Visualizing Macrophage Polarization through Fluorescent mRNA Profiling
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials and Reagents
2.2. Nanoprobe Assembly and Feasibility Detection
2.3. Specificity Detection
2.4. Nuclease Stability and Biocompatibility
2.5. Cellular Imaging
3. Results and Discussion
3.1. Design and Establishment of the Fluorescent mRNA Probe
3.2. Sensitivity of Fluorescent mRNA Probes In Vitro
3.3. Specificity Analysis of Fluorescent mRNA Probes for Macrophage Detection
3.4. Nuclease Stability and Cytotoxicity of Nanoprobes
3.5. Intracellular Imaging with Fluorescent Probes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Park, M.D.; Silvin, A.; Ginhoux, F.; Merad, M. Macrophages in health and disease. Cell 2022, 185, 4259–4279. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yuan, H.-Q.; Hao, Y.-M.; Ren, Z.; Qu, S.-L.; Liu, L.-S.; Wei, D.-H.; Tang, Z.-H.; Zhang, J.-F.; Jiang, Z.-S. Macrophage polarization in atherosclerosis. Clin. Chim. Acta 2020, 501, 142–146. [Google Scholar] [CrossRef]
- Wculek, S.K.; Dunphy, G.; Heras-Murillo, I.; Mastrangelo, A.; Sancho, D. Metabolism of tissue macrophages in homeostasis and pathology. Cell. Mol. Immunol. 2021, 19, 384–408. [Google Scholar] [CrossRef]
- Li, L.; Wang, Z.; Wang, K.; Fu, S.; Li, D.; Wang, M.; Cao, Y.; Zhu, H.; Li, Z.; Weng, L.; et al. Paintable bioactive extracellular vesicle ink for Wound Healing. ACS Appl. Mater. Interfaces 2023, 15, 25427–25436. [Google Scholar] [CrossRef]
- Xu, M.; Cui, Y.; Wei, S.; Cong, X.; Chen, Y.; Tian, S.; Yao, A.; Chen, W.; Weng, L. Emerging nanomaterials targeting macrophage adapted to abnormal metabolism in cancer and atherosclerosis therapy (Review). Int. J. Mol. Med. 2024, 53, 13. [Google Scholar] [CrossRef]
- Ding, X.; Zhang, J.; Wan, S.; Wang, X.; Wang, Z.; Pu, K.; Wang, M.; Cao, Y.; Weng, L.; Zhu, H.; et al. Non-discriminating engineered masking of immuno-evasive ligands on tumour-derived extracellular vesicles enhances tumour vaccination outcomes. Nat. Nanotechnol. 2024, 1–11. [Google Scholar] [CrossRef]
- Ding, X.; Peng, F.; Zhou, J.; Gong, W.; Slaven, G.; Loh, K.P.; Lim, C.T.; Leong, D.T. Defect engineered bioactive transition metals dichalcogenides quantum dots. Nat. Commun. 2019, 10, 41. [Google Scholar] [CrossRef]
- Russell, D.G.; Huang, L.; VanderVen, B.C. Immunometabolism at the interface between macrophages and pathogens. Nat. Rev. Immunol. 2019, 19, 291–304. [Google Scholar] [CrossRef]
- Murray, P.J. On macrophage diversity and inflammatory metabolic timers. Nat. Rev. Immunol. 2019, 20, 89–90. [Google Scholar] [CrossRef]
- Xu, J.; Ma, Q.; Zhang, Y.; Fei, Z.; Sun, Y.; Fan, Q.; Liu, B.; Bai, J.; Yu, Y.; Chu, J.; et al. Yeast-derived nanoparticles remodel the immunosuppressive microenvironment in tumor and tumor-draining lymph nodes to suppress tumor growth. Nat. Commun. 2022, 13, 110. [Google Scholar] [CrossRef]
