A Double-Stranded Aptamer for Highly Sensitive Fluorescent Detection of Glutathione S-Transferases
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Materials
2.2. Screening Condition
- (1)
- Library pre-treatment: The initial library, containing 4 nanomoles, is first subjected to centrifugation at 12,000 revolutions per minute (rpm) at a temperature of 4 °C for 5 min. Following this, 400 microliters (µL) of combined buffer BB is added to dissolve the library. The solution is then heated to 95 °C for 5 min in a water bath, after which it is promptly transferred to ice to achieve rapid cooling.
- (2)
- Pre-incubation: 1 mL of BB and 5 µL of a 50 µM solution of unrelated sequences to separate centrifuge tubes containing target and control proteins, respectively. Pre-incubate the mixtures at room temperature for 5 min to allow for initial interactions. Following incubation, use a centrifuge to remove the supernatant. Proceed to wash the proteins three times with 1 mL of WB, ensuring thorough removal of unbound components.
- (3)
- Positive and control screening: Add the pre-conditioned library to the pre-incubated target protein, and the third round begins to introduce control screening. Incubate at 37 °C and shake well at 80 r/min so that it is fully incubated. Centrifuge and retain the supernatant.
- (4)
- Elution and separation: Post incubation, perform a centrifugation step to isolate the microbeads, discarding the supernatant. Initiate washing with WB, progressively increasing the volume from 400 µL to 800 µL while extending the washing time from 30s to 60s and boosting the number of elution cycles from 2 to 4. The ssDNA with weak binding ability and non-specific binding ability is eluted, and the ssDNA with strong binding ability is retained.
- (5)
- Collection of libraries post incubation: ① Add 800 µL of sterile water to the microbeads (500 µL in the first round). ② Place the centrifuge tube in a 95 °C water bath for 10 min to induce protein denaturation and facilitate the release of ssDNA from their complexes. ③ Rapidly transfer the tube to ice for 5 min to cool down, stabilizing the released ssDNA. The mixture was then centrifuged, and the supernatant containing the target sequence was collected, labeled as “Round n”, and cryopreserved.
2.3. PCR Programming
2.4. Characterization of the Screening Process
2.5. Determination of Dissociation Equilibrium Constant
2.6. Statistical Analysis
3. Results and Discussion
3.1. Selection of DNA Aptamer against GST Protein
3.2. Selectivity of DNA Aptamer Candidates
Aptamers | Sequences (5′–3′) | Repetition |
---|---|---|
Seq1 | GGTCGGGGGTGTTCATTCTTCTTGGGGGAGGGCGGGCCGT | 7920 |
Seq2 | CACGGTGGGGGGCGGGAATTCTCTTGTTGGGGGGTGGGCT | 4054 |
Seq3 | TGCCGGTCGGGGGTTGGGGATCTCTCTTGGGGGAGGGTT | 2268 |
Seq4 | AGGGCGGGGGGGGGCTCTCTTGCTACTGGGGGAGGTTTA | 1935 |
Seq5 | CTCGCCGAGAACTCAGCTGCAGGAGTGAACCGTCCGCACG | 1424 |
Seq6 | CCACCCGCCGGTCGTGGGCCCTCTCAGTGGCTGTAGCATT | 961 |
Seq7 | TGGCGGGGGTCGTAGTCGGGGGCTACTACTGGGGGGGGGC | 831 |
Seq8 | ATTCGGGGTTGAGGGGGTATGTTATTGGGGGTGGGTGGGC | 646 |
Seq9 | GGTCGGCTAGGGGGCTGTTCAGTACGGGGGAGGGCGGGCC | 579 |
Seq10 | AGGGCGGGGGGGGGGCTCTCTTGCTACTGGGGGAGGTTTA | 500 |
Seq11 | GCGTGGATGGGTGGGGGTCACACTTGGGGGTTCGGGTGGA | 483 |
Seq12 | GCTGCAGCAAAGCGCCCGCACGACCATCTGATGGCTGCCC | 415 |
Seq13 | CCGGGACTCCGGTCTCCTCGCTGCAGCTTCGCGCCCGCAC | 382 |
