Exploring the Hidden Complexity: Entropy Analysis in Pulse Oximetry of Female Athletes
Abstract
:1. Introduction
2. Methods
2.1. Protocol and Testing Procedure
- Females aged 13 to 55.
- Engaged in regular competitive sports practice at national and regional tournaments for a minimum of 2 years prior to the study.
- Training frequency of 2 to 4 times a week, with sessions lasting between 1 to 3 h. Continued their sports practice up until the day preceding the study.
- No reported respiratory or cardiac diseases and exhibited normal spirometric values. Underwent an evaluation for cardiovascular health prior to the study.
2.2. Entropy-Based Regularity Assessment of Time Series Data
- Fix parameters: m (pattern length) and r (similarity criterion).
- Form N − m + 1 vector of length m from the time series . The distances between them is: with
- For each vector, count the number of vectors that are similar to it within a tolerance r. number of such that
- Compute the regularity measure for patterns of length m as:
- The statistical estimator of the ApEn(m, r, N) is then defined as
- Similar to the steps in ApEn, begin with a time series of length N and construct vectors.
- However, in counting the number of matches, do not include self-matches (i.e., exclude the case j = i).
- Define regularity measures for sequences of length m as:
- Compute SampEn(m, r, N)(u) as:
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ApEn | Approximate Entropy |
SampEn | Sample Entropy |
Maximal oxygen consumption | |
Oxygen saturation | |
HR | Heart rate |
PPG | Photoplethysmography |
HRV | Heart rate variability |
EEG | Entropy of electroencephalogram |
HCSC | Hospital Clinico San Carlos |
BMI | Body mass index |
ECG | Electrocardiographic |
Standard deviations | |
CV | Coefficient of variation |
References
- Ansdell, P.; Thomas, K.; Hicks, K.M.; Hunter, S.K.; Howatson, G.; Goodall, S. Physiological sex differences affect the integrative response to exercise: Acute and chronic implications. Exp. Physiol. 2020, 105, 2007–2021. [Google Scholar] [CrossRef] [PubMed]
- Sheel, A.W. Respiratory muscle training in healthy individuals: Physiological rationale and implications for exercise performance. Sport. Med. 2002, 32, 567–581. [Google Scholar] [CrossRef] [PubMed]
- Dominelli, P.B.; Foster, G.E.; Dominelli, G.S.; Henderson, W.R.; Koehle, M.S.; McKenzie, D.C.; Sheel, A.W. Exercise-induced arterial hypoxaemia and the mechanics of breathing in healthy young women. J. Physiol. 2013, 591, 3017–3034. [Google Scholar] [CrossRef] [PubMed]
- Martín-Escudero, P.; Cabanas, A.M.; Fuentes-Ferrer, M.; Galindo-Canales, M. Oxygen Saturation Behavior by Pulse Oximetry in Female Athletes: Breaking Myths. Biosensors 2021, 11, 391. [Google Scholar] [CrossRef]
- Tamura, T.; Maeda, Y.; Sekine, M.; Yoshida, M. Wearable photoplethysmographic sensors—past and present. Electronics 2014, 3, 282–302. [Google Scholar] [CrossRef]
- Thompson, W.R. Worldwide Survey of Fitness Trends for 2023. ACSM’s Health Fit. J. 2023, 27, 9–18. [Google Scholar] [CrossRef]
- Fine, J.; Branan, K.L.; Rodriguez, A.J.; Boonya-ananta, T.; Ajmal; Ramella-Roman, J.C.; McShane, M.J.; Coté, G.L. Sources of Inaccuracy in Photoplethysmography for Continuous Cardiovascular Monitoring. Biosensors 2021, 11, 126. [Google Scholar] [CrossRef]
- Cabanas, A.M.; Fuentes-Guajardo, M.; Latorre, K.; León, D.; Martín-Escudero, P. Skin Pigmentation Influence on Pulse Oximetry Accuracy: A Systematic Review and Bibliometric Analysis. Sensors 2022, 22, 3402. [Google Scholar] [CrossRef]
- Sjoding, M.W.; Iwashyna, T.J.; Valley, T.S. Change the Framework for Pulse Oximeter Regulation to Ensure Clinicians Can Give Patients the Oxygen They Need. Am. J. Respir. Crit. Care Med. 2023, 207, 661–664. [Google Scholar] [CrossRef]
- Approach for Improving the Performance Evaluation of Pulse Oximeter Devices Taking Into Consideration Skin Pigmentation, Race and Ethnicity Discussion Paper and Request for Feedback Approach for Improving the Performance Evaluation of Pulse Oximeter Devi; Technical report; FDA Safety Communication, Food and Drug Administration: New Hampshire, NH, USA, 2023.