- Jing, F.; Liu, X.; Chen, X.; Wu, F.; Gao, Q. Tailoring biomaterials and applications targeting tumor-associated macrophages in cancers. Front. Immunol. 2022, 13, 1049164. [Google Scholar] [CrossRef] [PubMed]
- Seferos, D.S.; Giljohann, D.A.; Hill, H.D.; Prigodich, A.E.; Mirkin, C.A. Nano-Flares: Probes for Transfection and mRNA Detection in Living Cells. J. Am. Chem. Soc. 2007, 129, 15477–15479. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Bowling, I.; Liu, W. Cost effective surface functionalization of gold nanoparticles with a mixed DNA and PEG monolayer for nanotechnology applications. RSC Adv. 2017, 7, 3676–3679. [Google Scholar] [CrossRef]
- Kyriazi, M.-E.; Giust, D.; El-Sagheer, A.H.; Lackie, P.M.; Muskens, O.L.; Brown, T.; Kanaras, A.G. Multiplexed mRNA Sensing and Combinatorial-Targeted Drug Delivery Using DNA-Gold Nanoparticle Dimers. ACS Nano 2018, 12, 3333–3340. [Google Scholar] [CrossRef] [PubMed]
- Cutler, J.I.; Auyeung, E.; Mirkin, C.A. Spherical Nucleic Acids. J. Am. Chem. Soc. 2012, 134, 1376–1391. [Google Scholar] [CrossRef]
- Giljohann, D.A.; Seferos, D.S.; Prigodich, A.E.; Patel, P.C.; Mirkin, C.A. Gene Regulation with Polyvalent siRNA−Nanoparticle Conjugates. J. Am. Chem. Soc. 2009, 131, 2072–2073. [Google Scholar] [CrossRef]
- Huang, M.; Xiong, E.; Wang, Y.; Hu, M.; Yue, H.; Tian, T.; Zhu, D.; Liu, H.; Zhou, X. Fast microwave heating-based one-step synthesis of DNA and RNA modified gold nanoparticles. Nat. Commun. 2022, 13, 968. [Google Scholar] [CrossRef]
- Lee, J.W.; Choi, S.-R.; Heo, J.H. Simultaneous Stabilization and Functionalization of Gold Nanoparticles via Biomolecule Conjugation: Progress and Perspectives. ACS Appl. Mater. Interfaces 2021, 13, 42311–42328. [Google Scholar] [CrossRef]
- Mirkin, A.; Chad, L.; Robert, L.J.N. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. In Spherical Nucleic Acids; Jenny Stanford Publishing: Stanford, CA, USA, 1996. [Google Scholar]
- Pei, H.; Li, F.; Wan, Y.; Wei, M.; Liu, H.; Su, Y.; Chen, N.; Huang, Q.; Fan, C. Designed Diblock Oligonucleotide for the Synthesis of Spatially Isolated and Highly Hybridizable Functionalization of DNA–Gold Nanoparticle Nanoconjugates. J. Am. Chem. Soc. 2012, 134, 11876–11879. [Google Scholar] [CrossRef]
- Lee, J.-S.; Green, J.J.; Love, K.T.; Sunshine, J.; Langer, R.; Anderson, D.G. Gold, Poly(β-amino ester) Nanoparticles for Small Interfering RNA Delivery. Nano Lett. 2009, 9, 2402–2406. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, F.; Ju, Y.; Hong, J.; Ding, Y. Gold Nanomaterial Engineering for Macrophage-Mediated Inflammation and Tumor Treatment. Adv. Healthc. Mater. 2020, 10, 2000818. [Google Scholar] [CrossRef] [PubMed]
- Montis, C.; Generini, V.; Boccalini, G.; Bergese, P.; Bani, D.; Berti, D. Model lipid bilayers mimic non-specific interactions of gold nanoparticles with macrophage plasma membranes. J. Colloid Interface Sci. 2018, 516, 284–294. [Google Scholar] [CrossRef] [PubMed]
