Gold–Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer
Abstract
:1. Introduction
2. Materials and Methods
- PCA3 Probe Sequences: TTTTTTTCCCAGGGATCTCTGTGCTTCC
- PCA3 Target Sequences: GGAAGCACAGAGATCCCTGGG
2.1. Synthesis of Au–GQD (Gold–Graphene Quantum Dot) Nanohybrid
2.2. Characterization of Au–GQD Nanohybrid
2.3. Electrodeposition of Au–GQDs on ITO
2.4. Surface Immobilization of DNA Probes and Electrochemical Analysis
3. Results
3.1. Nanohybrid Characterization
3.1.1. Ultraviolet–Visible Spectroscopy (UV–Vis)
3.1.2. Fourier Transform Infrared (FTIR)
3.1.3. Scanning Electron Microscopy (SEM)
3.1.4. X-ray Powder Diffraction (XRD)
3.2. Electrochemical Characterization of Electrode Fabrication Stages
4. Discussion
4.1. CV and EIS Responses
4.2. Optimization Studies
4.3. PCA3 Detection Using ITO/Au–GQD/PDNA Electrodes
4.4. Selectivity and Shelf-Life Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Soper, S.A.; Brown, K.; Ellington, A.; Frazier, B.; Garcia-Manero, G.; Gau, V.; Gutman, S.I.; Hayes, D.F.; Korte, B.; Landers, J.L.; et al. Point-of-Care Biosensor Systems for Cancer Diagnostics/Prognostics. Biosens. Bioelectron. 2006, 21, 1932–1942. [Google Scholar] [CrossRef] [PubMed]
- Cancer Tomorrow. Available online: https://gco.iarc.fr/tomorrow/en (accessed on 11 August 2024).
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, M.; Conceição, P.; Kant, K.; Ainla, A.; Diéguez, L. Electrochemical Sensing in 3D Cell Culture Models: New Tools for Developing Better Cancer Diagnostics and Treatments. Cancers 2021, 13, 1381. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.C.; Soares, A.C.; Rodrigues, V.C.; Melendez, M.E.; Santos, A.C.; Faria, E.F.; Reis, R.M.; Carvalho, A.L.; Oliveira, O.N. Detection of the Prostate Cancer Biomarker PCA3 with Electrochemical and Impedance-Based Biosensors. ACS Appl. Mater. Interfaces 2019, 11, 46645–46650. [Google Scholar] [CrossRef]
- Neves, A.F.; Dias-Oliveira, J.D.D.; Araújo, T.G.; Marangoni, K.; Goulart, L.R. Prostate Cancer Antigen 3 (PCA3) RNA Detection in Blood and Tissue Samples for Prostate Cancer Diagnosis. Clin. Chem. Lab. Med. (CCLM) 2013, 51, 881–887. [Google Scholar] [CrossRef]
- Opoku Mensah, B.; Fondjo, L.A.; Owiredu, W.K.B.A.; Adusei, B. Urinary PCA3 a Superior Diagnostic Biomarker for Prostate Cancer among Ghanaian Men. Dis. Markers 2022, 2022, 1686991. [Google Scholar] [CrossRef]
- Pasinszki, T.; Krebsz, M.; Tung, T.T.; Losic, D. Carbon Nanomaterial Based Biosensors for Non-Invasive Detection of Cancer and Disease Biomarkers for Clinical Diagnosis. Sensors 2017, 17, 1919. [Google Scholar] [CrossRef]
- Kanyong, P.; Rawlinson, S.; Davis, J. Immunochemical Assays and Nucleic-Acid Detection Techniques for Clinical Diagnosis of Prostate Cancer. J. Cancer 2016, 7, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Nabok, A.; Abu-Ali, H.; Takita, S.; Smith, D.P. Electrochemical Detection of Prostate Cancer Biomarker PCA3 Using Specific RNA-Based Aptamer Labelled with Ferrocene. Chemosensors 2021, 9, 59. [Google Scholar] [CrossRef]
- Crulhas, B.P.; Basso, C.R.; Castro, G.R.; Pedrosa, V.A. Detection of Prostate Cancer Biomarker PCA3 by Using Aptasensors. Curr. Med. Chem. 2022, 29, 5895–5902. [Google Scholar] [CrossRef]
- Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC7214775 (accessed on 20 September 2024).