- FDA. Pulse Oximeter Accuracy and Limitations; FDA Safety Communication, Food and Drug Administration: New Hampshire, NH, USA, 2021.
- Anesthesiology Devices Advisory Committee; Center for Devices and Radiological Health (CDRH); United States Food and Drug Administration. FDA Executive Summary Review of Pulse Oximeters and Factors That Can Impact Their Accuracy; Technical Report; FDA Safety Communication, Food and Drug Administration: New Hampshire, NH, USA, 2022.
- Cabanas, A.M.; Martín-Escudero, P.; Shelley, K.H. Improving pulse oximetry accuracy in dark-skinned patients: Technical aspects and current regulations. Br. J. Anaesth. 2023, 131, 640–644. [Google Scholar] [CrossRef]
- Furian, M.; Tannheimer, M.; Burtscher, M. Effects of Acute Exposure and Acclimatization to High-Altitude on Oxygen Saturation and Related Cardiorespiratory Fitness in Health and Disease. J. Clin. Med. 2022, 11, 6699. [Google Scholar] [CrossRef]
- Pham, S.; Yeap, D.; Escalera, G.; Basu, R.; Wu, X.; Kenyon, N.J.; Hertz-Picciotto, I.; Ko, M.J.; Davis, C.E. Wearable Sensor System to Monitor Physical Activity and the Physiological Effects of Heat Exposure. Sensors 2020, 20, 855. [Google Scholar] [CrossRef]
- Jiang, Y.; Costello, J.T.; Williams, T.B.; Panyapiean, N.; Bhogal, A.S.; Tipton, M.J.; Corbett, J.; Mani, A.R. A network physiology approach to oxygen saturation variability during normobaric hypoxia. Exp. Physiol. 2021, 106, 151–159. [Google Scholar] [CrossRef] [PubMed]
- Mahler, D.A.; Horowitz, M.B. Perception of breathlessness during exercise in patients with respiratory disease. Med. Sci. Sport. Exerc. 1994, 26, 1078–1081. [Google Scholar] [CrossRef]
- Gheorghita, M.; Wikner, M.; Cawthorn, A.; Oyelade, T.; Nemeth, K.; Rockenschaub, P.; Gonzalez Hernandez, F.; Swanepoel, N.; Lilaonitkul, W.; Mani, A.R. Reduced oxygen saturation entropy is associated with poor prognosis in critically ill patients with sepsis. Physiol. Rep. 2022, 10, e15546. [Google Scholar] [CrossRef] [PubMed]
- Azami, H.; Escudero, J. Amplitude- and Fluctuation-Based Dispersion Entropy. Entropy 2018, 20, 210. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; He, S.; Sun, K. Design of a Network Permutation Entropy and Its Applications for Chaotic Time Series and EEG Signals. Entropy 2019, 21, 849. [Google Scholar] [CrossRef]
- Yi, L.; Yingle, F. Complexity measure applied to the analysis EEG signals. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2005, 2005, 4610–4613. [Google Scholar] [CrossRef]
- Zunino, L.; Olivares, F.; Scholkmann, F.; Rosso, O.A. Permutation entropy based time series analysis: Equalities in the input signal can lead to false conclusions. Phys. Lett. A 2017, 381, 1883–1892. [Google Scholar] [CrossRef]
- Pincus, S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA 1991, 88, 2297–2301. [Google Scholar] [CrossRef]
- Richman, J.S.; Moorman, J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000, 278, H2039–H2049. [Google Scholar] [CrossRef]
- Yentes, J.M.; Hunt, N.; Schmid, K.K.; Kaipust, J.P.; McGrath, D.; Stergiou, N. The appropriate use of approximate entropy and sample entropy with short data sets. Ann. Biomed. Eng. 2013, 41, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Pincus, S. Approximate entropy (ApEn) as a complexity measure. Chaos 1995, 5, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Bonal, A.; Marshak, A. Approximate entropy and sample entropy: A comprehensive tutorial. Entropy 2019, 21, 541. [Google Scholar] [CrossRef] [PubMed]
