Noninvasive Monitoring of Glycemia Level in Diabetic Patients by Wearable Advanced Biosensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Sweating by Diabetics
3.2. Relation between Sweat and Blood Glucose Contents in Diabetics
3.3. Glucose Biosensors for Continuous Sweat Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [PubMed]
- Heller, A.; Feldman, B. Electrochemistry in Diabetes Management. Acc. Chem. Res. 2010, 43, 963–973. [Google Scholar] [CrossRef] [PubMed]
- Cappon, G.; Acciaroli, G.; Vettoretti, M.; Facchinetti, A.; Sparacino, G. Wearable Continuous Glucose Monitoring Sensors: A Revolution in Diabetes Treatment. Electronics 2017, 6, 65. [Google Scholar] [CrossRef]
- Bobrowski, T.; Schuhmann, W. Long-term implantable glucose biosensors. Curr. Opin. Electrochem. 2018, 10, 112–119. [Google Scholar] [CrossRef]
- Boyne, M.S.; Silver, D.M.; Kaplan, J.; Saudek, C.D. Timing of Changes in Interstitial and Venous Blood Glucose Measured with a Continuous Subcutaneous Glucose Sensor. Diabetes 2003, 52, 2790–2794. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Saito, T.; Morito, A.; Yamada, S.; Shimomasuda, M.; Nakamura, M. Pre-cooling with ingesting a high-carbohydrate ice slurry on thermoregulatory responses and subcutaneous interstitial fluid glucose during heat exposure. J. Physiol. Anthropol. 2022, 41, 34. [Google Scholar] [CrossRef]
- Tura, A.; Maran, A.; Pacini, G. Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria. Diabetes Res. Clin. Pract. 2007, 77, 16–40. [Google Scholar] [CrossRef]
- Vashist, S.K. Non-invasive glucose monitoring technology in diabetes management: A review. Anal. Chim. Acta 2012, 750, 16–27. [Google Scholar] [CrossRef]
- Goodarzi, M.; Sharma, S.; Ramon, H.; Saeys, W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. Trends Anal. Chem. 2015, 67, 147–158. [Google Scholar] [CrossRef]
- Yadav, J.; Rani, A.; Singh, V.; Murari, B.M. Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy. Biomed. Signal Process. Control 2015, 18, 214–227. [Google Scholar] [CrossRef]
- Rao, G.; Glikfeld, P.; Guy, R.H. Reverse iontophoresis—Development of a noninvasive approach for glucose monitoring. Pharm. Res. 1993, 10, 1751–1755. [Google Scholar] [CrossRef]
- Tierney, M.J. Electrode Assembly for Transcutaneous Reverse-Iontophoresis Diagnostic System, Especially for Blood Glucose Determination. Electrochemical Sensor with Dual Purpose Electrode. U.S. Patent 5954685-A, 21 September 1999. [Google Scholar]
- Pribil, M.M.; Laptev, G.U.; Karyakina, E.E.; Karyakin, A.A. Noninvasive Hypoxia Monitor Based on Gene-Free Engineering of Lactate Oxidase for Analysis of Undiluted Sweat. Anal. Chem. 2014, 86, 5215–5219. [Google Scholar] [CrossRef] [PubMed]
- Mitsubayashi, K.; Suzuki, M.; Tamiya, E.; Karube, I. Analysis of metabolites in sweat as a measure of physical condition. Anal. Chim. Acta 1994, 289, 27–34. [Google Scholar] [CrossRef]
- Burn, J.H. The secretion of sweat and vaso-dilatation produced by pilocarpine. J. Physiol. 1925, 60, 365–378. [Google Scholar] [CrossRef]
- Gibson, L.E.; Cooke, R.E. A test for concentration of electrolytes in sweat in cystic fibrosis of the pancreas utilizing pilocarpine by iontophoresis. Pediatrics 1959, 23, 545–549. [Google Scholar] [CrossRef]
- Karpova, E.V.; Shcherbacheva, E.V.; Galushin, A.A.; Vokhmyanina, D.V.; Karyakina, E.E.; Karyakin, A.A. Noninvasive Diabetes Monitoring through Continuous Analysis of Sweat Using Flow-Through Glucose Biosensor. Anal. Chem. 2019, 91, 3778–3783. [Google Scholar] [CrossRef] [PubMed]
- Nyein, H.Y.Y.; Bariya, M.; Kivimäki, L.; Uusitalo, S.; Liaw, T.S.; Jansson, E.; Ahn, C.H.; Hangasky, J.A.; Zhao, J.; Lin, Y.; et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 2019, 5, eaaw9906. [Google Scholar] [CrossRef]
- Choleau, C.; Klein, J.C.; Reach, G.; Aussedat, B.; Demaria-Pesce, V.; Wilson, G.S.; Gifford, R.; Ward, W.K. Calibration of a subcutaneous amperometric glucose sensor. Part 1. Effect of measurement uncertainties on the determination of sensor sensitivity and background current. Biosens. Bioelectron. 2002, 17, 641–646. [Google Scholar] [CrossRef]
- Karyakin, A.A.; Nikulina, S.V.; Vokhmyanina, D.V.; Karyakina, E.E.; Anaev, E.K.H.; Chuchalin, A.G. Non-invasive monitoring of diabetes through analysis of the exhaled breath condensate (aerosol). Electrochem. Commun. 2017, 83, 81–84. [Google Scholar] [CrossRef]