- Menaa, F.; Fatemeh, Y.; Vashist, S.K.; Iqbal, H.; Sharts, O.N.; Menaa, B. Graphene, an Interesting Nanocarbon Allotrope for Biosensing Applications: Advances, Insights, and Prospects. Biomed. Eng. Comput. Biol. 2021, 12, 117959722098382. [Google Scholar] [CrossRef] [PubMed]
- Pandey, R.R.; Chusuei, C.C. Carbon Nanotubes, Graphene, and Carbon Dots as Electrochemical Biosensing Composites. Molecules 2021, 26, 6674. [Google Scholar] [CrossRef]
- Mansuriya, B.D.; Altintas, Z. Graphene Quantum Dot-Based Electrochemical Immunosensors for Biomedical Applications. Materials 2020, 13, 96. [Google Scholar] [CrossRef]
- Li, J.; Qu, J.; Yang, R.; Qu, L.; Harrington, P.d.B. A Sensitive and Selective Electrochemical Sensor Based on Graphene Quantum Dot/Gold Nanoparticle Nanocomposite Modified Electrode for the Determination of Quercetin in Biological Samples. Electroanalysis 2016, 28, 1322–1330. [Google Scholar] [CrossRef]
- Yu, Y.; Kant, K.; Shapter, J.G.; Addai-Mensah, J.; Losic, D. Gold Nanotube Membranes Have Catalytic Properties. Microporous Mesoporous Mater. 2012, 153, 131–136. [Google Scholar] [CrossRef]
- Wadhwa, S.; John, A.T.; Nagabooshanam, S.; Mathur, A.; Narang, J. Graphene Quantum Dot-Gold Hybrid Nanoparticles Integrated Aptasensor for Ultra-Sensitive Detection of Vitamin D3 towards Point-of-Care Application. Appl. Surf. Sci. 2020, 521, 146427. [Google Scholar] [CrossRef]
- Kant, K.; Low, S.P.; Marshal, A.; Shapter, J.G.; Losic, D. Nanopore Gradients on Porous Aluminum Oxide Generated by Nonuniform Anodization of Aluminum. ACS Appl. Mater. Interfaces 2010, 2, 3447–3454. [Google Scholar] [CrossRef] [PubMed]
- Sanko, V.; Kuralay, F. Label-Free Electrochemical Biosensor Platforms for Cancer Diagnosis: Recent Achievements and Challenges. Biosensors 2023, 13, 333. [Google Scholar] [CrossRef]
- Wang, J. Electrochemical Biosensors: Towards Point-of-Care Cancer Diagnostics. Biosens. Bioelectron. 2006, 21, 1887–1892. [Google Scholar] [CrossRef]
- Roy, S.; Nagabooshanam, S.; Chauhan, N.; Kumar, R.; Wadhwa, S.; Mathur, A. Design and Development of a Novel Flexible Molecularly Imprinted Electroanalytical Sensor for the Monitoring of Diabetic Foot Ulcers. Surf. Interfaces 2021, 26, 101310. [Google Scholar] [CrossRef]
- Wadhwa, S.; John, A.T.; Mathur, A.; Khanuja, M.; Bhattacharya, G.; Roy, S.S.; Ray, S.C. Engineering of Luminescent Graphene Quantum Dot-Gold (GQD-Au) Hybrid Nanoparticles for Functional Applications. MethodsX 2020, 7, 100963. [Google Scholar] [CrossRef] [PubMed]
- Kanagavalli, P.; Andrew, C.; Veerapandian, M.; Jayakumar, M. In-Situ Redox-Active Hybrid Graphene Platform for Label-Free Electrochemical Biosensor: Insights from Electrodeposition and Electroless Deposition. TrAC Trends Anal. Chem. 2021, 143, 116413. [Google Scholar] [CrossRef]