Seq14 | ACTTCGGGGTCAGTCTCGGGGTCTTCTTGGGGTTGGGGTT | 367 |
Seq15 | GCTGCAGCAAAGCGCCCGCACAACCATCTGATGGCTGCCC | 338 |
Seq16 | TGTCTGGGTGGGTTTTCTATTTTCATGGGGTGGGCTTATT | 335 |
Seq17 | ATCCAGCTCGGGGCGGTGGGTTTTTGGGCGTAGGTACAGA | 275 |
Seq18 | TAGTCATTGGGGCGGGTTGCTTATTGCTTATGGGTGGGCT | 251 |
Seq19 | CCGCTGCAGCGTGCGCTGACTGGTGCACGAGCCCGCACTT | 220 |
Seq20 | CTCCTCTTCACCACAGCTCCGACGCATCACGACATGAGGG | 216 |
3.3. Sequence Optimization of Aptamer Seq3
3.4. Double-Strand Fluorescent Aptamer Probe for Detection of GST
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chatterjee, A.; Gupta, S. The multifaceted role of glutathione S-transferases in cancer. Cancer Lett. 2018, 433, 33–42. [Google Scholar] [CrossRef] [PubMed]
- Booth, J.; Boyland, E.; Sims, P. An enzyme from rat liver catalysing conjugations with glutathione. Biochem. J. 1961, 79, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Grek, C.; Ye, Z.W.; Manevich, Y.; Tew, K.D.; Townsend, D.M. Pleiotropic functions of glutathione S-transferase P. Adv. Cancer Res. 2014, 122, 143–175. [Google Scholar] [PubMed]
- Singh, R.R.; Reindl, K.M. Glutathione S-Transferases in Cancer. Antioxidants 2021, 10, 701. [Google Scholar] [CrossRef] [PubMed]
- Fujitani, N.; Yoneda, A.; Takahashi, M.; Takasawa, A.; Aoyama, T.; Miyazaki, T. Silencing of Glutathione S-Transferase Pi Inhibits Cancer Cell Growth via Oxidative Stress Induced by Mitochondria Dysfunction. Sci. Rep. 2019, 9, 14764. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, Z.; Hu, X.X.; Meng, H.M.; Li, J.; Zhang, X.B.; Liu, H.W.; Deng, T.; Yao, S.; Feng, L. Efficient Two-Photon Fluorescent Probe for Glutathione S-Transferase Detection and Imaging in Drug-Induced Liver Injury Sample. Anal. Chem. 2017, 89, 8097–8103. [Google Scholar] [CrossRef]
- Tian, Z.; Tian, X.; Feng, L.; Tian, Y.; Huo, X.; Zhang, B.; Deng, S.; Ma, X.; Cui, J. A highly sensitive and selective two-photon fluorescent probe for glutathione S-transferase detection and imaging in living cells and tissues. J. Mater. Chem. B 2019, 7, 4983–4989. [Google Scholar] [CrossRef]
- van de, W.C.; Elko, E.; Berg, M.; Schiffers, C.H.J.; Stylianidis, V.; van den, B.M.; Nawijn, M.C.; Wouters, E.F.M.; Janssen-Heininger, Y.M.W.; Reynaert, N.L. Glutathione S-transferases and their implications in the lung diseases asthma and chronic obstructive pulmonary disease: Early life susceptibility? Redox Biol. 2021, 43, 101995. [Google Scholar]
- Fujikawa, Y.; Terakado, K.; Nampo, T.; Mori, M.; Inoue, H. 4-Bromo-1,8-naphthalimide derivatives as fluorogenic substrates for live cell imaging of glutathione S-transferase ( GST ) activity. TALANTA 2019, 204, 633–640. [Google Scholar] [CrossRef]
- De, L.C.; Scordo, M.G.; Cesareo, E.; Pastore, S.; Mariani, S.; Maiani, G.; Stancato, A.; Loreti, B.; Valacchi, G.; Lubrano, C.; et al. Biological definition of multiple chemical sensitivity from redox state and cytokine profiling and not from polymorphisms of xenobiotic-metabolizing enzymes. Toxicol. Appl. Pharmacol. 2010, 248, 285–292. [Google Scholar]
- Amiri, A.; Fazaeli, Y.; Zare, H.; Eslami-Kalantari, M.; Feizi, S.; Shahedi, Z.; Afrasyabi, M. Radiolabeled florescent-magnetic graphene oxide nanosheets: Probing the biodistribution of a potential PET-MRI hybrid imaging agent for detection of fibrosarcoma tumor. Ann. Nucl. Med. 2024, 38, 350–359. [Google Scholar] [CrossRef] [PubMed]
