ZIF-67 Anchored on MoS2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Instrumentation and Measurements
2.3. Synthesis of ZIF-67@MoS2/rGO Composite
2.4. Preparation of ZIF-67@MoS2/rGO-Modified Photoelectrode
3. Results and Discussion
3.1. Materials Characterization
3.2. Photoelectrochemical Property Characterization
3.3. Interference Studies and Practical Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, Y.; Wang, Z.; Wang, Y.; Meng, Z.; Zhao, Z. A self-healing carboxymethyl chitosan/oxidized carboxymethyl cellulose hydrogel with fluorescent bioprobes for glucose detection. Carbohydr. Polym. 2021, 274, 118642. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, C.; Yang, Y.; Yang, N.; Lu, S.; You, T.; Yin, P. A high sensitive glucose sensor based on Ag nanodendrites/Cu mesh substrate via surface-enhanced Raman spectroscopy and electrochemical analysis. J. Alloys Compd. 2021, 863, 158758. [Google Scholar] [CrossRef]
- Ngo, Y.T.; Nguyen, P.L.; Jana, J.; Choi, W.M.; Chung, J.S.; Hur, S.H. Simple paper-based colorimetric and fluorescent glucose sensor using N-doped carbon dots and metal oxide hybrid structures. Anal. Chim. Acta 2021, 1147, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Zhu, B.; Yu, L.; Beikzadeh, S.; Zhang, S.; Zhang, P.; Wang, L.; Travas-Sejdic, J. Disposable and portable gold nanoparticles modified-laser-scribed graphene sensing strips for electrochemical, non-enzymatic detection of glucose. Electrochim. Acta 2021, 378, 138132. [Google Scholar] [CrossRef]
- Balkourani, G.; Damartzis, T.; Brouzgou, A.; Tsiakaras, P. Cost effective synthesis of graphene nanomaterials for non-enzymatic electrochemical sensors for glucose: A comprehensive review. Sensors 2022, 22, 355. [Google Scholar] [CrossRef]
- Li, Z.; Liu, S. Recent advances in graphene-based electrical glucose monitoring. ChemRxiv 2023. [Google Scholar] [CrossRef]
- Senior, P.A. Glucose as a modifiable cause of atherosclerotic cardiovascular disease: Insights from type 1 diabetes and transplantation. Atherosclerosis 2021, 335, 16–22. [Google Scholar] [CrossRef]
- Tao, B.; Gao, B.; Li, J.; Miao, F.; Zhang, P.; Zang, Y. Photoelectrochemical sensor based on Au/ZnS/ZnO nanomaterials for selective detection of copper ions. Vacuum 2022, 204, 111378. [Google Scholar] [CrossRef]
- Kim, J.; Park, S.; Yang, H. Wash-free photoelectrochemical DNA detection based on photoredox catalysis combined with electroreduction and light blocking by magnetic microparticles. Talanta 2022, 253, 123872. [Google Scholar] [CrossRef]
- Ying, Y.; Zhou, M.; Dai, S.; Ma, M.; Deng, W.; Tan, Y.; Xie, Q. Au nanoparticles/SnO2/ZnIn2S4-based biosensor for photoelectrochemical/electrochemical dual-signal detection of RNase A by combining the enzymolysis of DNA probe and the generation of molybdophosphate precipitate. Sens. Actuators B Chem. 2022, 354, 131251. [Google Scholar] [CrossRef]
- Luo, J.; Shao, X.; Gong, Z.; Sun, X.; Ma, H.; Wu, D.; Fan, D.; Li, Y.; Wei, Q.; Ju, H. Achieving Z-scheme charge transfer through constructing Bi4Ti3O12/Pd@Au/Ag2S heterostructure for photoelectrochemical aptasensor of Hg2+ detection. Sens. Actuators B Chem. 2022, 369, 132385. [Google Scholar] [CrossRef]
- Wang, B.; Cao, J.T.; Liu, Y.M. Recent progress of heterostructure-based photoelectrodes in photoelectrochemical biosensing: A mini review. Analyst 2020, 145, 1121–1128. [Google Scholar] [CrossRef]
