A Nanoparticle-Coated Cellulose Acetate Membrane for Highly Efficient, Low-Cost Circulating Tumor Cell Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Preparation of COF-366
2.2. The Preparation of COF-366@AuNPs
2.3. The Preparation of COF-366@AuNPs-MUA
2.4. The Preparation of COF-366@AuNPs-MUA-BA
2.5. The Preparation of COF-366-Fe@AuNPs-MUA-BA
2.6. Coating the Cellulose Acetate Membrane with Melamine–Furfural Phenylboronic Acid (MFPA) Particles
2.7. Cell Culture
2.8. Enrichment and Detection of CTCs
2.9. Adsorption of Hemocytes on MFPA NP-Coated Cellulose Acetate Membrane
3. Results and Discussion
3.1. The Characterization of COF-366
3.2. The Characterization of COF-366-Fe@AuNPs-MUA-BA
3.3. The Characterization and Optimization of the MFPA NP-Coated Cellulose Acetate Membrane
3.4. The Detection of CTCs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Massagué, J.; Obenauf, A.C. Metastatic colonization by circulating tumour cells. Nature 2016, 529, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Dive, C.; Brady, G. SnapShot: Circulating tumor cells. Cell 2017, 168, 742. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Shen, L.; Luo, M.; Zhang, K.; Li, J.; Yang, Q.; Zhu, F.; Zhou, D.; Zheng, S.; Chen, Y.; et al. Circulating tumor cells: Biology and clinical significance. Signal Transduct. Target. Ther. 2021, 6, 404. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.; Wu, A.; Chen, X. Current detection technologies for circulating tumor cells. Chem. Soc. Rev. 2017, 46, 2038–2056. [Google Scholar] [CrossRef] [PubMed]
- Ju, S.; Chen, C.; Zhang, J.; Xu, L.; Zhang, X.; Li, Z.; Chen, Y.; Zhou, J.; Ji, F.; Wang, L. Detection of circulating tumor cells: Opportunities and challenges. Biomark. Res. 2022, 10, 58. [Google Scholar] [CrossRef]
- Habli, Z.; AlChamaa, W.; Saab, R.; Kadara, H.; Khraiche, M.L. Circulating tumor cell detection technologies and clinical utility: Challenges and opportunities. Cancers 2020, 12, 1930. [Google Scholar] [CrossRef]
- Li, F.; Xu, H.; Zhao, Y. Magnetic particles as promising circulating tumor cell catchers assisting liquid biopsy in cancer diagnosis: A review. TrAC-Trends Anal. Chem. 2021, 145, 116453. [Google Scholar] [CrossRef]
- Wu, J.; Wei, X.; Gan, J.; Huang, L.; Shen, T.; Lou, J.; Liu, B.; Zhang, J.X.J.; Qian, K. Multifunctional magnetic particles for combined circulating tumor cells isolation and cellular metabolism detection. Adv. Funct. Mater. 2016, 26, 4016–4025. [Google Scholar] [CrossRef]
- Wang, S.; Liu, K.; Yao, X.; Jiang, L. Bioinspired surfaces with superwettability: New insight on theory, design, and applications. Chem. Rev. 2015, 115, 8230–8293. [Google Scholar] [CrossRef]
- An, L.; Wang, G.; Han, Y.; Li, T.; Jin, P.; Liu, S. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. Lab Chip 2018, 18, 335–342. [Google Scholar] [CrossRef]
- Gostomczyk, K.; Łukaszewska, E.; Borowczak, J.; Bator, A.; Zdrenka, M.; Bodnar, M.; Szylberg, Ł. Flow cytometry in the detection of circulating tumor cells in neoplastic effusions. Clin. Chim. Acta 2024, 552, 117651. [Google Scholar] [CrossRef] [PubMed]