- García-Maceira, T.; García-Maceira, F.I.; González-Reyes, J.A.; Paz-Rojas, E. Highly enhanced ELISA sensitivity using acetylated chitosan surfaces. BMC Biotechnol. 2020, 20, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Zhang, J.; Shen, W.; Zeng, X.; Lee, H.K.; Tang, S. Can Direct-Immersion Aqueous-Aqueous Microextraction Be Achieved When Using a Single-Drop System? Anal. Chem. 2022, 94, 12538–12545. [Google Scholar] [CrossRef] [PubMed]
- Jung, J.W.; Jung, S.H.; Kim, H.S.; Yuk, J.S.; Park, J.B.; Kim, Y.M.; Han, J.A.; Kim, P.H.; Ha, K.S. High-throughput analysis of GST-fusion protein expression and activity-dependent protein interactions on GST-fusion protein arrays with a spectral surface plasmon resonance biosensor. Proteomics 2006, 6, 1110–1120. [Google Scholar] [CrossRef] [PubMed]
- Vikis, H.G.; Guan, K.L. Glutathione-S-transferase-fusion based assays for studying protein-protein interactions. Methods Mol. Biol. 2004, 261, 175–186. [Google Scholar]
- Gaballah, H.H.; Gaber, R.A.; Sharshar, R.S.; Elshweikh, S.A. NOD2 expression, DNA damage and oxido-inflammatory status in atopic bronchial asthma: Exploring their nexus to disease severity. Gene 2018, 660, 128–135. [Google Scholar] [CrossRef]
- Dembowski, S.K.; Bowser, M.T. Microfluidic methods for aptamer selection and characterization. Analyst 2017, 143, 21–32. [Google Scholar] [CrossRef]
- Wu, S.J.; Li, Q.; Duan, N.; Ma, H.; Wang, Z.P. DNA aptamer selection and aptamer-based fluorometric displacement assay for the hepatotoxin microcystin-RR. Microchim. Acta 2016, 183, 2555–2562. [Google Scholar] [CrossRef]
- Olsen, T.R.; Tapia-Alveal, C.; Wen, K.; Worgall, T.S.; Stojanovic, M.N.; Lin, Q. Microfluidic isolation of aptamers with affinity towards multiple myeloma monoclonal immunoglobulins. Biomed. Microdevices 2022, 25, 3. [Google Scholar] [CrossRef]
- Hong, S.L.; Wan, Y.T.; Tang, M.; Pang, D.W.; Zhang, Z.L. Multifunctional Screening Platform for the Highly Efficient Discovery of Aptamers with High Affinity and Specificity. Anal. Chem. 2017, 89, 6535–6542. [Google Scholar] [CrossRef]
- Li, L.L.; Lv, W.Y.; Xu, Y.T.; Li, Y.F.; Li, C.M.; Huang, C.Z. DNA Logic Nanodevices for the Sequential Imaging of Cancer Markers through Localized Catalytic Hairpin Assembly Reaction. Anal. Chem. 2022, 94, 4399–4406. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhang, Y.; Zeng, Y.; Peng, M.; Li, H.; Sun, S.; Ma, B.; Wang, Y.; Ye, M.; Liu, J. Screening and characterization of an Annexin A2 binding aptamer that inhibits the proliferation of myeloma cells. Biochimie 2018, 151, 150–158. [Google Scholar] [CrossRef]
- Jahan, R.; Silwal, A.P.; Thennakoon, S.K.S.; Arya, S.P.; Postema, R.M.; Timilsina, H.; Reynolds, A.M.; Tan, X. Ni aptamer: DNA mimic of His-tag to recognize Ni-NTA. Chem. Commun. (Camb) 2023, 59, 12851–12854. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.X.; Xie, Q.; Guo, Q.P.; Wang, K.M.; Meng, X.X.; Yuan, B.Y.; Wan, J.; Chen, Y.Y. DNA aptamer selected for specific recognition of prostate cancer cells and clinical tissues. Chin. Chem. Lett. 2017, 28, 1252–1257. [Google Scholar] [CrossRef]
- Macdonald, J.; Houghton, P.; Xiang, D.; Duan, W.; Shigdar, S. Truncation and Mutation of a Transferrin Receptor Aptamer Enhances Binding Affinity. Nucleic Acid Ther. 2016, 26, 348–354. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Ren, X.; Schluesener, H.J.; Zhang, Z. Aptamers: Selection, modification and application to nervous system diseases. Curr. Med. Chem. 2011, 18, 4159–4168. [Google Scholar] [CrossRef]