- Zhu, L.; Yin, Z.; Lv, Z.; Li, M.; Tang, D. Ultrasensitive photoelectrochemical immunoassay for prostate-specific antigen based on silver nanoparticle-triggered ion-exchange reaction with ZnO/CdS nanorods. Analyst 2021, 146, 4487–4494. [Google Scholar] [CrossRef]
- Das, S.; Robinson, J.A.; Dubey, M.; Terrones, H.; Terrones, M. Beyond graphene: Progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 2015, 45, 1–27. [Google Scholar] [CrossRef]
- Zhang, J.; Gao, Y.; Liu, P.; Yan, J.; Zhang, X.; Xing, Y.; Song, W. Charge transfer accelerated by internal electric field of MoS2 QDs-BiOI p-n heterojunction for high performance cathodic PEC aptasensing. Electrochim. Acta 2021, 365, 137392. [Google Scholar] [CrossRef]
- Baghayeri, M.; Veisi, H.; Ghanei-Motlagh, M. Amperometric glucose biosensor based on immobilization of glucose oxidase on a magnetic glassy carbon electrode modified with a novel magnetic nanocomposite. Sens. Actuators B Chem. 2017, 249, 321–330. [Google Scholar] [CrossRef]
- Maity, D.; Minitha, C.R.; RT, R.K. Glucose oxidase immobilized amine terminated multiwall carbon nanotubes/reduced graphene oxide/polyaniline/gold nanoparticles modified screen-printed carbon electrode for highly sensitive amperometric glucose detection. Mater. Sci. Eng. C 2019, 105, 110075. [Google Scholar] [CrossRef]
- Asrami, P.N.; Mozaffari, S.A.; Tehrani, M.S.; Azar, P.A. A novel impedimetric glucose biosensor based on immobilized glucose oxidase on a CuO-Chitosan nanobiocomposite modified FTO electrode. Int. J. Biol. Macromol. 2018, 118, 649–660. [Google Scholar] [CrossRef]
- Gao, X.; Li, X.; Sun, X.; Zhang, J.; Zhao, Y.; Liu, X.; Li, F. DNA tetrahedra-cross-linked hydrogel functionalized paper for onsite analysis of DNA methyltransferase activity using a personal glucose meter. Anal. Chem. 2020, 92, 4592–4599. [Google Scholar] [CrossRef] [PubMed]
- Arul, P.; Gowthaman, N.S.K.; John, S.A.; Tominaga, M. Tunable electrochemical synthesis of 3D nucleated microparticles like Cu-BTC MOF-carbon nanotubes composite: Enzyme free ultrasensitive determination of glucose in a complex biological fluid. Electrochim. Acta 2020, 354, 136673. [Google Scholar] [CrossRef]
- Yadav, V.D.; Krishnan, R.A.; Jain, R.; Dandekar, P. In-situ silver nanoparticles formation as a tool for non-enzymatic glucose sensing: Study with an enzyme mimicking salt. Colloids Surf. A 2019, 580, 123715. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, J.; Shan, G.; Liu, Z.; Cui, A.; Wang, A.; Chen, Y.; Liu, Y. Photothermal-enhanced tandem enzyme-like activity of Ag2-xCuxS nanoparticles for one-step colorimetric glucose detection in unprocessed human urine. Sens. Actuators B Chem. 2020, 305, 127420. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.W. Metal-organic frameworks for biomedical applications. Small 2020, 16, 1906846. [Google Scholar] [CrossRef]
- Yuan, A.; Lu, Y.; Zhang, X.; Chen, Q.; Huang, Y. Two-dimensional iron MOF nanosheet as a highly efficient nanozyme for glucose biosensing. J. Mater. Chem. B 2020, 8, 9295–9303. [Google Scholar] [CrossRef]
- Li, X.; Dong, H.; Fan, Q.; Chen, K.; Sun, D.; Hu, T.; Ni, Z. One-pot, rapid microwave-assisted synthesis of bimetallic metal–organic framework for efficient enzyme-free glucose detection. Microchem. J. 2022, 179, 107468. [Google Scholar] [CrossRef]
