A New Phenothiazine-Based Fluorescent Sensor for Detection of Cyanide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Synthesis of Sensor 1
3. Results
3.1. Absorption Spectral Response
3.2. Fluorescence Spectral Response
3.3. Practical Applications
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, M.X.; Gao, Y.; Xu, K.; Zhang, Y.; Gong, S.; Yang, Y.; Xu, X.; Wang, Z.; Wang, S. Quantitatively analysis and detection of CN− in three food samples by a novel nopinone-based fluorescent probe. Food Chem. 2022, 379, 132153. [Google Scholar] [CrossRef]
- Pan, W.; Chen, G.-G.; Zhang, Z.-Y.; Cao, X.-Q.; Shen, S.-L.; Pang, X.-H.; Zhu, Y. Benzoindoxazine derivatives containing carbazole for detection of CN− and its application in plant seed extracts and cell imaging. Spectrochim. Acta A 2022, 268, 120644. [Google Scholar] [CrossRef]
- Zhang, Y.-P.; Li, X.-F.; Yang, Y.-S.; Wang, J.-L.; Zhao, Y.-C.; Xue, J.-J. A novel fluorescent probe based on pyrazole-pyrazoline for Fe (III)ions recognition. J. Fluoresc. 2020, 31, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Liu, Y.; Wu, X.; Li, Y.; Du, J.; Qi, S.; Yang, Q.; Xu, H. A novel Near-Infrared fluorescent probe for Zn2+ and CN− double detection based on dicyanoisfluorone derivatives with highly sensitive and selective, and its application in Bioimaging. Spectrochim. Acta A 2022, 267, 120621. [Google Scholar] [CrossRef]
- Li, P.; Li, R.; Wang, K.; Liu, Q.; Ren, B.; Ding, Y.; Guan, R.; Cao, D. A julolidine-chalcone-based fluorescent probe for detection of Al3+ in real water sample and cell imaging. Spectrochim. Acta A 2022, 276, 121213. [Google Scholar] [CrossRef] [PubMed]
- Musile, G.; Grazioli, C.; Fornasaro, S.; Dossi, N.; De Palo, E.F.; Tagliaro, F.; Bortolotti, F. Application of paper-based microfluidic analytical devices (µPAD) in forensic and clinical toxicology: A review. Biosensors 2023, 13, 743. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, Q.; Guo, Z.; Xue, S.; Chen, B.; Liu, Y.; Ren, W.; Yang, X.; Wen, S. A bifunctional peptide-based fluorescent probe for ratiometric and “turn-on” detection of Zn(II) ions and its application in living cells. Spectrochim. Acta A 2022, 268, 120653. [Google Scholar] [CrossRef]
- Xue, L.; Wang, R.; Qi, S.; Xu, H.; Wang, X.; Wu, L.; Yang, Q.; Du, J.; Li, Y. A novel 100% aqueous solution near-infrared ratiometric fluorescent CN− probe based on 1,4-dihydropyridines, with a large fluorescent emission peak shift. Talanta 2021, 225, 122100. [Google Scholar] [CrossRef]
- Tang, Q.; Dan, F.; Ma, S.; Zeng, X.; Lan, H. A colorimetric and fluorescent probe based on quinoline-indolium for detection of CN−. ChemistrySelect 2021, 6, 6557. [Google Scholar] [CrossRef]
- Erdemir, S.; Malkondu, S. Visual and quantitative detection of CN− ion in aqueous media by an HBT-Br and thiazolium conjugated fluorometric and colorimetric probe: Real samples and useful applications. Talanta 2021, 221, 121639. [Google Scholar] [CrossRef]
