Recent Advances in Nanozyme Sensors Based on Metal–Organic Frameworks and Covalent–Organic Frameworks
Abstract
:1. Introduction
2. Catalytic Mechanisms of MOF and COF Nanozymes
3. Nanozyme Types Based on MOFs and COFs
3.1. Oxidases
3.2. Peroxidases
3.3. Superoxide Dismutase
3.4. Catalase
3.5. Hydrolase
3.6. Multifunctional Enzymes
4. Sensing Analysis Based on MOF and COF Nanozymes
4.1. Colorimetric Sensing
4.2. Fluorescent Sensing
4.3. Chemiluminescent Sensing
4.4. Electrochemical Sensing
4.5. Surface-Enhanced Raman Scattering Sensing
5. Challenges and Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Q.; Wei, H.; Zhang, Z.; Wang, E.; Dong, S. Nanozyme: An emerging alternative to natural enzyme for biosensing and immunoassay. TrAC Trends Anal. Chem. 2018, 105, 218–224. [Google Scholar] [CrossRef]
- Chang, J.; Yu, L.; Hou, T.; Hu, R.; Li, F. Direct and specific detection of glyphosate using a phosphatase-like nanozyme-mediated chemiluminescence strategy. Anal. Chem. 2023, 95, 4479–4485. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wan, K.; Shi, X. Recent advances in nanozyme research. Adv. Mater. 2018, 31, 1805368. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Liu, Q.; Ge, C. Advances in oxidase-mimicking nanozymes: Classification, activity regulation and biomedical applications. Nano Today 2021, 37, 101076. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Lang, Y.; Zhang, B.; Cai, D.; Tu, W.; Zhang, J.; Shentu, X.; Ye, Z.; Yu, X. Determination methods of the risk factors in food based on nanozymes: A review. Biosensors 2022, 13, 69. [Google Scholar] [CrossRef]
- Yu, L.; Chang, J.; Zhuang, X.; Li, H.; Hou, T.; Li, F. Two-dimensional cobalt-doped Ti3C2 mXene nanozyme-mediated homogeneous electrochemical strategy for pesticides assay based on in situ generation of electroactive substances. Anal. Chem. 2022, 94, 3669–3676. [Google Scholar] [CrossRef]
- Feng, M.; Li, X.; Zhang, X.; Huang, Y. Recent advances in the development and analytical applications of oxidase-like nanozymes. TrAC Trends Anal. Chem. 2023, 166, 117220. [Google Scholar] [CrossRef]
- Wei, F.; Han, X.J. Nanozymes and their application progress in biomedical detection. Chin. J. Anal. Chem. 2021, 49, 581–592. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, J.; Li, J.; Hu, Y.; Ge, K.; Li, G.; Liu, S. Bifunctional Mo2N nanoparticles with nanozyme and SERS activity: A versatile platform for sensitive detection of biomarkers in serum samples. Anal. Chem. 2024, 96, 2998–3007. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, Y.; Lu, Y.; Zhou, P.; Lu, L.; Lv, H.; Hai, X. Recent advances in the immunoassays based on nanozymes. Biosensors 2022, 12, 1119. [Google Scholar] [CrossRef] [PubMed]
- Smutok, O.; Kavetskyy, T.; Prokopiv, T.; Serkiz, R.; Šauša, O.; Novák, I.; Švajdlenková, H.; Maťko, I.; Gonchar, M.; Katz, E. Biosensor based on peroxidase-mimetic nanozyme and lactate oxidase for accurate L-lactate analysis in beverages. Biosensors 2022, 12, 1042. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, Q.; Li, Q.; Li, H.; Li, F. Two-dimensional MnO2 nanozyme-mediated homogeneous electrochemical detection of organophosphate pesticides without the Interference of H2O2 and color. Anal. Chem. 2021, 93, 4084–4091. [Google Scholar] [CrossRef] [PubMed]
- Chandio, I.; Ai, Y.; Wu, L.; Liang, Q. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2023, 17, 39–64. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, R.; Han, J.W. Metal–nitrogen–carbon-based nanozymes: Advances and perspectives. J. Phys. D Appl. Phys. 2022, 55, 323001. [Google Scholar] [CrossRef]
- Wen, S.; Ma, X.; Liu, H.; Chen, G.; Wang, H.; Deng, G.; Zhang, Y.; Song, W.; Zhao, B.; Ozaki, Y. Accurate monitoring platform for the surface catalysis of nanozyme validated by surface-enhanced raman-kinetics model. Anal. Chem. 2020, 92, 11763–11770. [Google Scholar] [CrossRef]
- Zheng, L.; Wang, F.; Jiang, C.; Ye, S.; Tong, J.; Dramou, P.; He, H. Recent progress in the construction and applications of metal-organic frameworks and covalent-organic frameworks-based nanozymes. Coordin. Chem. Rev. 2022, 471, 214760. [Google Scholar] [CrossRef]
- An, Y.; Fang, X.; Cheng, J.; Yang, S.; Chen, Z.; Tong, Y. Research progress of metal–organic framework nanozymes in bacterial sensing, detection, and treatment. RSC Med. Chem. 2023, 380, 398. [Google Scholar] [CrossRef]
