Highly Sensitive Magnetic-Nanoparticle-Based Immunochromatography Assay for Rapid Detection of Amantadine in Chicken and Eggs
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials
2.2. Synthesis and Characterization of MNPs
2.3. Preparation of MNP–mAb Microwells
2.4. Assembly of MICA Strip and Optimization of MICA
2.5. Procedure of MICA
2.6. Sample Preparation
2.7. Performance of MICA
2.8. Comparison of MICA and LC-MS/MS Analysis
3. Results and Discussion
3.1. Commercial MNPs
3.2. Synthesis and Characterization of MNPs
3.3. Preparation of MNP–mAb Microwells
3.4. Optimization of MICA
3.5. Sample Preparation
3.6. Performance of MICA
3.7. Validation of MICA
3.8. Comparison with Reported Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rascol, O.; Fabbri, M.; Poewe, W. Amantadine in the treatment of Parkinson’s disease and other movement disorders. Lancet Neurol. 2021, 20, 1048–1056. [Google Scholar] [CrossRef] [PubMed]
- Cattoni, J.; Parekh, R. Acute respiratory distress syndrome: A rare presentation of amantadine toxicity. Am. J. Case Rep. 2014, 15, 1–3. [Google Scholar] [PubMed]
- Jackson, R.J.; Cooper, K.L.; Tappenden, P.; Rees, A.; Simpson, E.L.; Read, R.C.; Nicholson, K.G. Oseltamivir, zanamivir and amantadine in the prevention of influenza: A systematic review. J. Infect. 2011, 62, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Bradley, L. Delayed amantadine toxicity causing apparent progression of multiple sclerosis. Mult. Scler. 2021, 27, 2288–2290. [Google Scholar] [CrossRef] [PubMed]
- Kranick, S.M.; Mowry, E.M.; Colcher, A.; Horn, S.; Golbe, L.I. Movement disorders and pregnancy: A review of the literature. Mov. Disord. 2010, 25, 665–671. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-F.; Sun, Y.-M.; Beier, R.C.; Lei, H.-T.; Gee, S.; Hammock, B.D.; Wang, H.; Wang, Z.; Sun, X.; Shen, Y.-D.; et al. Immunochemical techniques for multianalyte analysis of chemical residues in food and the environment: A review. Trends Analyt. Chem. 2017, 88, 25–40. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, C.; Wang, W.; Qian, M.; Xu, J.; Yang, H. Chromatography column comparison and rapid pretreatment for the simultaneous analysis of amantadine, rimantadine, acyclovir, ribavirin, and moroxydine in chicken muscle by ultra high performance liquid chromatography and tandem mass spectrometry. J. Sep. Sci. 2016, 39, 3998–4010. [Google Scholar] [CrossRef]
- Deyde, V.M.; Xu, X.; Bright, R.A.; Shaw, M.; Smith, C.B.; Zhang, Y.; Shu, Y.; Gubareva, L.V.; Cox, N.J.; Klimov, A.I. Surveillance of Resistance to Adamantanes among Influenza A(H3N2) and A(H1N1) Viruses Isolated Worldwide. J. Infect. Dis. 2007, 196, 249–257. [Google Scholar] [CrossRef]
- Farajzadeh, M.A.; Nouri, N.; Alizadeh Nabil, A.A. Determination of amantadine in biological fluids using simultaneous derivatization and dispersive liquid-liquid microextraction followed by gas chromatography-flame ionization detection. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 940, 142–149. [Google Scholar] [CrossRef]
- Decheng, S.; Peilong, W.; Yang, L.; Ruiguo, W.; Shulin, W.; Zhiming, X.; Su, Z. Simultaneous determination of antibiotics and amantadines in animal-derived feedstuffs by ultraperformance liquid chromatographic-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1095, 183–190. [Google Scholar] [CrossRef]
- Getahun, M.; Abebe, R.B.; Sendekie, A.K.; Woldeyohanis, A.E.; Kasahun, A.E. Evaluation of Antibiotics Residues in Milk and Meat Using Different Analytical Methods. Int. J. Anal. Chem. 2023, 2023, 4380261. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Peng, S.; Liu, L.; Song, S.; Kuang, H.; Xu, C. Development of sensitive and fast immunoassays for amantadine detection. Food Agric. Immunol. 2016, 27, 678–688. [Google Scholar] [CrossRef]