- Suo, Y.; Gu, Z.; Wei, X. Advances of in vivo flow cytometry on cancer studies. Cytom. Part A 2020, 97, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Liu, J.; Wang, L.; Mi, L.; Wen, W.; Zhang, X.; Wu, Z.; Wang, S. Colorimetric Single-nanoparticle collision electrochemistry for rapid discrimination and accurate quantification of MCF-7 cells. Chem. Eng. J. 2024, 493, 152531. [Google Scholar] [CrossRef]
- Safarpour, H.; Dehghani, S.; Nosrati, R.; Zebardast, N.; Alibolandi, M.; Mokhtarzadeh, A.; Ramezani, M. Optical and electrochemical-based nano-aptasensing approaches for the detection of circulating tumor cells (CTCs). Biosens. Bioelectron. 2020, 148, 111833. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Tang, J.; Zhang, Q.; Suonanmu, D.; Zhang, Y.; Ren, Q.; Tao, F.; Li, C.; Wang, F. An integrated microfluidic cytosensor coupled with self-calibration electrochemical/colorimetric dual-signal output for sensitive and accurate detection of hepatoma cells. Sens. Actuators B-Chem. 2024, 403, 135176. [Google Scholar] [CrossRef]
- Li, B.; Shen, H.; Liu, Q.; Liu, X.; Cai, J.; Zhang, L.; Wu, D.; Xie, Y.; Xie, G.; Feng, W. A three-site recognition cytosensor based on multi-active AuIrPt polyhedral nanozymes for detection of CTCs. Sens. Actuators B-Chem. 2023, 386, 133762. [Google Scholar] [CrossRef]
- Zhou, X.; Bai, D.; Yu, H.; Fu, Y.; Song, L.; Wu, Y.; Chen, K.; Li, J.; Yang, Y.; Chen, H.; et al. Detection of rare CTCs by electrochemical biosensor built on quaternary PdPtCuRu nanospheres with mesoporous architectures. Talanta 2023, 253, 123955. [Google Scholar] [CrossRef]
- Guo, M.; Shen, B.; He, W.; Li, X.; Li, X.; Li, M.; Hu, R.; Zhang, M.; Yan, Y. A novel electrochemiluminescent cytosensor using 3D multivalent aptamer recognition and covalent organic frameworks-associated DNA walker for highly efficient capture and detection of rare CTCs. Chem. Eng. J. 2024, 481, 148606. [Google Scholar] [CrossRef]
- Peng, Y.; Zhao, X.; Li, M.; Yue, Y.; Pan, C.; Li, T.; Ou, S.; Hu, Z. DNA bridged polycrystalline Cu2+-NMOFs for electrochemical detection of mesenchymal circulating tumor cells. Sens. Actuators B-Chem. 2024, 402, 135111. [Google Scholar] [CrossRef]
- Liang, M.; Yan, X. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200. [Google Scholar] [CrossRef]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2021, 119, 4357–4412. [Google Scholar] [CrossRef] [PubMed]
- Zandieh, M.; Liu, J. Nanozymes: Definition, activity, and mechanisms. Adv. Mater. 2024, 36, 2211041. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Qiao, J.; Zhang, H.; Zhao, Z.; Qi, L. Polymer-capped gold nanoparticles as nanozymes with improved catalytic activity for the monitoring of serum ciprofloxacin. Analyst 2022, 147, 1509–1514. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, S.; Tang, Y.; Zhang, X.; Bai, Y.; Pang, H. Advances in metal–organic framework-based nanozymes and their applications. Coord. Chem. Rev. 2021, 449, 214216. [Google Scholar] [CrossRef]
- Wu, J.; Yu, Y.; Cheng, Y.; Cheng, C.; Zhang, Y.; Jiang, B.; Zhao, X.; Miao, L.; Wei, H. 1345 Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47 (V) 1346 metal–organic framework nanozyme for therapy. Angew. Chem. Int. Ed. 2021, 133, 1247–1254. [Google Scholar] [CrossRef]