- Reyes-Reyes, E.M.; Šalipur, F.R.; Shams, M.; Forsthoefel, M.K.; Bates, P.J. Mechanistic studies of anticancer aptamer AS1411 reveal a novel role for nucleolin in regulating Rac1 activation. Mol. Oncol. 2015, 9, 1392–1405. [Google Scholar] [CrossRef]
- Zhou, J.; Rossi, J. Aptamers as targeted therapeutics: Current potential and challenges. Nat. Rev. Drug. Discov. 2017, 16, 181–202. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, L.; Zhang, H.; Zhang, Y.; Li, L.; Xie, T.; Chen, Y.; Li, X.; Ling, N.; Dai, J.; et al. Development of a DNA Aptamer against Multidrug-Resistant Hepatocellular Carcinoma for In Vivo Imaging. ACS Appl. Mater. Interfaces 2021, 13, 54656–54664. [Google Scholar] [CrossRef]
- Wen, X.H.; Huang, Z.X.; Yang, X.H.; He, X.X.; Li, L.; Chen, H.Y.; Wang, K.M.; Guo, Q.P.; Liu, J.B. Development of an aptamer capable of multidrug resistance reversal for tumor combination chemotherapy. Proc. Natl. Acad. Sci. USA 2024, 121, e2321116121. [Google Scholar] [CrossRef]
- Ouellet, E.; Lagally, E.T.; Cheung, K.C.; Haynes, C.A. A simple method for eliminating fixed-region interference of aptamer binding during SELEX. Biotechnol. Bioeng. 2014, 111, 2265–2279. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Gao, Y.; Mathivanan, J.; Armour-Garb, Z.; Shao, Z.; Zhang, Y.; Zhao, X.; Shao, Q.; Zhang, W.; Yang, J.; et al. Crystal structures and identification of novel Cd2+-specific DNA aptamer. Nucleic Acids Res. 2023, 51, 4625–4636. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Li, Y.; Gao, R.; Liu, J.; Huang, Q. De novo design of DNA aptamers that target okadaic acid (OA) by docking-then-assembling of single nucleotides. Biosens. Bioelectron. 2022, 215, 114562. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Z.W.; Zhong, H.X.; Zheng, S.; Deng, P.X.; Li, N.; Yun, W.; Yang, L.Z. A visual detection of bisphenol A based on peroxidase-like activity of hemin-graphene composites and aptamer. Anal. Methods 2018, 10, 2450–2455. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, F.; Sang, Y.; Liu, M.; Shi, M.; Wang, X. Selection and Characterization of DNA Aptamers for Constructing Aptamer-AuNPs Colorimetric Method for Detection of AFM1. Foods 2022, 11, 1802. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, J.; Yao, L.; Xue, F.; Lu, J.; Li, B.; Chen, W. Aptamer-mediated colorimetric method for rapid and sensitive detection of chloramphenicol in food. Food Chem. 2018, 260, 208–212. [Google Scholar] [CrossRef]
- Ge, C.; Feng, J.; Zhang, J.; Hu, K.; Wang, D.; Zha, L.; Hu, X.; Li, R. Aptamer/antibody sandwich method for digital detection of SARS-CoV2 nucleocapsid protein. Talanta 2022, 236, 122847. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, P.; Huang, J.; Xu, H.; Lei, J.; Zhang, L. Direct electrochemistry of silver nanoparticles -decorated metal-organic frameworks for telomerase activity sensing via allosteric activation of an aptamer hairpin. Anal. Chim. Acta 2021, 1184, 339036. [Google Scholar] [CrossRef]
- Pilehvar, S.; Reinemann, C.; Bottari, F.; Vanderleyden, E.; Vlierberghe, S.V.; Blust, R.; Strehlitz, B.; Wael, K.D. A joint action of aptamers and gold nanoparticles chemically trapped on a glassy carbon support for the electrochemical sensing of ofloxacin. Sens. Actuators B-Chem. 2017, 240, 1024–1035. [Google Scholar] [CrossRef]