- Baranwal, A.; Polash, S.; Aralappanavar, V.; Behera, B.; Bansal, V.; Shukla, R. Recent progress and prospect of metal–organic framework-based nanozymes in biomedical application. Nanomaterials 2024, 17, 244. [Google Scholar] [CrossRef]
- Hou, H.; Wang, L.; Gao, Y.; Ping, J.; Zhao, F. Recent advances in metal-organic framework-based nanozymes and their enabled optical biosensors for food safety analysis. TrAC Trends Anal. Chem. 2024, 62, 106934. [Google Scholar] [CrossRef]
- Yao, D.; Xia, L.; Li, G. Research progress on the application of covalent organic framework nanozymes in analytical chemistry. Biosensors 2024, 14, 163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, G.; Wu, D.; Li, X.; Hu, N.; Chen, J.; Chen, G.; Wu, Y. Recent progress in the design fabrication of metal-organic frameworks-based nanozymes and their applications to sensing and cancer therapy. Biosens. Bioelectron. 2019, 137, 178–198. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Jiang, F.; Fan, X.; Wang, L.; He, C.; Zhou, M.; Li, S.; Luo, H.; Cheng, C.; Qiu, L. Metal–organic-framework-engineered enzyme-mimetic catalysts. Adv. Mater. 2020, 32, 2003065. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.M.; Dong, C. Recent advances in nano-carrier immobilized enzymes and their applications. Process Biochem. 2020, 92, 464–475. [Google Scholar] [CrossRef]
- Wang, X.; Xu, Y.; Cheng, N.; Wang, X.; Huang, K.; Luo, Y. Recent advances in nucleic acid modulation for functional nanozyme. Catalysts 2021, 11, 638. [Google Scholar] [CrossRef]
- Singh, S.; Rai, N.; Tiwari, H.; Gupta, P.; Verma, A.; Kumar, R.; Kailashiya, V.; Salvi, P.; Gautam, V. Recent advancements in the formulation of nanomaterials-based nanozymes, their catalytic activity, and biomedical applications. ACS Appl. Bio Mater. 2023, 6, 3577–3599. [Google Scholar] [CrossRef]
- Zuo, L.; Ren, K.; Guo, X.; Pokhrel, P.; Pokhrel, B.; Hossain, M.A.; Chen, Z.-X.; Mao, H.; Shen, H. Amalgamation of DNAzymes and nanozymes in a coronazyme. J. Am. Chem. Soc. 2023, 145, 5750–5758. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, C.; Qian, W.; Lei, F.; Chen, Z.; Wu, X.; Lin, Y.; Wang, F. Recent advances in MOF-based nanozymes: Synthesis, activities, and bioapplications. Biosens. Bioelectron. 2024, 263, 116593. [Google Scholar] [CrossRef]
- Cheng, X.; Zheng, Z.; Zhou, X.; Kuang, Q. Metal–organic framework as a compartmentalized integrated nanozyme reactor to enable high-performance cascade reactions for glucose detection. ACS Sustain. Chem. Eng. 2020, 8, 17783–17790. [Google Scholar] [CrossRef]
- Xie, Q.; Liu, H.; Wen, S.; Wang, X.; Bing, W.; Ji, W.; Zhao, B.; Ozaki, Y.; Song, W. SERS tracking oxidative stress on a metalloporphyrin framework by vitamin C. Anal. Chem. 2023, 95, 15333–15341. [Google Scholar] [CrossRef]
- Zhao, X.E.; Zuo, Y.N.; Xia, Y.; Sun, J.; Zhu, S.; Xu, G. Multifunctional NH2-Cu-MOF based ratiometric fluorescence assay for discriminating catechol from its isomers. Sens. Actuat. B Chem. 2022, 371, 132548. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Y.; Chen, Q.; Huang, Y. Ultrathin binary MOF nanozyme with boosted activity via introduction of active iron sites for detecting sulfide ion. Sens. Actuat. B Chem. 2022, 369, 132365. [Google Scholar] [CrossRef]
- Li, M.; Chen, J.; Wu, W.; Fang, Y.; Dong, S. Oxidase-like MOF-818 nanozyme with high specificity for catalysis of catechol oxidation. J. Am. Chem. Soc. 2020, 142, 15569–15574. [Google Scholar] [CrossRef] [PubMed]
- Sha, M.; Rao, L.; Xu, W.; Qin, Y.; Su, R.; Wu, Y.; Fang, Q.; Wang, H.; Cui, X.; Zheng, L.; et al. Amino-ligand-coordinated dicopper active sites enable catechol oxidase-like activity for chiral recognition and catalysis. Nano Lett. 2023, 23, 701–709. [Google Scholar] [CrossRef]
- He, J.; Xu, F.; Hu, J.; Wang, S.; Hou, X.; Long, Z. Covalent triazine framework-1: A novel oxidase and peroxidase mimic. Microchem. J. 2017, 135, 91–99. [Google Scholar] [CrossRef]
- Peng, Y.; Huang, M.; Chen, L.; Gong, C.; Li, N.; Huang, Y.; Cheng, C. Ultrathin covalent organic framework nanosheet-based photoregulated metal-free oxidase-like nanozyme. Nano Res. 2022, 15, 8783–8790. [Google Scholar] [CrossRef]
- Zhou, Y.; Wei, Y.; Ren, J.; Qu, X. A chiral covalent organic framework (COF) nanozyme with ultrahigh enzymatic activity. Mater. Horiz. 2020, 7, 3291–3297. [Google Scholar] [CrossRef]