- Wang, D.; Jana, D.; Zhao, Y. Metal–organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Ren, J.; Qu, X. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. Mater. Horiz. 2020, 7, 3291–3297. [Google Scholar] [CrossRef]
- Li, Y.; Wang, L.; Liu, H.; Pan, Y.; Li, C.; Xie, Z.; Jing, X. Ionic Covalent-Organic Framework Nanozyme as Effective Cascade Catalyst against Bacterial Wound Infection. Small 2021, 17, 2100756. [Google Scholar] [CrossRef]
- Matsumoto, A.; Cabral, H.; Sato, N.; Kataoka, K.; Miyahara, Y. Assessment of tumor metastasis by the direct determination of cell-membrane sialic acid expression. Angew. Chem. Int. Ed. 2010, 32, 5494–5497. [Google Scholar] [CrossRef]
- Wan, S.; Gándara, F.; Asano, A.; Furukawa, H.; Saeki, A.; Dey, S.K.; Liao, L.; Ambrogio, M.W.; Botros, Y.Y.; Duan, X.; et al. Covalent organic frameworks with high charge carrier mobility. Chem. Mater. 2011, 23, 4094–4097. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Z.; Dong, M.; Li, J.; Jiang, H.; Xu, J.; Gu, J.; Wang, D. CdSe@ CdS quantum dot–sensitized Au/α-Fe2O3 structure for photoelectrochemical detection of circulating tumor cells. Microchim. Acta 2023, 190, 221. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, X.; Wang, W.; Luo, S.; Guan, S.; Li, W.; Situ, B.; Li, B.; Zhang, Y.; Zheng, L. A simple and sensitive electrochemical biosensor for circulating tumor cell determination based on dual-toehold accelerated catalytic hairpin assembly. Microchim. Acta 2023, 190, 65. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Long, Y.; He, C.; Leng, Y.; Huang, Z.; Ma, Y.; Huo, C.; Huo, D. Ultrasensitive detection of circulating tumor cells via DNA walker driven by a DNA circuit synergized with MOF-on-MOF nanozyme. Chem. Eng. J. 2024, 479, 147513. [Google Scholar] [CrossRef]
- Wang, X.; Cheng, S.; Wang, X.; Wei, L.; Kong, Q.; Ye, M.; Luo, X.; Xu, J.; Zhang, C.; Xian, Y. pH-sensitive dye-based nanobioplatform for colorimetric detection of heterogeneous circulating tumor cells. ACS Sens. 2021, 6, 1925–1932. [Google Scholar] [CrossRef]
- Zhu, L.; Feng, X.; Yang, S.; Wang, J.; Pan, Y.; Ding, J.; Li, C.; Yin, X.; Yu, Y. Colorimetric detection of immunomagnetically captured rare number CTCs using mDNA-wrapped single-walled carbon nanotubes. Biosens. Bioelectron. 2021, 172, 112780. [Google Scholar] [CrossRef]
- Chen, P.; Wang, Y.; He, Y.; Huang, K.; Wang, X.; Zhou, R.; Liu, T.; Qu, R.; Zhou, J.; Peng, W.; et al. Homogeneous visual and fluorescence detection of circulating tumor cells in clinical samples via selective recognition reaction and enzyme-free amplification. ACS Nano 2021, 15, 11634–11643. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, X.; Shen, X.; He, Y.; Zhan, Z.; Liu, C.; Xie, Y.; Lin, F.; Huang, K.; Chen, P. Simplified rapid enrichment of CTCs and selective recognition prereduction enable a homogeneous ICP-MS liquid biopsy strategy of lung cancer. Anal. Chem. 2023, 95, 14244–14252. [Google Scholar] [CrossRef]