- Yu, H.; Pan, C.; Zhu, J.; Shen, G.; Deng, Y.; Xie, X.; Geng, X.; Wang, L. Selection and identification of a DNA aptamer for fluorescent detection of netilmicin. Talanta 2022, 250, 123708. [Google Scholar] [CrossRef]
- Wang, C.; Li, J. Fluorescence method for kanamycin detection based on the conversion of G-triplex and G-quadruplex. Anal. Bioanal. Chem. 2021, 413, 7073–7080. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J. Selection of DNA Aptamers for Sensing Uric Acid in Simulated Tears. Anal. Sens. 2022, 2, e202200010. [Google Scholar] [CrossRef]
- Zhao, Y.; Ong, S.; Chen, Y.; Jimmy Huang, P.J.; Liu, J. Label-free and Dye-free Fluorescent Sensing of Tetracyclines Using a Capture-Selected DNA Aptamer. Anal. Chem. 2022, 94, 10175–10182. [Google Scholar] [CrossRef] [PubMed]
- Lenhart, B.; Wei, X.; Watson, B.; Wang, X.; Zhang, Z.; Li, C.; Moss, M.; Liu, C. In Vitro Biosensing of beta-Amyloid Peptide Aggregation Dynamics using a Biological Nanopore. Sens. Actuators B Chem. 2021, 338, 129863. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; He, X.; Chen, L.; Zhang, Y. A novel fluorescent turn-on biosensor based on QDs@GSH-GO fluorescence resonance energy transfer for sensitive glutathione S-transferase sensing and cellular imaging. Nanoscale 2017, 9, 3881–3888. [Google Scholar] [CrossRef]
- Qin, L.; He, X.; Chen, L.; Zhang, Y. Turn-on Fluorescent Sensing of Glutathione S-Transferase at near-Infrared Region Based on FRET between Gold Nanoclusters and Gold Nanorods. ACS Appl. Mater. Interfaces 2015, 7, 5965–5971. [Google Scholar] [CrossRef]
- Liu, L.; Lai, Y.; Cao, J.; Peng, Y.; Tian, T.; Fu, W. Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni0.1Cu0.9S Nanoflower. Biosensors 2022, 12, 874. [Google Scholar] [CrossRef]
Aptamers | Sequences (5′–3′) | Repetition |
---|---|---|
Seq3 | AGCGTCGGAT ACCACTACTA TGCCGGTCGG GGGTTGGGGA TCTCTCTTGG GGGAGGGTT ATCATGGAGT TCGTGGTCAG | 34.0 ± 5.6 |
Seq3-1 | TGCCGGTCGG GGGTTGGGGA TCTCTCTTGG GGGAGGGTT ATCATGGAGT TCGTGGTCAG | 29.3 ± 4.8 |
Seq3-2 | AGCGTCGGAT ACCACTACTA TGCCGGTCGG GGGTTGGGGA TCTCTCTTGG GGGAGGGTT | 118.5 ± 21.7 |
Seq3-3 | TGCCGGTCGG GGGTTGGGGA TCTCTCTTGG GGGAGGGTT | 268.2 ± 89.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cui, W.; Li, S.; Zeng, J.; Li, C.; Li, Z.; Wen, X.; Bao, S.; Mei, Y.; Meng, X.; Guo, Q. A Double-Stranded Aptamer for Highly Sensitive Fluorescent Detection of Glutathione S-Transferases. Biosensors 2024, 14, 476. https://doi.org/10.3390/bios14100476
Cui W, Li S, Zeng J, Li C, Li Z, Wen X, Bao S, Mei Y, Meng X, Guo Q. A Double-Stranded Aptamer for Highly Sensitive Fluorescent Detection of Glutathione S-Transferases. Biosensors. 2024; 14(10):476. https://doi.org/10.3390/bios14100476
Chicago/Turabian StyleCui, Wei, Suping Li, Jiahao Zeng, Chen Li, Zhaofeng Li, Xiaohong Wen, Suxia Bao, Yang Mei, Xiangxian Meng, and Qiuping Guo. 2024. "A Double-Stranded Aptamer for Highly Sensitive Fluorescent Detection of Glutathione S-Transferases" Biosensors 14, no. 10: 476. https://doi.org/10.3390/bios14100476
APA StyleCui, W., Li, S., Zeng, J., Li, C., Li, Z., Wen, X., Bao, S., Mei, Y., Meng, X., & Guo, Q. (2024). A Double-Stranded Aptamer for Highly Sensitive Fluorescent Detection of Glutathione S-Transferases. Biosensors, 14(10), 476. https://doi.org/10.3390/bios14100476