- Wang, B.-B.; Wang, Y.; Wu, W.-N.; Xu, Z.-H.; Fan, Y.-C. A near-infrared colorimetric and fluorescent dual-channel probe for cyanide detection based on dicyanomethylene-4H-pyran. Inorg. Chem. Commun. 2020, 122, 108245. [Google Scholar] [CrossRef]
- Saha, P.P.; Chatterjee, T.; Pattanayak, R.; Das, R.S.; Guha, S. Targeting and imaging of mitochondria using near-infrared cyanine dye and its application to multicolor imaging. ACS Omega 2019, 4, 14579. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-L.; Li, C.; Song, Q.-H. Fluorescent chemosensor for dual-channel discrimination between phosgene and triphosgene. Anal. Chem. 2019, 91, 5690–5697. [Google Scholar] [CrossRef]
- Kaur, I.; Sharma, V.; Mobin, S.M.; Kaur, P.; Singh, K. Excitation wavelength based reversible multicolour photoluminescence by a single chromophore upon aggregation: Detection of picric acid-application in bioimaging. Sens. Actuators B-Chem. 2018, 281, 613–622. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, Y.; Huo, F.; Wen, Y.; Yin, C. Design strategy and bioimaging of small organic molecule multicolor fluorescent probes. Sci. China Chem. 2020, 63, 1742–1755. [Google Scholar] [CrossRef]
- Yan, L.; Yang, H.; Li, J.; Zhou, C.; Li, L.; Wu, X.; Lei, C. A near infrared fluorescent probe for detection and bioimaging of zinc ions and hypochlorous acid. Anal. Chim. Acta 2022, 1206, 339750. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, B.; Tian, H. Progress on fluorescent chemosensors for anions. Prog. Chem. 2006, 18, 687. [Google Scholar]
- Duong, T.Q.; Kim, J.S. Fluoro- and chromogenic chemodosimeters for heavy metal ion detection in solution and biospecimens. Chem. Rev. 2010, 110, 6280. [Google Scholar]
- Silva, A.P.D.; Gunaratne, H.Q.N.; Gunnlaugsson, T.; Huxley, A.J.M.; Mccoy, C.P.R.; Jude, T.; Rice, T.E. Signaling recognition events with fluorescent sensors and switches. Chem. Rev. 1997, 97, 1515. [Google Scholar] [CrossRef]
- Saha, S.; Ghosh, A.; Mahato, P.; Mishra, S.; Mishra, S.K.; Suresh, E.; Das, S.; Das, A. Specific recognition and sensing of CN− in sodium cyanide solution. Org. Lett. 2010, 12, 3406–3409. [Google Scholar] [CrossRef]
- Sun, S.S.; Lees, A.J. Anion recognition through hydrogen bonding: A simple, yet highly sensitive, luminescent metal-complex receptor. Chem. Commun. 2000, 17, 1687–1688. [Google Scholar] [CrossRef]
- Kumar, V.; Kaushik, M.P.; Srivastava, A.K.; Pratap, A.; Thiruvenkatam, V.; Row, T. Thiourea based novel chromogenic sensor for selective detection of fluoride and cyanide anions in organic and aqueous media. Anal. Chim. Acta 2010, 663, 77–84. [Google Scholar] [CrossRef]
- Shahid, M.; Razi, S.S.; Srivastava, P.; Ali, R.; Maiti, B.; Misra, A. A useful scaffold based on acenaphthene exhibiting Cu2+ induced excimer fluorescence and sensing cyanide via Cu2+ displacement approach. Tetrahedron 2012, 68, 9076–9084. [Google Scholar] [CrossRef]
- Odago, M.O.; Colabello, D.M.; Lees, A.J. A simple thiourea based colorimetric sensor for cyanide anion. Tetrahedron 2010, 66, 7465–7471. [Google Scholar] [CrossRef]