- Pasparakis, G. Recent developments in the use of gold and silver nanoparticles in biomedicine. WIREs Nanomed. Nanobiotechnol. 2022, 14, e1817. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.C.; Wright, D.W. Size-Dependent Cellular Uptake of DNA Functionalized Gold Nanoparticles. Small 2016, 12, 5592–5600. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhao, Y.; Ding, Y.; Wang, J.; Liu, J. Stabilization of Gold Nanoparticles by Hairpin DNA and Implications for Label-Free Colorimetric Biosensors. Langmuir 2022, 38, 5542–5549. [Google Scholar] [CrossRef]
- Tang, B.; Zhang, N.; Chen, Z.; Xu, K.; Zhuo, L.; An, L. Probing hydroxyl radicals and their imaging in living cells by use of FAM–DNA–Au nanoparticles. Chem. Eur. J. 2008, 14, 522–528. [Google Scholar] [CrossRef]
- Singh, M.P.; Strouse, G.F. Involvement of the LSPR Spectral Overlap for Energy Transfer between a Dye and Au Nanoparticle. J. Am. Chem. Soc. 2010, 132, 9383–9391. [Google Scholar] [CrossRef]
- Yang, M.; Moroz, P.; Jin, Z.; Budkina, D.S.; Sundrani, N.; Porotnikov, D.; Cassidy, J.; Sugiyama, Y.; Tarnovsky, A.N.; Mattoussi, H.; et al. Delayed Photoluminescence in Metal-Conjugated Fluorophores. J. Am. Chem. Soc. 2019, 141, 11286–11297. [Google Scholar] [CrossRef]
- Demers, L.M.; Mirkin, C.A.; Mucic, R.C.; Reynolds, R.A.; Letsinger, R.L.; Elghanian, R.; Viswanadham, G. A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles. Anal. Chem. 2000, 72, 5535–5541. [Google Scholar] [CrossRef]
- Seferos, D.S.; Prigodich, A.E.; Giljohann, D.A.; Patel, P.C.; Mirkin, C.A. Polyvalent DNA Nanoparticle Conjugates Stabilize Nucleic Acids. Nano Lett. 2009, 9, 308–311. [Google Scholar] [CrossRef]
Name | Sequence |
---|---|
M1-CD80-A20 | TAGCCCTGGCTGTCCTGGAATTTT TAAAAAAAAAAAAAAAAAAAA |
M1-CD80-Flare | Cy5-TTCCAGGACAGCCAGGGCTATACAA |
M1-CD80-T | TTGTATAGCCCTGGCTGTCCTGGAA |
M1-CD80-T-Eror | TTGTATAGCCCTAGCTGTCCTGGAA |
M2-CD206-A20 | ATTTTGGCTTTTCAACACCCTTTT TAAAAAAAAAAAAAAAAAAAA |
M2-CD206-Flare | Cy5-GGGTGTTGAAAAGCCAAAATAGTCT |
M2-CD206-T | AGACTATTTTGGCTTTTCAACACCC |
M2-CD206-T-Eror | AGACTATTTTGGATTTTCAACACCC |
Aptamer | CACCCCACCTCGCTCCCGTGACACTAATGCTA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Wei, S.; Su, T.; Ma, D.; Wang, Z.; Zhu, D.; Weng, L.; Ding, X. Visualizing Macrophage Polarization through Fluorescent mRNA Profiling. Biosensors 2024, 14, 475. https://doi.org/10.3390/bios14100475
Xu M, Wei S, Su T, Ma D, Wang Z, Zhu D, Weng L, Ding X. Visualizing Macrophage Polarization through Fluorescent mRNA Profiling. Biosensors. 2024; 14(10):475. https://doi.org/10.3390/bios14100475
Chicago/Turabian StyleXu, Miaomiao, Siyuan Wei, Tong Su, Die Ma, Zhixuan Wang, Dan Zhu, Lixing Weng, and Xianguang Ding. 2024. "Visualizing Macrophage Polarization through Fluorescent mRNA Profiling" Biosensors 14, no. 10: 475. https://doi.org/10.3390/bios14100475
APA StyleXu, M., Wei, S., Su, T., Ma, D., Wang, Z., Zhu, D., Weng, L., & Ding, X. (2024). Visualizing Macrophage Polarization through Fluorescent mRNA Profiling. Biosensors, 14(10), 475. https://doi.org/10.3390/bios14100475