- Wu, K.; Su, D.; Liu, J.; Saha, R.; Wang, J.P. Magnetic nanoparticles in nanomedicine: A review of recent advances. Nanotechnology 2019, 30, 502003. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Yin, W.; Zhang, Y.; Yi, J.; Meng, M.; Wang, Y.; Xue, H.; Zhang, T.; Xi, R. Establishment of magnetic beads-based enzyme immunoassay for detection of chloramphenicol in milk. Food Chem. 2012, 134, 2526–2531. [Google Scholar] [CrossRef]
- Xie, S.; Wen, K.; Xie, J.; Zheng, Y.; Peng, T.; Wang, J.; Yao, K.; Ding, S.; Jiang, H. Magnetic-assisted biotinylated single-chain variable fragment antibody-based immunoassay for amantadine detection in chicken. Anal. Bioanal. Chem. 2018, 410, 6197–6205. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhang, Y.; Zhao, R.; Liu, Z.; Hong, X.; Cui, Y.; Xue, Y.; Du, D. Immunomagnetic bead-based biotin-streptavidin system for highly efficient detection of aflatoxin B1 in agricultural products. RSC Adv. 2018, 8, 26029–26035. [Google Scholar] [CrossRef]
- Chen, J.; Park, B. Effect of immunomagnetic bead size on recovery of foodborne pathogenic bacteria. Int. J. Food Microbiol. 2018, 267, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Li, S.; Qu, H.; Hao, L.; Shao, T.; Wang, K.; Xia, Z.; Li, Z.; Li, Q. SERS-based immunomagnetic bead for rapid detection of H5N1 influenza virus. Influenza Other Respi. Viruses 2023, 17, e13114. [Google Scholar] [CrossRef]
- Beasley, A.B.; Acheampong, E.; Lin, W.; Gray, E.S. Multi-Marker Immunomagnetic Enrichment of Circulating Melanoma Cells. Methods Mol. Biol. 2021, 2265, 213–222. [Google Scholar]
- Xiong, R.; Lu, C.; Wang, Y.; Zhou, Z.; Zhang, X. Nanofibrillated cellulose as the support and reductant for the facile synthesis of Fe3O4/Ag nanocomposites with catalytic and antibacterial activity. J. Mater. Chem. 2013, 1, 14190–14198. [Google Scholar] [CrossRef]
- Wang, M.; Peng, M.L.; Cheng, W.; Cui, Y.L.; Chen, C. A novel approach for transferring oleic acid capped iron oxide nanoparticles to water phase. J. Nanosci. Nanotechnol. 2011, 11, 3688–3691. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Tong, Z.; Li, S.; Zhang, X.; Ying, A. Fabrication and characterization of hollow Fe3O4 nanospheres in a microemulsion. Mater. Lett. 2008, 62, 4053–4055. [Google Scholar] [CrossRef]
- Deng, H.; Li, X.; Peng, Q.; Wang, X.; Chen, J.; Li, Y. Monodisperse magnetic single-crystal ferrite microspheres. Angew. Chem. Int. Ed. Engl. 2005, 44, 2782–2785. [Google Scholar] [CrossRef] [PubMed]
- Jia, Q.; Li, D.; Wang, X.; Yang, S.; Qian, Y.; Qiu, J. Simultaneous determination of amantadine and rimantadine in feed by liquid chromatography-Qtrap mass spectrometry with information-dependent acquisition. Anal. Bioanal. Chem. 2018, 410, 5555–5565. [Google Scholar] [CrossRef]
- Tsuruoka, Y.; Nakajima, T.; Kanda, M.; Hayashi, H.; Matsushima, Y.; Yoshikawa, S.; Nagata, M.; Koike, H.; Nagano, C.; Sekimura, K.; et al. Simultaneous determination of amantadine, rimantadine, and memantine in processed products, chicken tissues, and eggs by liquid chromatography with tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2017, 1044-1045, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Chen, H.; Guo, L.; Shi, J. Magnetic hollow mesoporous silica nanospheres: Facile fabrication and ultrafast immobilization of enzymes. J. Nanosci. Nanotechnol. 2011, 11, 10844–10848. [Google Scholar] [CrossRef]
- Park, J.-W.; Shumaker-Parry, J. Structural Study of Citrate Layers on Gold Nanoparticles: Role of Intermolecular Interactions in Stabilizing Nanoparticles. J. Am. Chem. Soc. 2014, 136, 1907–1921. [Google Scholar] [CrossRef]
- Huang, Z.; Xiong, Z.; Chen, Y.; Hu, S.; Lai, W. Sensitive and Matrix-Tolerant Lateral Flow Immunoassay Based on Fluorescent Magnetic Nanobeads for the Detection of Clenbuterol in Swine Urine. J. Agric. Food Chem. 2019, 67, 3028–3036. [Google Scholar] [CrossRef]