- Hezard, T.; Fajerwerg, K.; Evrard, D.; Collière, V.; Behra, P.; Gros, P. Gold Nanoparticles Electrodeposited on Glassy Carbon Using Cyclic Voltammetry: Application to Hg(II) Trace Analysis. J. Electroanal. Chem. 2012, 664, 46–52. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Karimzadeh, A.; Shadjou, N.; Mokhtarzadeh, A.; Bageri, L.; Sadeghi, S.; Mahboob, S. Graphene Quantum Dots Decorated with Magnetic Nanoparticles: Synthesis, Electrodeposition, Characterization and Application as an Electrochemical Sensor towards Determination of Some Amino Acids at Physiological PH. Mater. Sci. Eng. C 2016, 68, 814–830. [Google Scholar] [CrossRef] [PubMed]
- Zhao, G.; Liu, G. Electrochemical Deposition of Gold Nanoparticles on Reduced Graphene Oxide by Fast Scan Cyclic Voltammetry for the Sensitive Determination of As(III). Nanomaterials 2018, 9, 41. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.; Yan, S.; Wang, M.; Liu, P.; Dong, Y.; Zhang, C. Single-Walled Carbon Nanotubes–Carboxyl-Functionalized Graphene Oxide-Based Electrochemical DNA Biosensor for Thermolabile Hemolysin Gene Detection. Anal. Methods 2015, 7, 5303–5310. [Google Scholar] [CrossRef]
- Tian, P.; Tang, L.; Teng, K.S.; Lau, S.P. Graphene Quantum Dots from Chemistry to Applications. Mater. Today Chem. 2018, 10, 221–258. [Google Scholar] [CrossRef]
- Al-Hossainy, A.F.; Abd-Elmageed, A.A.I.; Ibrahim, A.T.A. Synthesis, Structural and Optical Properties of Gold Nanoparticle-Graphene-Selenocysteine Composite Bismuth Ultrathin Film Electrode and Its Application to Pb(II) and Cd(II) Determination. Arab. J. Chem. 2019, 12, 2853–2863. [Google Scholar] [CrossRef]
- Wu, X.; Guo, S.; Zhang, J. Selective Oxidation of Veratryl Alcohol with Composites of Au Nanoparticles and Graphene Quantum Dots as Catalysts. Chem. Commun. 2015, 51, 6318–6321. [Google Scholar] [CrossRef]
- Wang, J.; Liu, C.; Hua, J. Au-Ag Nanoparticles-Graphene Quantum Dots as Sensor for Highly Sensitive Electrochemical Determination of Insulin Level in Pharmaceutical Samples. Int. J. Electrochem. Sci. 2021, 16, 211016. [Google Scholar] [CrossRef]
- Thakur, M.K.; Fang, C.; Yang, Y.; Effendi, A.; Kumar, P. Microplasma-Enabled Graphene Quantum Dots Wrapped Gold Nanoparticles Photodetection with Synergistic Enhancement for Broadband. ACS Appl. Mater. Interfaces 2020, 12, 28550–28560. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, H.; Pandey, M.K.; Rajesh; Sumana, G. Electrochemical Aflatoxin B1 Immunosensor Based on the Use of Graphene Quantum Dots and Gold Nanoparticles. Microchim. Acta 2019, 186, 592. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, S.; Abraham, S.; Singh, C.; Ali, M.A.; Srivastava, A.; Sumana, G.; Malhotra, B.D. Protein Conjugated Carboxylated Gold@reduced Graphene Oxide for Aflatoxin B 1 Detection. RSC Adv. 2015, 5, 5406–5414. [Google Scholar] [CrossRef]
- Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Controlled Synthesis of Large-Area and Patterned Electrochemically Reduced Graphene Oxide Films. Chemistry 2009, 15, 6116–6120. [Google Scholar] [CrossRef]
- Singhal, C.; Khanuja, M.; Chaudhary, N.; Pundir, C.S.; Narang, J. Detection of Chikungunya Virus DNA Using Two-Dimensional MoS2 Nanosheets Based Disposable Biosensor. Sci. Rep. 2018, 8, 7734. [Google Scholar] [CrossRef]
