Microfluidic Bio-Sensors and Their Applications
Funding
Acknowledgments
Conflicts of Interest
References
- Bendre, A.; Hegde, V.; Ajeya, K.V.; Thagare Manjunatha, S.; Somasekhara, D.; Nadumane, V.K.; Kant, K.; Jung, H.Y.; Hung, W.S.; Kurkuri, M.D. Microfluidic-Assisted Synthesis of Metal—Organic Framework—Alginate Micro-Particles for Sustained Drug Delivery. Biosensors 2023, 13, 737. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.; Qiang, T.; Gao, M.; Liang, J.; Jiang, Y. Quantitative, Temperature-Calibrated and Real-Time Glucose Biosensor Based on Symmetrical-Meandering-Type Resistor and Intertwined Capacitor Structure. Biosensors 2021, 11, 484. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Qiang, T.; Ma, Y.; Liang, J.; Jiang, Y. RFID-Based Microwave Biosensor for Non-Contact Detection of Glucose Solution. Biosensors 2021, 11, 480. [Google Scholar] [CrossRef] [PubMed]
- Asefifeyzabadi, N.; Holland, T.E.; Sivakumar, P.; Talapatra, S.; Senanayake, I.M.; Goodson, B.M.; Shamsi, M.H. Sequence-Independent Dna Adsorption on Few-Layered Oxygen-Functionalized Graphene Electrodes: An Electrochemical Study for Biosensing Application. Biosensors 2021, 11, 273. [Google Scholar] [CrossRef] [PubMed]
- Thiriet, P.E.; Medagoda, D.; Porro, G.; Guiducci, C. Rapid Multianalyte Microfluidic Homogeneous Immunoassay on Electrokinetically Driven Beads. Biosensors 2020, 10, 212. [Google Scholar] [CrossRef] [PubMed]
- Iemmolo, R.; La Cognata, V.; Morello, G.; Guarnaccia, M.; Arbitrio, M.; Alessi, E.; Cavallaro, S. Development of a Pharmacogenetic Lab-on-Chip Assay Based on the In-Check Technology to Screen for Genetic Variations Associated to Adverse Drug Reactions to Common Chemotherapeutic Agents. Biosensors 2020, 10, 202. [Google Scholar] [CrossRef] [PubMed]
- Ki, S.; Kang, D.K. Gas Crosstalk between PFPE–PEG–PFPE Triblock Copolymer Surfactant-Based Microdroplets and Monitoring Bacterial Gas Metabolism with Droplet-Based Microfluidics. Biosensors 2020, 10, 172. [Google Scholar] [CrossRef] [PubMed]
- Chu, P.Y.; Hsieh, C.H.; Lin, C.R.; Wu, M.H. The Effect of Optically Induced Dielectrophoresis (ODEP)-Based Cell Manipulation in a Microfluidic System on the Properties of Biological Cells. Biosensors 2020, 10, 65. [Google Scholar] [CrossRef] [PubMed]
- Dukle, A.; Nathanael, A.J.; Panchapakesan, B.; Oh, T.H. Role of Paper-Based Sensors in Fight against Cancer for the Developing World. Biosensors 2022, 12, 737. [Google Scholar] [CrossRef] [PubMed]
- Bhat, M.P.; Thendral, V.; Uthappa, U.T.; Lee, K.H.; Kigga, M.; Altalhi, T.; Kurkuri, M.D.; Kant, K. Recent Advances in Microfluidic Platform for Physical and Immunological Detection and Capture of Circulating Tumor Cells. Biosensors 2022, 12, 220. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kant, K. Microfluidic Bio-Sensors and Their Applications. Biosensors 2023, 13, 843. https://doi.org/10.3390/bios13090843
Kant K. Microfluidic Bio-Sensors and Their Applications. Biosensors. 2023; 13(9):843. https://doi.org/10.3390/bios13090843
Chicago/Turabian StyleKant, Krishna. 2023. "Microfluidic Bio-Sensors and Their Applications" Biosensors 13, no. 9: 843. https://doi.org/10.3390/bios13090843
APA StyleKant, K. (2023). Microfluidic Bio-Sensors and Their Applications. Biosensors, 13(9), 843. https://doi.org/10.3390/bios13090843