- Sempionatto, J.R.; Moon, J.M.; Wang, J. Touch-Based Fingertip Blood-Free Reliable Glucose Monitoring: Personalized Data Processing for Predicting Blood Glucose Concentrations. ACS Sens. 2021, 6, 1875–1883. [Google Scholar] [CrossRef]
- Moyer, J.; Wilson, D.; Finkelshtein, I.; Wong, B.; Potts, R. Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Ther. 2012, 14, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Javle, H.; Keaney, N.; Smy, J.; Lee, M.; Dillon, S. The excretion of lactate in human sweat stimulated by iontophoresis of pilocarpine: Studies with different regions, doses and courses. Br. J. Clin. Pharmacol. 1989, 28, P244–P245. [Google Scholar]
- Komkova, M.A.; Eliseev, A.A.; Poyarkov, A.A.; Daboss, E.V.; Evdokimov, P.V.; Karyakin, A.A. Simultaneous monitoring of sweat lactate content and sweat secretion rate by wearable remote biosensors. Biosens. Bioelectron. 2022, 202, 113970. [Google Scholar] [CrossRef] [PubMed]
- Harvey, C.J.; LeBouf, R.F.; Stefaniak, A.B. Formulation and stability of a novel artificial human sweat under conditions of storage and use. Toxicol. Vitr. 2010, 24, 1790–1796. [Google Scholar] [CrossRef]
- Frias, J.; Lim, C.; Ellison, J.; Montandon, C. A review of adverse events associated with false glucose readings measured by glucose dehydrogenase pyrroloquinolinequinone (GDH-PQQ)-based glucose monitoring systems in the presence of interfering sugars. Diabetologia 2009, 52, S368–S369. [Google Scholar]
- Okuda-Shimazaki, J.; Yoshida, H.; Sode, K. FAD dependent glucose dehydrogenases—Discovery and engineering of representative glucose sensing enzymes. Bioelectrochemistry 2020, 132, 107414. [Google Scholar] [CrossRef]
- Rhodes, R.; Tapsak, M.; Brauker, J.; Shults, M. Assignee: Dexcom, I. US Patent 2003 0032874 A1, 13 February 2003. 15p. [Google Scholar]
- Gottlieb, R.K.; Chiu, C.-H.; Ramachandran, M.; Dangui-Patel, N.; Rose, J.; Rao, A.K.; Wang, H.; Luo, Y. Sensor Systems Having Multiple Probes and Electrode Arrays. Assignee: Medtronic Minimed, I. US Patent 2011 0319734A1, 29 December 2011. 36p. [Google Scholar]
- Guilbault, G.G.; Lubrano, G.J.; Gray, D.N. Glass-metal composite electrodes. Anal. Chem. 1973, 45, 2255–2259. [Google Scholar] [CrossRef]
- Karyakin, A.A. Advances of Prussian blue and its analogues in (bio)sensors. Curr. Opin. Electrochem. 2017, 5, 92–98. [Google Scholar] [CrossRef]
- Scheller, F.W.; Pfeifer, D.; Schubert, F.; Reneberg, R.; Kirstein, D. Applications of enzyme amperometric biosensors to analysis of real objects. In Biosensors: Fundamental and Applications; Turner, A.P.F., Karube, I., Wilson, J.S., Eds.; Oxford University Press: Oxford, UK, 1987. [Google Scholar]
- Zhang, Y.; Wilson, G.S. Electrochemical oxidation of H2O2 on Pt and Pt+Ir electrodes in physiological buffer and its applicability to H2O2 -based biosensors. J. Electroanal. Chem. 1993, 345, 253–271. [Google Scholar] [CrossRef]
- Bissig, H.; Tschannen, M.; de Huu, M. Traceability of pulsed flow rates consisting of constant delivered volumes at given time interval. Flow Meas. Instrum. 2020, 73, 101729. [Google Scholar] [CrossRef]
- Ben-Ami, H.; Nagachandran, P.; Mendelson, A.; Edoute, Y. Drug-induced hypoglycemic coma in 102 diabetic patients. Arch. Intern. Med. 1999, 159, 281–284. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daboss, E.V.; Komkova, M.A.; Nikitina, V.N.; Andreev, E.A.; Vokhmyanina, D.V.; Karyakin, A.A. Noninvasive Monitoring of Glycemia Level in Diabetic Patients by Wearable Advanced Biosensors. Biosensors 2024, 14, 486. https://doi.org/10.3390/bios14100486
Daboss EV, Komkova MA, Nikitina VN, Andreev EA, Vokhmyanina DV, Karyakin AA. Noninvasive Monitoring of Glycemia Level in Diabetic Patients by Wearable Advanced Biosensors. Biosensors. 2024; 14(10):486. https://doi.org/10.3390/bios14100486
Chicago/Turabian StyleDaboss, Elena V., Maria A. Komkova, Vita N. Nikitina, Egor A. Andreev, Darya V. Vokhmyanina, and Arkady A. Karyakin. 2024. "Noninvasive Monitoring of Glycemia Level in Diabetic Patients by Wearable Advanced Biosensors" Biosensors 14, no. 10: 486. https://doi.org/10.3390/bios14100486
APA StyleDaboss, E. V., Komkova, M. A., Nikitina, V. N., Andreev, E. A., Vokhmyanina, D. V., & Karyakin, A. A. (2024). Noninvasive Monitoring of Glycemia Level in Diabetic Patients by Wearable Advanced Biosensors. Biosensors, 14(10), 486. https://doi.org/10.3390/bios14100486