- Xu, Y.; Huang, A.; Yi, W.; Chen, G.; Huang, S.; Ouyang, G. Nanozyme engineering in structurally explicit framework: Design mechanisms and biosensing applications. Coordin. Chem. Rev. 2024, 500, 215517. [Google Scholar] [CrossRef]
- Li, X.; Niu, X.; Liu, P.; Xu, X.; Du, D.; Lin, Y. High-performance dual-channel ratiometric colorimetric sensing of phosphate ion based on target-induced differential oxidase-like activity changes of Ce-Zr bimetal-organic frameworks. Sens. Actuat. B Chem. 2020, 321, 128546. [Google Scholar] [CrossRef]
- Zhuang, H.; Xue, P.; Shao, S.; Zeng, X.; Yan, S. In situ generation of hybrid alginate hydrogels for enhanced breast tumor ferrotherapy through multiplex magnifying redox imbalances. Int. J. Biol. Macromol. 2024, 258, 128952. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, D.; Ma, Z.; Han, H. Cascade catalysis-initiated radical polymerization amplified impedimetric immunosensor for ultrasensitive detection of carbohydrate antigen 15-3. Biosens. Bioelectron. 2019, 137, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Shi, F.; Liu, R.; Zhu, H.; Liu, K.; Ren, C.; Li, J.; Yang, Z. In situ electrospinning MOF-derived highly dispersed alpha-cobalt confined in nitrogen-doped carbon nanofibers nanozyme for biomolecule monitoring. Anal. Chem. 2024, 96, 1345–1353. [Google Scholar] [CrossRef] [PubMed]
- Brondani, D.; Zapp, E.; da Silva Heying, R.; de Souza, B.; Cruz Vieira, I. Copper-based metal-organic framework applied in the development of an electrochemical biomimetic sensor for catechol determination. Electroanalysis 2017, 29, 2810–2817. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Xu, K.; Zhong, Y.; He, C.; Jiang, L.; Sun, J.; Rao, Z.; Zhu, J.; Huang, J.; et al. Natural oxidase-mimicking copper-organic frameworks for targeted identification of ascorbate in sensitive sweat sensing. Nat. Commun. 2023, 14, 69. [Google Scholar] [CrossRef] [PubMed]
- Gao, P.; Sun, X.Y.; Liu, B.; Lian, H.T.; Liu, X.Q.; Shen, J.S. Cu MOF-based catalytic sensing for formaldehyde. J. Mater. Chem. C 2018, 6, 8105–8114. [Google Scholar] [CrossRef]
- Rojas-Buzo, S.; Concepcion, P.; Olloqui-Sariego, J.L.; Moliner, M.; Corma, A. Metalloenzyme-inspired Ce-MOF catalyst for oxidative halogenation reactions. ACS Appl. Mater. Interfaces 2021, 13, 31021–31030. [Google Scholar] [CrossRef]
- Hou, T.; Xu, N.; Song, X.; Yang, L.; Li, F. Label-free homogeneous photoelectrochemical aptasensing of VEGF165 based on DNA-regulated peroxidase-mimetic activity of metal-organic-frameworks. Chin. Chem. Lett. 2023, 34, 107907. [Google Scholar] [CrossRef]
- Luo, L.; Ou, Y.; Yang, Y.; Liu, G.; Liang, Q.; Ai, X.; Yang, S.; Nian, Y.; Su, L.; Wang, J. Rational construction of a robust metal-organic framework nanozyme with dual-metal active sites for colorimetric detection of organophosphorus pesticides. J. Hazard. Mater. 2022, 423, 127253. [Google Scholar] [CrossRef]
- Chen, Z.; Song, S.; Zeng, H.; Ge, Z.; Liu, B.; Fan, Z. 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 2023, 471, 144649. [Google Scholar] [CrossRef]
- Chen, J.; Shu, Y.; Li, H.; Xu, Q.; Hu, X. Nickel metal-organic framework 2D nanosheets with enhanced peroxidase nanozyme activity for colorimetric detection of H2O2. Talanta 2018, 189, 254–261. [Google Scholar] [CrossRef]
- Gan, X.; Han, D.; Wang, J.; Liu, P.; Li, X.; Zheng, Q.; Yan, Y. A highly sensitive electrochemiluminescence immunosensor for h-FABP determination based on self-enhanced luminophore coupled with ultrathin 2D nickel metal-organic framework nanosheets. Biosens. Bioelectron. 2021, 171, 112735. [Google Scholar] [CrossRef]
- Cheng, H.; Liu, Y.; Hu, Y.; Ding, Y.; Lin, S.; Cao, W.; Wang, Q.; Wu, J.; Muhammad, F.; Zhao, X.; et al. Monitoring of heparin activity in live rats using metal-organic framework nanosheets as peroxidase mimics. Anal. Chem. 2017, 89, 11552–11559. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Liu, M.; Niu, X.; Xia, L.; Qu, F. Dextran-assisted ultrasonic exfoliation of two-dimensional metal-organic frameworks to evaluate acetylcholinesterase activity and inhibitor screening. Anal. Chim. Acta 2023, 1243, 340815. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Li, H.; Shi, L.; Shi, L.; Li, T. Tin porphyrin-based nanozymes with unprecedented superoxide dismutase-mimicking activities. Langmuir 2022, 38, 7272–7279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, P.; Zhang, J.; Sun, Q.; He, Q.; He, X.; Chen, H.; Ji, H. Boosting the catalase-like activity of SAzymes via facile tuning of the distances between neighboring atoms in single-Iron sites. Angew. Chem. Int. Ed. 2023, 136, e202316779. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, T.; Luo, Y.; Dai, L.; Wang, M.; Xia, Z.; Hu, L. Zirconium-amino acid framework as a green phosphatase-like nanozyme for the selective detection of phosphate-containing drugs. Chem. Commun. 2023, 59, 1098–1101. [Google Scholar] [CrossRef]