- Yang, B.; Chen, B.B.; He, M.; Yin, X.; Xu, C.; Hu, B. Aptamer-based dual-functional probe for rapid and specific counting and imaging of MCF-7 cells. Anal. Chem. 2018, 90, 2355–2361. [Google Scholar] [CrossRef]
- He, Y.; Chen, S.L.; Huang, L.; Wang, Z.W.; Wu, Y.N.; Fu, F.F. Combination of Magnetic-Beads-Based Multiple Metal Nanoparticles Labeling with Hybridization Chain Reaction Amplification for Simultaneous Detection of Multiple Cancer Cells with Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2019, 91, 1171–1177. [Google Scholar] [CrossRef]
Material for Enrichment | Detection Method | Nanomaterial for Generating Signal | LOD (Cells/mL) | Linear Range (Cells/mL) | Ref. |
---|---|---|---|---|---|
Magnetic bead | Electrochemistry | AuIrPt nanozymes | 5 | 5–106 | [16] |
CeMOF-Au/Ketjen Black | Electrochemistry | PdPtCuRu MNSs | 10 | 10–2 × 104 | [17] |
Au NP/α-Fe2O3 dendritic aptamer–DNA concatemer | Photoelectrochemistry | CdSe@CdS QDs–Ab | 3 | 300–6 × 105 | [31] |
SMB-Apt1/S5, SMB-Apt2/S6 | Electrochemistry | Au@COF-ZU1@Ru | 2 | 8–1 × 105 | [18] |
Immobilized antibody | Electrochemistry | polycrystalline Cu2+-NMOFs | 5 | 20–104 | [19] |
Magnetic bead | Electrochemistry/colorimetry | AgNPs/CuO NPs | 5 | 5–105 | [13] |
Bifunctional aptamer | Electrochemistry | Single-stranded aptamer | 4 | 10–103 | [32] |
Magnetic bead | Electrochemistry/colorimetry | Fe-MOF-PBA | 3 | 10–105 | [15] |
Bio-EpCAM aptamer | Colorimetry | MOF@Pt@MOF-H2 | 5 | 5–5 × 105 | [33] |
AuNP aptamer nanoconjugates | Colorimetry | TP/SYL3C-MoS2 or CUR/C-9S-MoS2 NFs | 5 | 5–5 × 104 | [34] |
Fe3O4-SiO2-Gel/P1/mDNA | Colorimetry | SWCNT colorimetric probe | 10 | 10–500 | [35] |
mucin 1 aptamer | Fluorescence | CdTe QDs | 3 | 10–105 | [36] |
Stepwise centrifugation | ICP-MS | CuS NPs, C-Ag+ -C; Hg2+, aptamer; CHA | 1 | 1–100 | [37] |
Magnetic bead-Apt-FAM-Au NP | ICP-MS | Au NP-modified aptamer | 81 | 2 × 102–1.2 × 104 | [38] |
Magnetic-bead-based dual aptamers | ICP-MS | Dual-metal nanoparticles | 50 | 100–6 × 103 | [39] |
MFPA NP-coated cellulose acetate membrane | Colorimetry | COF-366-Fe@AuNPs-MUA-BA | 3 | 3–30 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Pan, Y.; Sun, H.; Huo, P.; Wang, G.; Liu, S. A Nanoparticle-Coated Cellulose Acetate Membrane for Highly Efficient, Low-Cost Circulating Tumor Cell Detection. Biosensors 2024, 14, 472. https://doi.org/10.3390/bios14100472
Zhao Y, Pan Y, Sun H, Huo P, Wang G, Liu S. A Nanoparticle-Coated Cellulose Acetate Membrane for Highly Efficient, Low-Cost Circulating Tumor Cell Detection. Biosensors. 2024; 14(10):472. https://doi.org/10.3390/bios14100472
Chicago/Turabian StyleZhao, Yize, Yaqi Pan, Hao Sun, Pengfei Huo, Guangtong Wang, and Shaoqin Liu. 2024. "A Nanoparticle-Coated Cellulose Acetate Membrane for Highly Efficient, Low-Cost Circulating Tumor Cell Detection" Biosensors 14, no. 10: 472. https://doi.org/10.3390/bios14100472
APA StyleZhao, Y., Pan, Y., Sun, H., Huo, P., Wang, G., & Liu, S. (2024). A Nanoparticle-Coated Cellulose Acetate Membrane for Highly Efficient, Low-Cost Circulating Tumor Cell Detection. Biosensors, 14(10), 472. https://doi.org/10.3390/bios14100472