. Dev. Technol. 2015, 20, 886–896. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, H.; Shulman, G.I.; Peters, E.J.; Wolfe, M.H.; Elahi, D.; Wolfe, R.R. Hormonal control of substrate cycling in humans. J. Clin. Investig. 1988, 81, 1545–1555. [Google Scholar] [CrossRef]
- Manoel, E.A.; Ribeiro, M.F.P.; dos Santos, J.C.S.; Coelho, M.A.Z.; Simas, A.B.C.; Fernandez-Lafuente, R.; Freire, D.M.G. Accurel MP 1000 as a support for the immobilization of lipase from Burkholderia cepacia: Application to the kinetic resolution of myo-inositol derivatives. Process Biochem. 2015, 50, 1557–1564. [Google Scholar] [CrossRef]
- Zhang, Q.; Lin, W.; Yang, G.; Chen, Q. Studies on the phase structure of ethylene-vinyl acetate copolymers by solid-state 1H and 13C NMR. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 2199–2207. [Google Scholar] [CrossRef]
- Jin, J.; Chen, S.; Zhang, J. UV aging behaviour of ethylene-vinyl acetate copolymers (EVA) with different vinyl acetate contents. Polym. Degrad. Stab. 2010, 95, 725–732. [Google Scholar] [CrossRef]
- Feng, C.; Liang, M.; Chen, W.; Huang, J.; Liu, H. Flame retardancy and thermal degradation of intumescent flame retardant EVA composite with efficient charring agent. J. Anal. Appl. Pyrolysis 2015, 113, 266–273. [Google Scholar] [CrossRef]
- Schneider, C.; Langer, R.; Loveday, D.; Hair, D. Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J. Control. Release Off. J. Control. Release Soc. 2017, 262, 284–295. [Google Scholar] [CrossRef] [PubMed]
- Sven Pedersen, P.E. Immobilized lipase preparation and use thereof for ester synthesis. PCT Int. Appl. 1990, 90, 15868. [Google Scholar]
- Cai, C.; Gao, Y.; Liu, Y.; Zhong, N.; Liu, N. Immobilization of Candida antarctica lipase B onto SBA-15 and their application in glycerolysis for diacylglycerols synthesis. Food Chem. 2016, 212, 205–212. [Google Scholar] [CrossRef]
- Almeida, A.; Possemiers, S.; Boone, M.N.; De Beer, T.; Quinten, T.; Van Hoorebeke, L.; Remon, J.P.; Vervaet, C. Ethylene vinyl acetate as matrix for oral sustained release dosage forms produced via hot-melt extrusion. Eur. J. Pharm. Biopharm. 2011, 77, 297–305. [Google Scholar] [CrossRef] [PubMed]
- Azeemi, S.; Raza, S.; Yasinzai, M. Colors as Catalysts in Enzymatic Reactions. J. Acupunct. Meridian Stud. 2008, 1, 139–142. [Google Scholar] [CrossRef]
- Semiconductor, R. Digital 16bit Serial Output Type Ambient Light Sensor IC. 2011. Available online: chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf (accessed on 14 October 2022).
- Ben Rejeb, I.; Arduini, F.; Amine, A.; Gargouri, M.; Palleschi, G. Amperometric biosensor based on Prussian Blue-modified screen-printed electrode for lipase activity and triacylglycerol determination. Anal. Chim. Acta 2007, 594, 1–8. [Google Scholar] [CrossRef]
- Minakshi; Pundir, C.S. Construction of an amperometric enzymic sensor for triglyceride determination. Sens. Actuators B Chem. 2008, 133, 251–255. [Google Scholar] [CrossRef]
- Preetha, R.; Rani, K.; Veeramani, M.S.S.; Fernandez, R.E.; Vemulachedu, H.; Sugan, M.; Bhattacharya, E.; Chadha, A. Potentiometric estimation of blood analytes—triglycerides and urea: Comparison with clinical data and estimation of urea in milk using an electrolyte–insulator–semiconductor–capacitor (EISCAP). Sens. Actuators B Chem. 2011, 160, 1439–1443. [Google Scholar] [CrossRef]
- Dhand, C.; Solanki, P.R.; Sood, K.N.; Datta, M.; Malhotra, B.D. Polyaniline nanotubes for impedimetric triglyceride detection. Electrochem. Commun. 2009, 11, 1482–1486. [Google Scholar] [CrossRef]
- Bhambi, M.; Pundir, C. Preparation of Oxygen Meter Based Biosensor for Determination of Triglyceride in Serum. Sens. Trans. 2006, 67, 561–567. [Google Scholar]