- Li, S.; Zhou, Z.; Tie, Z.; Wang, B.; Ye, M.; Du, L.; Cui, R.; Liu, W.; Wan, C.; Liu, Q.; et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 2022, 13, 827. [Google Scholar] [CrossRef]
- Zhang, W.; Han, D.; Wu, Z.; Yang, K.; Sun, S.; Wen, J. Metal-organic layers-catalyzed amplification of electrochemiluminescence signal and its application for immunosensor construction. Sens. Actuat. B Chem. 2023, 376, 133004. [Google Scholar] [CrossRef]
- Li, X.; Zhou, H.; Qi, F.; Niu, X.; Xu, X.; Qiu, F.; He, Y.; Pan, J.; Ni, L. Three hidden talents in one framework: A terephthalic acid-coordinated cupric metal-organic framework with cascade cysteine oxidase- and peroxidase-mimicking activities and stimulus-responsive fluorescence for cysteine sensing. J. Mater. Chem. B 2018, 6, 6207–6211. [Google Scholar] [CrossRef]
- Luo, L.; Huang, L.; Liu, X.; Zhang, W.; Yao, X.; Dou, L.; Zhang, X.; Nian, Y.; Sun, J.; Wang, J. Mixed-valence Ce-BPyDC metal-organic framework with dual enzyme-like activities for colorimetric biosensing. Inorg. Chem. 2019, 58, 11382–11388. [Google Scholar] [CrossRef]
- Liu, S.; Huo, Y.; Li, G.; Huang, L.; Wang, T.; Gao, Z. Aptamer-controlled reversible colorimetric assay: High-activity bimetallic organic frameworks for the efficient sensing of marine biotoxins. Chem. Eng. J. 2023, 469, 144027. [Google Scholar] [CrossRef]
- Cui, Q.; Zhou, M.; Wen, Q.; Li, L.; Xiong, C.; Adeli, M.; Cheng, L.; Xu, X.; Ren, X.; Cheng, C. Pyridine-bridged covalent organic frameworks with adjustable band gaps as intelligent artificial Enzymes for light-augmented biocatalytic sensing. Small 2024, 20, 2401673. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Ma, W.; Yang, Y.; Zhong, C.; Huang, H.; Ouyang, D.; He, Y.; Tian, W.; Lin, J.; Lin, Z. Nanoscale covalent organic frameworks with donor-acceptor structures as highly efficient light-responsive oxidase-like mimics for colorimetric detection of glutathione. ACS Appl. Mater. Interfaces 2021, 13, 49482–49489. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Gao, W.; Wei, J.; Yu, B.; Zhang, L.; Zhu, P.; Yu, J. Biomimetic cascade intelligent paper chip sensor based on bimetallic porphyrin-based covalent organic framework with triple-enzyme mimetic activities. Chem. Eng. J. 2024, 490, 151628. [Google Scholar] [CrossRef]
- Xiao, S.J.; Yuan, M.Y.; Shi, Y.D.; Wang, M.P.; Li, H.H.; Zhang, L.; Qiu, J.D. Construction of covalent organic framework nanozymes with photo-enhanced hydrolase activities for colorimetric sensing of organophosphorus nerve agents. Anal. Chim. Acta 2023, 1278, 341706. [Google Scholar] [CrossRef]
- Sun, P.; Hai, J.; Sun, S.; Lu, S.; Liu, S.; Liu, H.; Chen, F.; Wang, B. Aqueous stable Pd nanoparticles/covalent organic framework nanocomposite: An efficient nanoenzyme for colorimetric detection and multicolor imaging of cancer cells. Nanoscale 2020, 12, 825–831. [Google Scholar] [CrossRef]
- Li, Y.X.; Sun, Y.; Bai, J.; Chen, S.Y.; Jia, X.; Huang, H.; Dong, J. Catechol detection based on a two-dimensional copper-based metal-organic framework with high polyphenol oxidase activity. Chin. J. Anal. Chem 2023, 51, 100162. [Google Scholar] [CrossRef]
- Li, G.; Tian, W.; Zhong, C.; Yang, Y.; Lin, Z. Construction of donor-acceptor heteroporous covalent organic frameworks as photoregulated oxidase-like nanozymes for sensing signal amplification. ACS Appl. Mater. Interfaces 2022, 14, 21750–21757. [Google Scholar] [CrossRef]
- Xiang, K.; Wu, H.; Liu, Y.; Wang, S.; Li, X.; Yang, B.; Zhang, Y.; Ma, L.; Lu, G.; He, L.; et al. MOF-derived bimetallic nanozyme to catalyze ROS scavenging for protection of myocardial injury. Theranostics 2023, 13, 2721–2733. [Google Scholar] [CrossRef]
- Liu, M.; Mou, J.; Xu, X.; Zhang, F.; Xia, J.; Wang, Z. High-efficiency artificial enzyme cascade bio-platform based on MOF-derived bimetal nanocomposite for biosensing. Talanta 2020, 220, 121374. [Google Scholar] [CrossRef]