- Lee, J.H.; Jeong, A.R.; Shin, I.S.; Kim, H.J.; Hong, J.I. Fluorescence turn-on sensor for cyanide based on a cobalt(II)–coumarinylsalen complex. Org. Lett. 2010, 12, 764–767. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, V.; Singh, H.; Kumar, M. Triphenylene based copper ensemble for the detection of cyanide ions. Dalton Trans. 2012, 41, 11413–11418. [Google Scholar] [CrossRef]
- Jung, H.S.; Han, J.H.; Kim, Z.H.; Kang, C.; Kim, J.S. Coumarin-Cu(II) ensemble-based cyanide sensing chemodosimeter. Org. Lett. 2011, 13, 5056–5059. [Google Scholar] [CrossRef]
- Lou, X.; Zhang, L.; Qin, J.; Zhen, L. An alternative approach to develop a highly sensitive and selective chemosensor for the colorimetric sensing of cyanide in water. Chem. Commun. 2008, 44, 5848–5850. [Google Scholar] [CrossRef]
- Guo, Y.-Y.; Tang, X.-L.; Hou, F.-P.; Wu, J.; Dou, W.; Qin, W.-W.; Ru, J.-X.; Zhang, G.-L.; Liu, W.-S.; Yao, X.-J. A reversible fluorescent chemosensor for cyanide in 100% aqueous solution. Sens. Actuators B-Chem. 2013, 181, 202–208. [Google Scholar] [CrossRef]
- Li, H.; Wen, Z.; Jin, L.; Kan, Y.; Yin, B. A coumarin-Meldrum’s acid conjugate based chemodosimetric probe for cyanide. Chem. Commun. 2012, 48, 11659–11661. [Google Scholar] [CrossRef]
- Yuan, L.; Lin, W.; Yang, Y.; Song, J.; Wang, J. Rational design of a highly reactive ratiometric fluorescent probe for cyanide. Org. Lett. 2011, 13, 3730–3733. [Google Scholar] [CrossRef]
- Ekmekci, Z.; Yilmaz, M.D.; Akkaya, E.U. A monostyryl-boradiazaindacene (BODIPY) derivative as colorimetric and fluorescent probe for cyanide ions. Org. Lett. 2008, 10, 461–464. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.-T.; Su, D.; Jiang, X.L.; Yang, W.; Yin, Z.; He, J.; Cheng, J.-P. A simple yet highly selective colorimetric sensor for cyanide anion in an aqueous environment. Org. Biomol. Chem. 2008, 6, 3038–3040. [Google Scholar] [CrossRef]
- Li, H.; Li, B.; Jin, L.Y.; Kan, Y.; Yin, B. A rapid responsive and highly selective probe for cyanide in the aqueous environment. Tetrahedron 2011, 67, 7348–7353. [Google Scholar] [CrossRef]
- Lv, X.; Liu, J.; Liu, Y.; Zhao, Y.; Sun, Y.Q.; Wang, P.; Guo, W. Ratiometric fluorescence detection of cyanide based on a hybrid coumarin-hemicyanine dye: The large emission shift and the high selectivity. Chem. Commun. 2011, 47, 12843–12845. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Singh, P.; Hundal, G.; Hundal, M.S.; Kumar, S. A chemodosimeter for ratiometric detection of cyanide in aqueous media and human blood serum. Chem. Commun. 2013, 49, 2667–2669. [Google Scholar] [CrossRef]
- Huh, J.O.; Do, Y.; Lee, M.H. A BODIPY–Borane Dyad for the selective complexation of cyanide ion. Organometallics 2008, 27, 1022–1025. [Google Scholar] [CrossRef]
- Palomares, E. Martínez-Díaz, M.V.; Torres, T.; Coronado, E. A highly sensitive hybrid colorimetric and fluorometric molecular probe for cyanide sensing based on a subphthalocyanine dye. Adv. Funct. Mater. 2006, 16, 1166–1170. [Google Scholar] [CrossRef]
- Guliyev, R.; Ozturk, S.; Sahin, E.; Akkaya, E.U. Expanded bodipy dyes: Anion sensing using a bodipy analog with an additional difluoroboron bridge. Org. Lett. 2012, 14, 1528–1531. [Google Scholar] [CrossRef]