- Srinivasa, M.G.; Pandian, P.S. Application of Entropy Techniques in Analyzing Heart Rate Variabilityusing ECG Signals. Int. J. Recent Innov. Trends Comput. Commun. 2019, 7, 9–16. [Google Scholar] [CrossRef]
- Acharya, U.R.; Hagiwara, Y.; Koh, J.E.W.; Oh, S.L.; Tan, J.H.; Adam, M.; Tan, R.S. Entropies for automated detection of coronary artery disease using ECG signals: A review. Biocybern. Biomed. Eng. 2018, 38, 373–384. [Google Scholar] [CrossRef]
- Kaufmann, S.; Gronwald, T.; Herold, F.; Hoos, O. Heart Rate Variability-Derived Thresholds for Exercise Intensity Prescription in Endurance Sports: A Systematic Review of Interrelations and Agreement with Different Ventilatory and Blood Lactate Thresholds. Sport. Med. Open 2023, 9, 59. [Google Scholar] [CrossRef]
- Beckers, F.; Ramaekers, D.; Aubert, A.E. Approximate Entropy of Heart Rate Variability: Validation of Methods and Application in Heart Failure. Cardiovasc. Eng. Int. J. 2001, 1, 177–182. [Google Scholar] [CrossRef]
- Byun, S.; Kim, A.Y.; Jang, E.H.; Kim, S.; Choi, K.W.; Yu, H.Y.; Jeon, H.J. Entropy analysis of heart rate variability and its application to recognize major depressive disorder: A pilot study. Technol. Health Care Off. J. Eur. Soc. Eng. Med. 2019, 27, 407–424. [Google Scholar] [CrossRef]
- Su, R.; Li, X.; Liu, Y.; Cui, W.; Xie, P.; Han, Y. Evaluation of the Brain Function State During Mild Cognitive Impairment Based on Weighted Multiple Multiscale Entropy. Front. Aging Neurosci. 2021, 13, 625081. [Google Scholar] [CrossRef]
- Pedro Silva Ricardo Duarte, P.E.B.T.; Vilar, L. Application of entropy measures to analysis of performance in team sports. Int. J. Perform. Anal. Sport 2016, 16, 753–768. [Google Scholar] [CrossRef]
- Ihlen, E.A.F.; Weiss, A.; Bourke, A.; Helbostad, J.L.; Hausdorff, J.M. The complexity of daily life walking in older adult community-dwelling fallers and non-fallers. J. Biomech. 2016, 49, 1420–1428. [Google Scholar] [CrossRef]
- Kurz, M.J.; Hou, J.G. Levodopa influences the regularity of the ankle joint kinematics in individuals with Parkinson’s disease. J. Comput. Neurosci. 2010, 28, 131–136. [Google Scholar] [CrossRef]
- Ahmadi, S.; Sepehri, N.; Wu, C.; Szturm, T. Sample Entropy of Human Gait Center of Pressure Displacement: A Systematic Methodological Analysis. Entropy 2018, 20, 579. [Google Scholar] [CrossRef] [PubMed]
- Nasirzadeh, F.; Mir, M.; Hussain, S.; Tayarani Darbandy, M.; Khosravi, A.; Nahavandi, S.; Aisbett, B. Physical Fatigue Detection Using Entropy Analysis of Heart Rate Signals. Sustainability 2020, 12, 2714. [Google Scholar] [CrossRef]
- Zhang, L.; Fu, M.; Xu, F.; Hou, F.; Ma, Y. Heart Rate Dynamics in Patients with Obstructive Sleep Apnea: Heart Rate Variability and Entropy. Entropy 2019, 21, 927. [Google Scholar] [CrossRef]
- Wang, F.; Wang, H.; Fu, R. Real-Time ECG-Based Detection of Fatigue Driving Using Sample Entropy. Entropy 2018, 20, 196. [Google Scholar] [CrossRef]
- Exel, J.; Mateus, N.; Gonçalves, B.; Abrantes, C.; Calleja-González, J.; Sampaio, J. Entropy Measures Can Add Novel Information to Reveal How Runners’ Heart Rate and Speed Are Regulated by Different Environments. Front. Psychol. 2019, 10, 1278. [Google Scholar] [CrossRef]
- Elliott, M.; Baird, J. Pulse oximetry and the enduring neglect of respiratory rate assessment: A commentary on patient surveillance. Br. J. Nurs. 2019, 28, 1256–1259. [Google Scholar] [CrossRef]
- Ardavani, A.; Aziz, H.; Phillips, B.E.; Doleman, B.; Ramzan, I.; Mozaffar, B.; Atherton, P.J.; Idris, I. Indicators of response to exercise training: A systematic review and meta-analysis. BMJ Open 2021, 11, e044676. [Google Scholar] [CrossRef]