- Zhu, N.; Liu, C.; Liu, R.; Niu, X.; Xiong, D.; Wang, K.; Yin, D.; Zhang, Z. Biomimic nanozymes with tunable peroxidase-like activity based on the confinement effect of metal-organic frameworks (MOFs) for biosensing. Anal. Chem. 2022, 94, 4821–4830. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Xiong, C.; Liu, X.; Qiao, M.; Li, Z.; Yuan, T.; Wang, J.; Qu, Y.; Wang, X.; Zhou, F.; et al. Unraveling the enzyme-like activity of heterogeneous single atom catalyst. Chem. Commun. 2019, 55, 2285–2288. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, Y.; Binyam, A.; Liu, M.; Wu, Y.; Li, F. Discovering the enzyme mimetic activity of metal-organic framework (MOF) for label-free and colorimetric sensing of biomolecules. Biosens. Bioelectron. 2016, 86, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhou, J.; Yuan, X.; Xiong, J.; Zong, M.H.; Wu, X.; Lou, W.Y. A dual-mode sensing platform based on metal-organic framework for colorimetric and ratiometric fluorescent detection of organophosphorus pesticide. Food Chem. 2024, 432, 137272. [Google Scholar] [CrossRef]
- Chai, H.; Yu, K.; Zhao, Y.; Zhang, Z.; Wang, S.; Huang, C.; Zhang, X.; Zhang, G. MOF-On-MOF dual enzyme-mimic nanozyme with enhanced cascade catalysis for colorimetric/chemiluminescent dual-mode aptasensing. Anal. Chem. 2023, 95, 10785–10794. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Wang, Q.; Zhang, Y.; Liu, Q.; Liu, S.; Li, S.; Du, Y.; Wei, H. Structurally engineered light-responsive nanozymes for enhanced substrate specificity. Anal. Chem. 2021, 93, 15150–15158. [Google Scholar] [CrossRef]
- Chang, J.; Hu, R.; Zhang, J.; Hou, T.; Li, F. Two-dimensional metal-organic framework nanozyme-mediated portable paper-based analytical device for dichlorophen assay. Biosens. Bioelectron. 2024, 255, 116271. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, Y.; Tang, Y.; Xu, W.; Chen, Y.; Su, R.; Fan, Y.; Jiang, W.; Wen, Y.; Gu, W.; et al. In situ defect engineering of Fe-MIL for self-enhanced peroxidase-like activity. Small 2024, 2403354. [Google Scholar] [CrossRef]
- Talebi, M.; Dashtian, K.; Zare-Dorabei, R.; Ghafuri, H.; Mahdavi, M.; Amourizi, F. Photo-responsive oxidase-like nanozyme based on a vanadium-docked porphyrinic covalent organic framework for colorimetric L-Arginine sensing. Anal. Chim. Acta 2023, 1247, 340924. [Google Scholar] [CrossRef]
- Li, S.; Wei, Z.; Xiong, L.; Xu, Q.; Yu, L.; Xiao, Y. In situ Formation of o-phenylenediamine cascade polymers mediated by metal-organic framework nanozymes for fluorescent and photothermal dual-mode assay of acetylcholinesterase activity. Anal. Chem. 2022, 94, 17263–17271. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y. Detection of tyrosine catalyzed by a Tb-MOF luminescent nanozyme. Sens. Actuat. B-Chem. 2022, 350, 130842. [Google Scholar] [CrossRef]
- Wang, L.; Chen, Y. Luminescence-sensing Tb-MOF nanozyme for the detection and degradation of estrogen endocrine disruptors. ACS Appl. Mater. Interfaces 2020, 12, 8351–8358. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Li, X.; Xu, X.; Ye, K.; Wang, L.; Zhu, H.; Wang, M.; Niu, X. Integrating peroxidase-mimicking activity with photoluminescence into one framework structure for high-performance ratiometric fluorescent pesticide sensing. Sens. Actuat. B Chem. 2021, 328, 129024. [Google Scholar] [CrossRef]
- Liang, L.; Jiang, Y.; Liu, F.; Li, S.; Wu, J.; Zhao, S.; Ye, F. Three-in-one covalent organic framework nanozyme: Self-reporting, self-correcting and light-responsive for fluorescence sensing 3-nitrotyrosine. Biosens. Bioelectron. 2023, 237, 115542. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Liu, D.; He, J.; Wang, M.; Huang, H.; Nie, G.; Ding, H.; Yan, X. Rapid and sensitive detection of epstein-barr virus antibodies in nasopharyngeal carcinoma by chemiluminescence strips based on iron-porphyrin single atom nanozyme. Nano Res. 2023, 17, 1827–1836. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Wu, K.; Deng, A.; Li, J. Ultra-sensitive detection of 5-fluorouracil by flow injection chemiluminescence immunoassay based on Fenton-like effect of single atom Co nanozyme. Talanta 2023, 265, 124870. [Google Scholar] [CrossRef]
- Zeng, X.; Liu, H.; Wu, K.; Deng, A.; Li, J. Ultra-sensitive detection of florfenicol by flow injection chemiluminescence immunoassay based on Nickel/Cobalt bimetallic metal–organic framework nanozymes. Analyst 2022, 147, 1321–1328. [Google Scholar] [CrossRef]