- Khan, N.R.; Rathod, V.K. Microwave assisted enzymatic synthesis of speciality esters: A mini-review. Process Biochem. 2018, 75, 89–98. [Google Scholar] [CrossRef]
- Kuang, H.; Zhang, H.; Liu, X.; Chen, Y.; Zhang, W.; Chen, H.; Ling, Q. Microwave-assisted synthesis of NiCo-LDH/graphene nanoscrolls composite for supercapacitor. Carbon 2022, 190, 57–67. [Google Scholar] [CrossRef]
- Mulvihill, M.J.; Beach, E.S.; Zimmerman, J.B.; Anastas, P.T. Green chemistry and green engineering: A framework for sustainable technology development. Annu. Rev. Environ. Resour. 2011, 36, 271–293. [Google Scholar] [CrossRef]
- Ahmad, K.; Shinde, M.A.; Song, G.; Kim, H. Fabrication of MoS2/rGO/AgNWs on PET substrate for flexible electrochromic devices. Synth. Met. 2022, 287, 117074. [Google Scholar] [CrossRef]
- Le, V.T.; Vasseghian, Y.; Doan, V.D.; Nguyen, T.T.T.; Vo, T.T.T.; Do, H.H.; Vu, K.B.; Vu, Q.H.; Lam, T.D.; Tran, V.A. Flexible and high-sensitivity sensor based on Ti3C2-MoS2 MXene composite for the detection of toxic gases. Chemosphere 2022, 291, 133025. [Google Scholar] [CrossRef]
- Xu, H.; Ye, K.; Yin, J.; Zhu, K.; Yan, J.; Wang, G.; Cao, D. In situ growth of ZIF-67 at the edge of nanosheet transformed into yolk-shell CoSe2 for high efficiency urea electrolysis. J. Power Sources 2021, 491, 229592. [Google Scholar] [CrossRef]
- Li, Z.; Dong, W.; Du, X.; Wen, G.; Fan, X. A novel photoelectrochemical sensor based on g-C3N4@CdS QDs for sensitive detection of Hg2+. Microchem. J. 2020, 152, 104259. [Google Scholar] [CrossRef]
- Han, F.; Song, Z.; Nawaz, M.H.; Dai, M.; Han, D.; Han, L.; Fan, Y.; Xu, J.; Han, D.; Niu, L. MoS2/ZnO-Heterostructures-Based Label-Free, Visible-Light-Excited Photoelectrochemical Sensor for Sensitive and Selective Determination of Synthetic Antioxidant Propyl Gallate. Anal. Chem. 2019, 91, 10657–10662. [Google Scholar] [CrossRef] [PubMed]
- Giaremis, S.; Katsikas, G.; Sempros, G.; Gjoka, M.; Sarafidis, C.; Kioseoglou, J. Ab initio, artificial neural network predictions and experimental synthesis of mischmetal alloying in Sm-Co permanent magnets. Nanoscale 2022, 14, 5824–5839. [Google Scholar] [CrossRef]
- Gao, N.; Yang, H.; Dong, D.; Dou, D.; Liu, Y.; Zhou, W.; Gao, F.; Nan, C.; Liang, Z.; Yang, D. Bi2S3 quantum dots in situ grown on MoS2 nanoflowers: An efficient electron-rich interface for photoelectrochemical N2 reduction. J. Colloid Interface Sci. 2022, 611, 294–305. [Google Scholar] [CrossRef]
- Li, F.; Cui, X.; Zheng, Y.; Wang, Q.; Zhou, Y.; Yin, H. Photoelectrochemical biosensor for DNA formylation based on WS2 nanosheets@polydopamine and MoS2 nanosheets. Biosens. Bioelectron. X 2022, 10, 100104. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Hao, W.; Wu, Q.; Peng, J.; Tu, J.; Cao, Y. 3D hollow-out TiO2 nanowire cluster/GOx as an ultrasensitive photoelectrochemical glucose biosensor. J. Mater. Chem. B 2020, 8, 2363–2370. [Google Scholar] [CrossRef]