- Vandenberghe, C.; St-Pierre, V.; Pierotti, T.; Fortier, M.; Castellano, C.A.; Cunnane, S.C. Tricaprylin alone increases plasma ketone response more than coconut oil or other medium-chain triglycerides: An acute crossover study in healthy adults. Curr. Dev. Nutr. 2017, 1, 6–9. [Google Scholar] [CrossRef]
- Iemoto, T.; Nishiumi, S.; Kobayashi, T.; Fujigaki, S.; Hamaguchi, T.; Kato, K.; Shoji, H.; Matsumura, Y.; Honda, K.; Yoshida, M. Serum level of octanoic acid predicts the efficacy of chemotherapy for colorectal cancer. Oncol. Lett. 2019, 17, 831–842. [Google Scholar] [CrossRef]
Sample | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
---|---|---|---|---|---|---|---|---|---|
Enzyme (L) | 10 | 50 | 100 | 200 | 300 | 400 | 500 | 600 | 700 |
Buffer (L) | 990 | 950 | 900 | 800 | 700 | 600 | 500 | 400 | 300 |
Type of Biosensor | Biosensor Characteristics | Enzyme | Method of Immobilization | Optimum Temp (C) | Optimum pH | Detection Limit (mM) | Recovery (%) | Precision (%) | Response Time (s) | Accuracy | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Optical | Present biosensor | CalB | Adsorption | 30 | 7.2 | 0.1630 | 81.12 | 0.791 | 600 | 0.9635 | — |
Optical | Hydrogel pectin | Lip | Entrapment and Adsorption | NR | 7 | 1.2387 | NR | 2.5 | 300 | 0.9807 | [13] |
Optical | Colorimetric Lip immobilized nanocomposite | PLip | Adsorption | 25–55 | 6–9 | 0.0113 | 70–50 | 0.0089 | 360–420 | NR | [29] |
Amperometric | Prussian blue modified screen-printed | Gd, No, and Lip | Cross-linking | 25–65 | 7.4 | NR | 81–99 | NR | 300-1800 | 0.9988 | [56] |
Amperometric | PVC membrane biosensor | Lip, Gk, and G-3-PO | Adsorption | 35 | 7 | 0.28 | 85.2–89.01 | NR | 10 | 0.83 | [23] |
Amperometric | Lip/Nanoporous gold/Glassy carbon electrode | Lip, Gk. and G-3-PO | Covalent Binding | 35 | 6.5 | 0.23 | 91–95 | 4.14 and 5.85 | 4 | 0.9801 | [25] |
Amperometric | Cellulose acetate membrane biosensor | Lip, Gk, and G-3-PO | Adsorption | 25 | 6.5 | 0.2 | 89 | <8 | 40 | 0.83 | [57] |
Amperometric | Pencil graphite electrode biosensor | Lip, Gk, and G-3-PO | Adsorption | 35 | 7 | 10 | 98.01 | 0.05 | 2.5 | 0.99 | [10] |
Potentiometric | EISCAP sensor | Lip | NR | 25 | 7.4 | 0.1 | NR | NR | 1800 | 0.9584 | [58] |
Impedimetric | Impedimetric/ conductometric | Lip | Covalent Binding | NR | NR | 0.28 | NR | NR | 20 | 0.9801 | [59] |
Deoxymetric | Membrane-bound lipase, Gk, and G-3-PO | Lip, Gk, and G-3-PO | NR | 39.5 | 7.5 | 0.35 | NR | <2.18 | 10–15 | 0.9409 | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pliego-Sandoval, J.E.; Díaz-Barbosa, A.; Reyes-Nava, L.A.; Angeles Camacho-Ruiz, M.; Iñiguez-Muñoz, L.E.; Pinto-Pérez, O. Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. Biosensors 2023, 13, 826. https://doi.org/10.3390/bios13080826
Pliego-Sandoval JE, Díaz-Barbosa A, Reyes-Nava LA, Angeles Camacho-Ruiz M, Iñiguez-Muñoz LE, Pinto-Pérez O. Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. Biosensors. 2023; 13(8):826. https://doi.org/10.3390/bios13080826
Chicago/Turabian StylePliego-Sandoval, Jorge E., Arturo Díaz-Barbosa, Luis A. Reyes-Nava, María Angeles Camacho-Ruiz, Laura Elena Iñiguez-Muñoz, and Osmar Pinto-Pérez. 2023. "Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System" Biosensors 13, no. 8: 826. https://doi.org/10.3390/bios13080826
APA StylePliego-Sandoval, J. E., Díaz-Barbosa, A., Reyes-Nava, L. A., Angeles Camacho-Ruiz, M., Iñiguez-Muñoz, L. E., & Pinto-Pérez, O. (2023). Development and Evaluation of a Low-Cost Triglyceride Quantification Enzymatic Biosensor Using an Arduino-Based Microfluidic System. Biosensors, 13(8), 826. https://doi.org/10.3390/bios13080826