- Gao, F.; Zhao, Y.; Dai, X.; Xu, W.; Zhan, F.; Liu, Y.; Wang, Q. Aptamer tuned nanozyme activity of nickel-metal-organic framework for sensitive electrochemical aptasensing of tetracycline residue. Food Chem. 2024, 430, 137041. [Google Scholar] [CrossRef]
- Ma, J.; Yuan, J.; Xu, Y.; Jiang, Y.; Bai, W.; Zheng, J. Ultrasensitive electrochemical determination of bisphenol A in food samples based on a strategy for activity enhancement of enzyme: Layer-by-layer self-assembly of tyrosinase between two-dimensional porphyrin metal–organic framework nanofilms. Chem. Eng. J. 2022, 446, 137001. [Google Scholar] [CrossRef]
- Hu, W.C.; Pang, J.; Biswas, S.; Wang, K.; Wang, C.; Xia, X.H. Ultrasensitive detection of bacteria using a 2D MOF nanozyme-amplified electrochemical detector. Anal. Chem. 2021, 93, 8544–8552. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Li, D.; Zhao, M.; Wu, H.; Shen, B.; Liu, P.; Ding, S. Electrochemical biosensor for ultrasensitive exosomal miRNA analysis by cascade primer exchange reaction and MOF@Pt@MOF nanozyme. Biosens. Bioelectron. 2020, 168, 112554. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Cheng, H.; Zhao, X.; Wu, J.; Muhammad, F.; Lin, S.; He, J.; Zhou, L.; Zhang, C.; Deng, Y.; et al. Surface-enhanced raman scattering active gold nanoparticles with enzyme-mimicking activities for measuring glucose and lactate in living tissues. ACS Nano 2017, 11, 5558–5566. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chen, J.Y.; He, W.M. Surface-enhanced Raman spectroscopy biosensor based on silver nanoparticles@metal-organic frameworks with peroxidase-mimicking activities for ultrasensitive monitoring of blood cholesterol. Sens. Actuat. B Chem. 2022, 365, 131939. [Google Scholar] [CrossRef]
- Ma, X.; Xu, S.; Pan, Y.; Jiang, C.; Wang, Z. Construction of SERS output-signal aptasensor using MOF/noble metal nanoparticles based nanozyme for sensitive histamine detection. Food Chem. 2024, 440, 138227. [Google Scholar] [CrossRef]
- Hu, S.; Jiang, Y.; Wu, Y.; Guo, X.; Ying, Y.; Wen, Y.; Yang, H. Enzyme-free tandem reaction strategy for surface-enhanced raman scattering detection of glucose by using the composite of Au nanoparticles and porphyrin-based metal-organic framework. ACS Appl. Mater. Interfaces 2020, 12, 55324–55330. [Google Scholar] [CrossRef]
- Yang, L.; Xu, X.; Song, Y.; Huang, J.; Xu, H. Research progress of nanozymes in colorimetric biosensing: Classification, activity and application. Chem. Eng. J. 2024, 487, 150612. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Yu, J.; Xu, K.; Shen, J.W.; Duan, W.; Zeng, J. Recent development of noble metal-based bimetallic nanoparticles for colorimetric sensing. TrAC Trends Anal. Chem. 2023, 169, 117386. [Google Scholar] [CrossRef]
- Hassanzadeh, J.; Al Lawati, H.A.J.; Bagheri, N. On paper synthesis of multifunctional CeO2 nanoparticles@Fe-MOF composite as a multi-enzyme cascade platform for multiplex colorimetric detection of glucose, fructose, sucrose, and maltose. Biosens. Bioelectron. 2022, 207, 114184. [Google Scholar] [CrossRef]
- Zhong, C.; Hu, C.; Ouyang, D.; Dan, A.; Zhong, Y.; Cai, Z.; Lin, Z. Bioinspired construction of histidine-doped porphyrin covalent organic framework nanozyme with enhanced peroxidase-like activity for sensitive uric acid detection. Chem. Eng. J. 2023, 477, 146979. [Google Scholar] [CrossRef]
- Li, S.; Liang, L.; Tian, L.; Wu, J.; Zhu, Y.; Qin, Y.; Zhao, S.; Ye, F. Enhanced peroxidase-like activity of MOF nanozymes by co-catalysis for colorimetric detection of cholesterol. J. Mater. Chem. B 2023, 11, 7913–7919. [Google Scholar] [CrossRef]
- Chen, Z.; Ma, J.; Sun, D.W. Aggregates-based fluorescence sensing technology for food hazard detection: Principles, improvement strategies, and applications. Compr. Rev. Food Sci. Food Saf. 2023, 22, 2977–3010. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Chen, Y.; Shen, C.; Zhu, X.; Zhu, J.; Weng, L. Deep eutectic solvent-assisted synthesis of CeO2/CuO nanozymes for polymer dots integrated ratiometric fluorescence detection of glutathione. Sens. Actuat. B-Chem. 2024, 414, 135947. [Google Scholar] [CrossRef]