- Chen, D.; Wang, X.; Zhang, K.; Cao, Y.; Tu, J.; Xiao, D.; Wu, Q. Glucose photoelectrochemical enzyme sensor based on competitive reaction of ascorbic acid. Biosens. Bioelectron. 2020, 166, 112466. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, F.; Zhao, B.; Ji, X.; Yao, Y.; Wu, D.; Gao, Z.; Jiang, K. Synthesis of CdS quantum dots decorated graphene nanosheets and non-enzymatic photoelectrochemical detection of glucose. Electrochim. Acta 2014, 133, 615–622. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, J.; He, Y.; Li, Y. A dual-signal mode ratiometric photoelectrochemical sensor based on voltage-resolved strategy for glucose detection. Sensor. Actuat. B-chem. 2021, 330, 129302. [Google Scholar] [CrossRef]
- Feng, C.; Xu, G.; Liu, H.; Lv, J.; Zheng, Z.; Wu, Y. A flow-injection photoelectrochemical sensor based on TiO2 nanotube arrays for organic compound detection. J. Electrochem. Soc. 2013, 161, H57–H61. [Google Scholar] [CrossRef]
- Yang, B.; Han, N.; Hu, S.; Zhang, L.; Yi, S.; Zhang, Z.; Wang, Y.; Chen, D.; Gao, Y. Cu/ZnO nano-thorn with modifiable morphology for photoelectrochemical detection of glucose. J. Electrochem. Soc. 2021, 168, 027516. [Google Scholar] [CrossRef]
- Du, J.; Yu, X.; Wu, Y.; Di, J. ZnS nanoparticles electrodeposited onto ITO electrode as a platform for fabrication of enzyme-based biosensors of glucose. Mater. Sci. Eng. C-Mater. 2013, 33, 2031–2036. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Zhang, Q.; Gong, C.; Liu, H.; Hu, F.; Zhong, F.; Wang, G.; Su, H.; Wen, S.; Xiang, S.; et al. The dual-function of hematite-based photoelectrochemical sensor for solar-to-electricity conversion and self-powered glucose detection. Sensor. Actuat. B-chem. 2020, 310, 127842. [Google Scholar] [CrossRef]
- He, L.; Liu, Q.; Zhang, S.; Zhang, X.; Gong, C.; Shu, H.; Wang, G.; Liu, H.; Wen, S.; Zhang, B. High sensitivity of TiO2 nanorod array electrode for photoelectrochemical glucose sensor and its photo fuel cell application. Electrochem. Commun. 2018, 94, 18–22. [Google Scholar] [CrossRef]
- Yan, B.; Zhuang, Y.; Jiang, Y.; Xu, W.; Chen, Y.; Tu, J.; Wang, X.; Wu, Q. Enhanced photoeletrochemical biosensing performance from rutile nanorod/anatase nanowire junction array. Appl. Surf. Sci. 2018, 458, 382–388. [Google Scholar] [CrossRef]
- Liu, P.; Huo, X.; Tang, Y.; Xu, J.; Liu, X.; Wong, D.K. A TiO2 nanosheet-g-C3N4 composite photoelectrochemical enzyme biosensor excitable by visible irradiation. Anal. Chim. Acta 2017, 984, 86–95. [Google Scholar] [CrossRef] [PubMed]
Real Sample | Fitted Value (μA) | Scalar Addition (μA) | Estimated Value (μA) | Recovery (%) |
---|---|---|---|---|
1 | 0.784 | 1.3 | 2.135 | 103.9 |
2 | 0.833 | 1.3 | 2.166 | 102.5 |
3 | 0.792 | 1.3 | 2.045 | 96.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, Q.; Li, X.; Dong, H.; Ni, Z.; Hu, T. ZIF-67 Anchored on MoS2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing. Biosensors 2024, 14, 38. https://doi.org/10.3390/bios14010038
Fan Q, Li X, Dong H, Ni Z, Hu T. ZIF-67 Anchored on MoS2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing. Biosensors. 2024; 14(1):38. https://doi.org/10.3390/bios14010038
Chicago/Turabian StyleFan, Qiaolin, Xiao Li, Hui Dong, Zhonghua Ni, and Tao Hu. 2024. "ZIF-67 Anchored on MoS2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing" Biosensors 14, no. 1: 38. https://doi.org/10.3390/bios14010038
APA StyleFan, Q., Li, X., Dong, H., Ni, Z., & Hu, T. (2024). ZIF-67 Anchored on MoS2/rGO Heterostructure for Non-Enzymatic and Visible-Light-Sensitive Photoelectrochemical Biosensing. Biosensors, 14(1), 38. https://doi.org/10.3390/bios14010038