- Krishnaveni, P.; Ganesh, V. Electron Transfer Studies of a Conventional Redox Probe in Human Sweat and Saliva Bio-Mimicking Conditions. Sci. Rep. 2021, 11, 7663. [Google Scholar] [CrossRef]
- Wei, N.; Chen, J.; Zhang, J.; Wang, K.; Xu, X.; Lin, J.; Li, G.; Lin, X.; Chen, Y. An Electrochemical Biosensor for Detection of PML/RARA Fusion Gene Using Capture Probe Covalently Immobilized onto Poly-Calcon Carboxylic Acid Modified Glassy Carbon Electrode. Talanta 2009, 78, 1227–1234. [Google Scholar] [CrossRef]
- Jia, F.; Duan, N.; Wu, S.; Ma, X.; Xia, Y.; Wang, Z.; Wei, X. Impedimetric Aptasensor for Staphylococcus Aureus Based on Nanocomposite Prepared from Reduced Graphene Oxide and Gold Nanoparticles. Microchim. Acta 2014, 181, 967–974. [Google Scholar] [CrossRef]
- Gautam, A.; Singhal, C.; Mishra, A.; John, A.T.; Gautam, U.K.; Abolhassani, R.; Adelung, R.; Kumar Avasthi, D.; Kumar Mishra, Y. Detection of Prostate Cancer DNA Using Tetrapods Based Disposable Paper Ecofriendly Biosensor Device. Med. Devices Sens. 2020, 3, e10122. [Google Scholar] [CrossRef]
- Takita, S.; Nabok, A.; Lishchuk, A.; Mussa, M.H.; Smith, D. Detection of Prostate Cancer Biomarker PCA3 with Electrochemical Apta-Sensor. Eng. Proc. 2022, 16, 8. [Google Scholar] [CrossRef]
- Sánchez-Salcedo, R.; Miranda-Castro, R.; De-los-Santos-Álvarez, N.; Lobo-Castañón, M.J. Dual Electrochemical Genosensor for Early Diagnosis of Prostate Cancer through LncRNAs Detection. Biosens. Bioelectron. 2021, 192, 113520. [Google Scholar] [CrossRef] [PubMed]
- Subramani, I.G.; Ayub, R.M.; Gopinath, S.C.B.; Perumal, V.; Fathil, M.F.M.; Md Arshad, M.K. Lectin Bioreceptor Approach in Capacitive Biosensor for Prostate-Specific Membrane Antigen Detection in Diagnosing Prostate Cancer. J. Taiwan Inst. Chem. Eng. 2021, 120, 9–16. [Google Scholar] [CrossRef]
- Kumar, P.; Narwal, V.; Jaiwal, R.; Pundir, C.S. Construction and Application of Amperometric Sarcosine Biosensor Based on SOxNPs/AuE for Determination of Prostate Cancer. Biosens. Bioelectron. 2018, 122, 140–146. [Google Scholar] [CrossRef] [PubMed]
Stages | R1(Ω) | R2(Ω) | CPE1-T(F) | CPE1-P(F) |
---|---|---|---|---|
Bare | 24 | 2200 | 0.061 | 0.71 |
Au–GQD modified | 37 | 2900 | 0.064 | 0.98 |
Probe modified | 40 | 3800 | 0.065 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raj, D.; Kumar, A.; Kumar, D.; Kant, K.; Mathur, A. Gold–Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer. Biosensors 2024, 14, 534. https://doi.org/10.3390/bios14110534
Raj D, Kumar A, Kumar D, Kant K, Mathur A. Gold–Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer. Biosensors. 2024; 14(11):534. https://doi.org/10.3390/bios14110534
Chicago/Turabian StyleRaj, Divakar, Arun Kumar, Dhruv Kumar, Krishna Kant, and Ashish Mathur. 2024. "Gold–Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer" Biosensors 14, no. 11: 534. https://doi.org/10.3390/bios14110534
APA StyleRaj, D., Kumar, A., Kumar, D., Kant, K., & Mathur, A. (2024). Gold–Graphene Quantum Dot Hybrid Nanoparticle for Smart Diagnostics of Prostate Cancer. Biosensors, 14(11), 534. https://doi.org/10.3390/bios14110534