- Liao, X.; Li, B.; Wang, L.; Chen, Y. Boric acid functionalized Fe3O4@CeO2/Tb-MOF as a luminescent nanozyme for fluorescence detection and degradation of caffeic acid. Biosens. Bioelectron. 2024, 264, 116637. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, Q.; Wu, C.; Lin, Z.; Huang, A.; Qiu, B. Controllable release ratiometric fluorescent sensor for hyaluronidase via the combination of Cu2+-Fe-N-C nanozymes and degradable intelligent hydrogel. Talanta 2022, 237, 122961. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Liu, C.; Liu, D.; Liu, S.; You, T. Ratiometric fluorescent sensing of mercury (II) ion based on the Pt nanozyme-triggered fluorescence resonance energy transfer between Si quantum dots and 2,3-diaminophenazine. Sens. Actuat. A Phys. 2021, 331, 112976. [Google Scholar] [CrossRef]
- Chen, G.Y.; Chai, T.Q.; Zhang, H.; Yang, F.Q. Applications of mild-condition synthesized metal complexes with enzyme-like activity in the colorimetric and fluorescence analysis. Coordin. Chem. Rev. 2024, 508, 215761. [Google Scholar] [CrossRef]
- Song, T.; Liu, Z.; Yun, Q.; Zhang, X.; Yuan, K.; Hu, W. Recent progress of crystalline porous organic frameworks as ratiometric fluorescence biosensing platforms. TrAC Trends Anal. Chem. 2024, 171, 117500. [Google Scholar] [CrossRef]
- Xiao, X.; Hu, S.; Lai, X.; Peng, J.; Lai, W. Developmental trend of immunoassays for monitoring hazards in food samples: A review. Trends Food Sci. Tech. 2021, 111, 68–88. [Google Scholar] [CrossRef]
- Zhao, L.; Xu, J.; Xiong, L.; Wang, S.; Yu, C.; Lv, J.; Lin, J.M. Recent development of chemiluminescence for bioanalysis. TrAC Trends Anal. Chem. 2023, 166, 117213. [Google Scholar] [CrossRef]
- Sheng, K.; Jiang, H.; Fang, Y.; Wang, L.; Jiang, D. Emerging electrochemical biosensing approaches for detection of allergen in food samples: A review. Trends Food Sci. Tech. 2022, 121, 93–104. [Google Scholar] [CrossRef]
- Mao, Y.W.; Zhang, J.X.; Chen, D.N.; Wang, A.J.; Feng, J.J. Bimetallic PtFe alloyed nanoparticles decorated on 3D hollow N-doped carbon nanoflowers as efficient electrochemical biosensing interfaces for ultrasensitive detection of SCCA. Sens. Actuat. B Chem. 2022, 370, 132416. [Google Scholar] [CrossRef]
- Gurusamy, L.; Karuppasamy, L.; Anandan, S.; Barton, S.C.; Chuang, Y.H.; Liu, C.H.; Wu, J.J. Review of oxygen-vacancies nanomaterials for non-enzymatic electrochemical sensors application. Coordin. Chem. Rev. 2023, 484, 215102. [Google Scholar] [CrossRef]
- Sahragard, A.; Varanusupakul, P.; Miró, M. Nanomaterial decorated electrodes in flow-through electrochemical sensing of environmental pollutants: A critical review. Trends Environ. Anal. 2023, 39, e00208. [Google Scholar] [CrossRef]
- Xie, L.; Zeng, H.; Zhu, J.; Zhang, Z.; Sun, H.-B.; Xia, W.; Du, Y. State of the art in flexible SERS sensors toward label-free and onsite detection: From design to applications. Nano Res. 2022, 15, 4374–4394. [Google Scholar] [CrossRef]
- Jiang, L.; Hassan, M.M.; Ali, S.; Li, H.; Sheng, R.; Chen, Q. Evolving trends in SERS-based techniques for food quality and safety: A review. Trends Food Sci. Tech. 2021, 112, 225–240. [Google Scholar] [CrossRef]
- Hu, Y.; Liao, J.; Wang, D.; Li, G. Fabrication of gold nanoparticle-embedded metal–organic framework for highly sensitive surface-enhanced Raman scattering detection. Anal. Chem. 2014, 86, 3955–3963. [Google Scholar] [CrossRef]
Materials | Metal | Ligand | Enzyme-Like Activities | Ref. |
---|---|---|---|---|
UiO-66 | Ce; Zr | terephthalic acid | OXD | [39] |
NH2-Fe-BDC | Fe | 2-aminoterephthalic acid 2-aminoterephthalic acid | OXD/POD | [40] |
NH2-Cu-BDC | Cu | 2-aminoterephthalic acid | POD | [41] |
ZIF-67(Co) | Co | 2-methylimidazole | OXD/POD | [42] |
HKUST-1 | Cu | benzene-1,3,5-tricarboxylic acid | OXD | [43] |
STAM-17-OEt | Cu | 5-ethoxyisophthalic acid | OXD | [44] |
Cu-BTC | Cu | benzene-1,3,5-tricarboxylic acid | OXD | [45] |
UiO-66 | Ce | terephthalic acid | OXD | [46] |
MIL-88(Fe) | Fe | terephthalic acid | POD | [47] |
MIL-53(Mn/Fe) | Mn; Fe | terephthalic acid | OXD | [48] |
Cu-TCPP(Fe) | Cu | Fe(III) meso-tetra (4-carboxyphenyl) porphine chloride | POD | [30] |
NH2-Cu-BDC | Cu | 2-aminoterephthalic acid | OXD | [31] |
Ce-BTC | Ce | trimesic acid | POD | [49] |
MIL-53(Ni) | Ni | p-benzenedicarboxylic acid | POD | [50] |
NH2-Ni/Fe-BDC | Ni; Fe | 2-aminoterephthalic acid | POD | [32] |
Ni-TCPP(Fe) | Ni | Fe(III) meso-tetra (4-carboxyphenyl) porphine chloride | POD | [51] |
Zn-TCPP(Fe) | Zn | Fe(III) meso-tetra (4-carboxyphenyl) porphine chloride | POD | [52] |
Cu-CAT-HHTP | Cu | 2,3,6,7,10,11-hexahydroxytriphenylene hydrate | POD | [53] |