- Spedding, M.; Marvaud, R.; Marck, A.; Delarochelambert, Q.; Toussaint, J.F. Aging, VO(2) max, entropy, and COVID-19. Indian J. Pharmacol. 2022, 54, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Strasser, B.; Burtscher, M. Survival of the fittest: VO(2)max, a key predictor of longevity? Front. Biosci. 2018, 23, 1505–1516. [Google Scholar] [CrossRef] [PubMed]
- Montesinos, L.; Castaldo, R.; Pecchia, L. On the use of approximate entropy and sample entropy with centre of pressure time-series. J. NeuroEng. Rehabil. 2018, 15, 116. [Google Scholar] [CrossRef] [PubMed]
- Scribbans, T.D.; Vecsey, S.; Hankinson, P.B.; Foster, W.S.; Gurd, B.J. The Effect of Training Intensity on VO(2)max in Young Healthy Adults: A Meta-Regression and Meta-Analysis. Int. J. Exerc. Sci. 2016, 9, 230–247. [Google Scholar]
- Gaston, A.F.; Durand, F.; Roca, E.; Doucende, G.; Hapkova, I.; Subirats, E. Exercise-Induced Hypoxaemia Developed at Sea-Level Influences Responses to Exercise at Moderate Altitude. PLoS ONE 2016, 11, e0161819. [Google Scholar] [CrossRef]
- Monod, H. Manual de Fisiología del Deporte: Bases Fisiológicas de las Actividades físicas y Deportivas, 1st ed.; Masson: Barcelona, Spain, 1986; p. 200. [Google Scholar]
- Borowska, M. Entropy-Based Algorithms in the Analysis of Biomedical Signals. Stud. Logic Gramm. Rhetor. 2016, 43, 21–32. [Google Scholar] [CrossRef]
- Hornero, R.; Álvarez, D.; Abásolo, D.; Campo, F.D.; Zamarrón, C. Utility of approximate entropy from overnight pulse oximetry data in the diagnosis of the obstructive sleep apnea syndrome. IEEE Trans. Biomed. Eng. 2007, 54, 107–113. [Google Scholar] [CrossRef]
- Bent, B.; Goldstein, B.A.; Kibbe, W.A.; Dunn, J.P. Investigating sources of inaccuracy in wearable optical heart rate sensors. NPJ Digit. Med. 2020, 3, 18. [Google Scholar] [CrossRef]
Subjects N = 27 | |
---|---|
Age (years) | |
Size (cm) | |
Weight (kg) | |
BMI (kg/m2) | |
(bpm) | |
(mL/(kg· min)) |
Physical Fitness Condition | N | ± | Min | Max |
---|---|---|---|---|
Excellent (>50 mL/kg/min) | 11 | 55.99 ± 5.83 | 50.90 | 66.20 |
Good (40–50 mL/kg/min) | 11 | 46.75 ± 3.03 | 41.00 | 50.00 |
Medium (30–40 mL/kg/min) | 5 | 38.10 ± 0.55 | 37.50 | 38.50 |
Fitness Condition | ApEn | SampEn | ||
---|---|---|---|---|
HR (; VC) | (; CV) | HR (; CV) | (; CV) | |
Medium | ; 22.17% | ; 46.08% | ; 24.25% | ; 23.08% |
Good | ; 16.27% | ; 47.56% | ; 33.19% | ; 44.56% |
Excellent | ; 15.19% | ; 49.46% | ; 37.20% | ; 48.48% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabanas, A.M.; Fuentes-Guajardo, M.; Sáez, N.; Catalán, D.D.; Collao-Caiconte, P.O.; Martín-Escudero, P. Exploring the Hidden Complexity: Entropy Analysis in Pulse Oximetry of Female Athletes. Biosensors 2024, 14, 52. https://doi.org/10.3390/bios14010052
Cabanas AM, Fuentes-Guajardo M, Sáez N, Catalán DD, Collao-Caiconte PO, Martín-Escudero P. Exploring the Hidden Complexity: Entropy Analysis in Pulse Oximetry of Female Athletes. Biosensors. 2024; 14(1):52. https://doi.org/10.3390/bios14010052
Chicago/Turabian StyleCabanas, Ana M., Macarena Fuentes-Guajardo, Nicolas Sáez, Davidson D. Catalán, Patricio O. Collao-Caiconte, and Pilar Martín-Escudero. 2024. "Exploring the Hidden Complexity: Entropy Analysis in Pulse Oximetry of Female Athletes" Biosensors 14, no. 1: 52. https://doi.org/10.3390/bios14010052
APA StyleCabanas, A. M., Fuentes-Guajardo, M., Sáez, N., Catalán, D. D., Collao-Caiconte, P. O., & Martín-Escudero, P. (2024). Exploring the Hidden Complexity: Entropy Analysis in Pulse Oximetry of Female Athletes. Biosensors, 14(1), 52. https://doi.org/10.3390/bios14010052