- Hao, Y.; Zhang, Y.; Sun, Q.; Chen, S.; Tang, Z.; Zeng, R.; Xu, M. Phenothiazine-coumarin-pyridine hybrid as an efficient fluorescent probe for ratiometric sensing hypochlorous acid. Microchem. J. 2021, 171, 106851. [Google Scholar] [CrossRef]
- Wu, P.; Zhu, Y.; Chen, L.; Tian, Y.; Xiong, H. A fast-responsive OFF-ON near-infrared-II fluorescent probe for in vivo detection of hypochlorous acid in rheumatoid arthritis. Anal. Chem. 2021, 93, 13014. [Google Scholar] [CrossRef]
- Pan, B.; Zhu, Y.-Z.; Qiu, C.; Wang, B.; Zheng, J.-Y. Synthesis of phenothiazine dyes featuring benzothiadiazole unit for efficient dye-sensitized solar cells. Acta Chim. Sin. 2018, 76, 215. [Google Scholar] [CrossRef]
- Padnya, P.L.; Khadieva, A.I.; Stoikov, I.I. Current achievements and perspectives in synthesis and applications of 3,7-disubstituted phenothiazines as Methylene Blue analogues. Dyes Pigments 2023, 208, 110806. [Google Scholar] [CrossRef]
- Posso, M.C.; Domingues, F.C.; Ferreira, S.; Silvestre, S. Development of phenothiazine hybrids with potential medicinal interest: A Review. Molecules 2022, 27, 276. [Google Scholar] [CrossRef]
- Lu, X.; Zhan, Y.; He, W. Recent development of small-molecule fluorescent probes based on phenothiazine and its derivates. J. Photochem. Photobiol. B 2022, 234, 112528. [Google Scholar] [CrossRef]
- Zhou, C.; Song, Y.; Li, Y.P. A novel highly sensitive and selective fluorescent sensor for imaging mercury(II) in living cells. RSC Adv. 2014, 4, 33614. [Google Scholar] [CrossRef]
- Han, Y.Y.; Gao, X.Q.; Wang, D.W.; Zhuang, X.M.; Tian, C.Y.; Li, F.X. Synthesis of copper nanoclusters and its application in determination of pyrophosphate. Chin. J. Anal. Chem. 2021, 330, 1300. [Google Scholar]
- Liu, X.L.; Yan, M.D.; Chen, Z.G.; Zhang, B.; Yao, N.; Zhao, S.; Zhao, X.; Zhang, T.; Hai, G. A dual-site multifunctional fluorescent probe for selective detection of endogenous H2O2 and SO2 derivatives based on ICT process and its bioimaging application. Spectrochim. Acta A 2023, 286, 121955. [Google Scholar] [CrossRef]
- Yilmaz, M.D.; Kocak, H.S.; Kara, H.K. A BODIPY-based ICT probe for ratiometric and chromo-fluorogenic detection of hazardous oxalyl chloride. Spectrochim. Acta A 2023, 284, 121828. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhou, C.; Li, J.; Sun, J. A New Phenothiazine-Based Fluorescent Sensor for Detection of Cyanide. Biosensors 2024, 14, 51. https://doi.org/10.3390/bios14010051
Li Y, Zhou C, Li J, Sun J. A New Phenothiazine-Based Fluorescent Sensor for Detection of Cyanide. Biosensors. 2024; 14(1):51. https://doi.org/10.3390/bios14010051
Chicago/Turabian StyleLi, Yulei, Chen Zhou, Jiaxin Li, and Jing Sun. 2024. "A New Phenothiazine-Based Fluorescent Sensor for Detection of Cyanide" Biosensors 14, no. 1: 51. https://doi.org/10.3390/bios14010051
APA StyleLi, Y., Zhou, C., Li, J., & Sun, J. (2024). A New Phenothiazine-Based Fluorescent Sensor for Detection of Cyanide. Biosensors, 14(1), 51. https://doi.org/10.3390/bios14010051