- Orlov, A.V.; Malkerov, J.A.; Novichikhin, D.O.; Znoyko, S.L.; Nikitin, P.I. Express high-sensitive detection of ochratoxin A in food by a lateral flow immunoassay based on magnetic biolabels. Food Chem. 2022, 383, 132427. [Google Scholar] [CrossRef]
- Pan, M.; Yang, J.; Li, S.; Wang, G.; Wang, J.; Wang, S. Indirect competitive ELISA and colloidal gold-based immunochromatographic strip for amantadine detection in animal-derived foods. Anal. Methods 2019, 11, 2027–2032. [Google Scholar] [CrossRef]
- Songsong, W.; Fangfei, Z.; Liming, H.; Jun, X.; Guomao, X.; Daofeng, L.; Qi, G.; Kai, L.; Weihua, L. Development of a competitive immunochromatographic assay for the sensitive detection of amantadine in chicken muscle. Food Chem. 2017, 232, 770–776. [Google Scholar]
- Pan, Y.; Wang, Z.; Duan, C.; Dou, L.; Wen, K.; Wang, Z.; Yu, X.; Shen, J. Comparison of two fluorescence quantitative immunochromatographic assays for the detection of amantadine in chicken muscle. Food Chem. 2022, 377, 131931. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; He, S.; Wang, Z.; Xu, Y.; Zhang, L.; Zhang, H.; Jiang, H. Dual-readout fluorescence quenching immunochromatographic test strips for highly sensitive simultaneous detection of chloramphenicol and amantadine based on gold nanoparticle-triggered photoluminescent nanoswitch control. J. Hazard. Mater. 2022, 429, 128316. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Wen, K.; Wang, S.; Wang, J.; Peng, T.; Mari, G.M.; Li, J.; Wang, Z.; Yu, X.; Jiang, H. Quantitative and rapid detection of amantadine and chloramphenicol based on various quantum dots with the same excitations. Anal. Bioanal. Chem. 2019, 411, 2131–2140. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, X.; Wang, Z.; Luo, P.; Xu, L.; Zheng, Q.; Kuang, H. A sensitive lateral flow immunoassay for the multiple residues of five adamantanes. Food Agric. Immunol. 2019, 30, 647–661. [Google Scholar] [CrossRef]
Method | Property | vLOD (μg/kg) | LOD (μg/kg) | Linear Range (μg/kg) | Total Time (min) |
---|---|---|---|---|---|
CGICA [12] | Qualitative | 5.0 | 0.62 | - | 5 |
CGICA [30] | Qualitative | 10.0 | - | - | 10 |
CGICA [31] | Quantitative | - | 1.8 | 2.5~25.0 | 12 |
bFQICA [32] | Qualitative/quantitative | - | 0.62 | 1.07~10.33 | 18 |
TRFICA [32] | Quantitative | - | 0.29 | 0.37~19.46 | 11 |
SA-QDs-ICTS [33] | Quantitative | - | 0.18 | 0.23~1.02 | 15 |
AuNCs-FQICTS [34] | Qualitative/quantitative | 2.5 | 0.45 | 0.5~25 | 23 |
LFIA [35] | Qualitative/quantitative | 1.0 | 0.5 | 0.5~10.0 | 15 |
MICA (this work) | Qualitative/quantitative | 1.0 | 0.068 | 0.2~10.0 | 9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Lu, Y.; Zhang, L.; Qin, L.; Wen, H.; Fan, X.; Peng, D. Highly Sensitive Magnetic-Nanoparticle-Based Immunochromatography Assay for Rapid Detection of Amantadine in Chicken and Eggs. Biosensors 2024, 14, 23. https://doi.org/10.3390/bios14010023
Li H, Lu Y, Zhang L, Qin L, Wen H, Fan X, Peng D. Highly Sensitive Magnetic-Nanoparticle-Based Immunochromatography Assay for Rapid Detection of Amantadine in Chicken and Eggs. Biosensors. 2024; 14(1):23. https://doi.org/10.3390/bios14010023
Chicago/Turabian StyleLi, Huaming, Yanrong Lu, Linwei Zhang, Liangni Qin, Hao Wen, Xiaohui Fan, and Dapeng Peng. 2024. "Highly Sensitive Magnetic-Nanoparticle-Based Immunochromatography Assay for Rapid Detection of Amantadine in Chicken and Eggs" Biosensors 14, no. 1: 23. https://doi.org/10.3390/bios14010023
APA StyleLi, H., Lu, Y., Zhang, L., Qin, L., Wen, H., Fan, X., & Peng, D. (2024). Highly Sensitive Magnetic-Nanoparticle-Based Immunochromatography Assay for Rapid Detection of Amantadine in Chicken and Eggs. Biosensors, 14(1), 23. https://doi.org/10.3390/bios14010023