Sn-PCN222 | Zr | Fe(III) meso-tetra (4-carboxyphenyl) porphine chloride | SOD | [54] |
Fe-SAzymes | Fe | ZIF-8 | POD/CAT | [55] |
MIP-202(Zr) | Zr | l-aspartic acid | HYD | [56] |
Ce-FMA | Ce | Fumaric acid | HYD | [57] |
Fe/Zr-TPY | Fe; Zr | 4′-(4-carboxyphenyl)[2,2′:6′,2″-terpyridine]-5,5″-dicarboxylic acid | POD | [58] |
Cu-BDC | Cu | terephthalic acid | POD | [29] |
Cu-BDC | Cu | p-benzenedicarboxylic acid | OXD/POD | [59] |
Ce-BPyDC | Ce | 2,2′-bipyridine-5,5′-dicarboxylicacid | POD | [60] |
NH2-Fe/Zr-BDC | Fe; Zr | 2-aminoterephthalic acid | POD | [61] |
Materials | Building Unit 1 | Building Unit 2 | Enzyme-Like Activities | Ref. |
---|---|---|---|---|
FPY-COF | Linear dialdehydes | 6-(4-formylphenyl) nicotinaldehyde | OXD | [62] |
Py-TT COF | 1,3,6,8-tetrakis(4-aminophenyl)pyre | thieno[3,2-b]thiophene-2,5-dicarbaldehyde | OXD | [63] |
CTF | 1,4-dicyanobenzene | 1,4-dicyanobenzene | OXD/POD | [35] |
Fe-COF | Fe(III) meso-tetra (4-carboxyphenyl) porphine chloride | Terephthaldehyde | POD | [37] |
Fe/Co-COF | Fe/Co(III) meso-tetra (4-carboxyphenyl) porphine chloride | Terephthaldehyde | OXD/POD/CAT | [64] |
DAFB-DCTP COF | 4-[4-[3,5-bis[4-(4-formylphenyl)phenyl]phenyl]phenyl]benzoic acid | 2,4,6-trimethylpyridine-3,5-dicarbonitrile | HYD | [65] |
Method | Materials | Analyte | Enzyme-Like Activities | Linear Range | LOD | Ref. |
---|---|---|---|---|---|---|
Colorimetry | Cu-BDC | Glucose | POD | 10–500 μmol/L | 4.1 μmol/L | [29] |
NH2-Fe/Zr-BDC | Tetrodotoxin | POD | 0.1–200 ng/mL | 0.07 ng/mL | [61] | |
MIL-88A(Fe) | Thrombin | OXD | 10–80 nmol/L | 0.8 nmol/L | [73] | |
Mn/Fe-MIL(53) | Methyl parathion Chlorpyrifos | OXD | 10–120 nmol/L 5–50 nmol/L | 2.8 nmol/L 0.95 nmol/L | [48] | |
NH2-Cu-BDC | Chlorpyrifos | POD | 1.8–180 ng/mL | 1.57 ng/mL | [74] | |
UiO-66(Ce/Zr) | Phosphate ions | OXD | 3.3–666.7 μmol/L | 1.1 μmol/L | [39] | |
MOF-818@PMOF(Fe) | Chlorpyrifos | POD OXD | 10–40 ng/mL | 0.26 ng/mL | [75] | |
Zn-TCPP | Multiple antioxidants | OXD | - | - | [76] | |
Cu-TCPP(Fe) | Dichlorophen | POD | 4–130 μmol/L | 1.33 μmol/L | [77] | |
MIL-101(Fe)-OH-D | Dichlorvos | POD | 5–300 ng/mL | 2.06 ng/mL | [78] | |
ETTA-Tz COF | S2− | OXD | 1–50 μmol/L | 0.27 μmol/L | [68] | |
COF-366/VO | L-Arginine | OXD | 8.1–330 μmol/L | 3.5 nmol/L | [79] | |
Fluorescent | Cu-BTC | AChE | OXD | 0.2–40 U/L | 0.03 U/L | [80] |
Tb-IDA-Fe3O4 | Tyrosine | POD | 0–10 μmol/L | 0.1 μmol/L | [81] | |
Tb-OBBA | 17β-estradiol | POD | 0–100 nmol/L | 50 pmol/L | [82] | |
NH2-MIL-101(Fe) | Carbaryl | POD | 2–100 ng/mL | 1.45 ng/mL | [83] | |
TpDA COF | 3-NT | OXD | 0.05–80 μmol/L | 0.011 μmol/L | [84] | |
Chemiluminescent | MOF-FeP | EBV-IgAs | POD | - | - | [85] |
ZIF-8 | 5-Fluorouracil | POD | 0.001–1000 ng/mL | 0.29 pg/mL | [86] | |
Ni/Co-BTC | Florfenicol | POD | 0.0001–1000 ng/mL | 0.033 pg/mL | [87] | |
Electrochemical | Ni-HHTP | Tetracycline | POD | 10 pmol/L–1.0 μmol/L | 1.9 pmol/L | [88] |
Tyr@Cu-TCPP | Bisphenol A | CAT | 3.5 nmol/L–18.9 μmol/L | 1.2 nmol/L | [89] | |
Cu-TCPP(Fe) | S. aureus | POD | 10–7.5 × 107 CFU/mL | 6 CFU/mL | [90] | |
MIL-88@Pt@MIL-88 | MicroRNA-21 | POD | 1 fmol/L–1 nmol/L | 0.29 fmol/L | [91] | |
SERS | AuNPs@MIL-101 | Glucose Lactate | POD | 10–200 μmol/L 10–200 μmol/L | 4.2 μmol/L 5.0 μmol/L | [92] |
AgNPs@MIL-101 | Cholesterol | POD | 20 nmol/L–50 μmol/L | 10.49 nmol/L | [93] | |
MIL-100(Fe)@AuNPs | Histamine | POD | 5 × 10−3–10−11 mol/L | 3.9 × 10−12 mol/L | [94] | |
AuNPs/Cu-TCPP(Fe) | Glucose | POD | 0.16–8 mmol/L | 3.9 μmol/L | [95] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, X.; Liu, S.; Hu, Y. Recent Advances in Nanozyme Sensors Based on Metal–Organic Frameworks and Covalent–Organic Frameworks. Biosensors 2024, 14, 520. https://doi.org/10.3390/bios14110520
Cheng X, Liu S, Hu Y. Recent Advances in Nanozyme Sensors Based on Metal–Organic Frameworks and Covalent–Organic Frameworks. Biosensors. 2024; 14(11):520. https://doi.org/10.3390/bios14110520
Chicago/Turabian StyleCheng, Xingliang, Shuojiang Liu, and Yuling Hu. 2024. "Recent Advances in Nanozyme Sensors Based on Metal–Organic Frameworks and Covalent–Organic Frameworks" Biosensors 14, no. 11: 520. https://doi.org/10.3390/bios14110520
APA StyleCheng, X., Liu, S., & Hu, Y. (2024). Recent Advances in Nanozyme Sensors Based on Metal–Organic Frameworks and Covalent–Organic Frameworks. Biosensors, 14(11), 520. https://doi.org/10.3390/bios14110520