Innovative Peptide-Based Plasmonic Optical Biosensor for the Determination of Cholesterol
Abstract
:1. Introduction
2. Materials and Equipment
2.1. Materials
2.2. Equipment
3. Methods and Experimental Part
3.1. Silica Surface Functionalization with Glutaraldehyde Chemistry for Peptide Immobilization
3.2. Functionalization of Gold Nanoparticles (GNPs)
3.3. Competitive Plasmonic Bioassay for Cholesterol Determination
3.4. AVAC Analyzer
3.5. Surface Characterization
4. Results and Discussion
4.1. Functionalization of Silicon Surface with C-Pept as the Recognition Element
4.2. GNPs Functionalization with Cholesterol
4.3. Peptide-Based Plasmonic Competitive Assay for Cholesterol Quantification
4.4. Selection of the System Configuration
4.5. Specificity of the Biorecognition Peptide Element
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oddi, S.; Dainese, E.; Fezza, F.; Lanuti, M.; Barcaroli, D.; De Laurenzi, V.; Centonze, D.; MacCarrone, M. Functional Characterization of Putative Cholesterol Binding Sequence (CRAC) in Human Type-1 Cannabinoid Receptor. J. Neurochem. 2011, 116, 858–865. [Google Scholar] [CrossRef] [PubMed]
- Morales-Lázaro, S.L.; Rosenbaum, T. Cholesterol as a Key Molecule That Regulates TRPV1 Channel Function. Adv. Exp. Med. Biol. 2019, 1135, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Dainese, E.; De Fabritiis, G.; Sabatucci, A.; Oddi, S.; Angelucci, C.B.; Di Pancrazio, C.; Giorgino, T.; Stanley, N.; Del Carlo, M.; Cravatt, B.F.; et al. Membrane Lipids Are Key Modulators of the Endocannabinoid-Hydrolase FAAH. Biochem. J. 2014, 457, 463–472. [Google Scholar] [CrossRef] [PubMed]
- Dainese, E.; Oddi, S.; Bari, M.; Maccarrone, M. Modulation of the Endocannabinoid System by Lipid Rafts. Curr. Med. Chem. 2007, 14, 2702–2715. [Google Scholar] [CrossRef] [PubMed]
- Maccarrone, M.; Bernardi, G.; Agrò, A.F.; Centonze, D. Cannabinoid Receptor Signalling in Neurodegenerative Diseases: A Potential Role for Membrane Fluidity Disturbance. Br. J. Pharmacol. 2011, 163, 1379–1390. [Google Scholar] [CrossRef]
- Oddi, S.; Caporali, P.; Dragotto, J.; Totaro, A.; Maiolati, M.; Scipioni, L.; Angelucci, C.B.; Orsini, C.; Canterini, S.; Rapino, C.; et al. The Endocannabinoid System Is Affected by Cholesterol Dyshomeostasis: Insights from a Murine Model of Niemann Pick Type C Disease. Neurobiol. Dis. 2019, 130, 104531. [Google Scholar] [CrossRef]
- Sniderman, A.; McQueen, M.; Contois, J.; Williams, K.; Furberg, C.D. Why Is Non-high-Density Lipoprotein Cholesterol a Better Marker of the Risk of Vascular Disease than Low-Density Lipoprotein Cholesterol? J. Clin. Lipidol. 2010, 4, 152–155. [Google Scholar] [CrossRef]
- Golier, J.A.; Marzuk, P.M.; Leon, A.C.; Weiner, C.; Tardiff, K. Low Serum Cholesterol Level and Attempted Suicide. Am. J. Psychiatry 2006, 152, 419–423. [Google Scholar] [CrossRef]
- Rong, S.; Li, B.; Chen, L.; Sun, Y.; Du, Y.; Liu, B.; Robinson, J.G.; Bao, W. Association of Low-Density Lipoprotein Cholesterol Levels with More than 20-Year Risk of Cardiovascular and All-Cause Mortality in the General Population. J. Am. Heart Assoc. 2022, 11, 23690. [Google Scholar] [CrossRef]
- Shin, K.C.; Ali Moussa, H.Y.; Park, Y. Cholesterol Imbalance and Neurotransmission Defects in Neurodegeneration. Exp. Mol. Med. 2024, 56, 1685–1690. [Google Scholar] [CrossRef]
- Song, Y.; Liu, J.; Zhao, K.; Gao, L.; Zhao, J. Cholesterol-Induced Toxicity: An Integrated View of the Role of Cholesterol in Multiple Diseases. Cell Metab. 2021, 33, 1911–1925. [Google Scholar] [CrossRef] [PubMed]
- Platt, F.M.; Wassif, C.; Colaco, A.; Dardis, A.; Lloyd-Evans, E.; Bembi, B.; Porter, F.D. Disorders of Cholesterol Metabolism and Their Unanticipated Convergent Mechanisms of Disease. Annu. Rev. Genom. Hum. Genet. 2014, 15, 173–194. [Google Scholar] [CrossRef] [PubMed]
- Gill, P.K.; Hegele, R.A. Low Cholesterol States: Clinical Implications and Management. Expert Rev. Endocrinol. Metab. 2023, 18, 241–253. [Google Scholar] [CrossRef] [PubMed]
- Ho, C.M.; Ho, S.L.; Jeng, Y.M.; Lai, Y.S.; Chen, Y.H.; Lu, S.C.; Chen, H.L.; Chang, P.Y.; Hu, R.H.; Lee, P.H. Accumulation of Free Cholesterol and Oxidized Low-Density Lipoprotein Is Associated with Portal Inflammation and Fibrosis in Nonalcoholic Fatty Liver Disease. J. Inflamm. 2019, 16, 1–8. [Google Scholar] [CrossRef]
- Wang, X.; Cohen, L.; Wang, J.; Walt, D.R. Competitive Immunoassays for the Detection of Small Molecules Using Single Molecule Arrays. J. Am. Chem. Soc. 2018, 140, 18132–18139. [Google Scholar] [CrossRef]
- Wang, S.; Chen, S.; Shang, K.; Gao, X.; Wang, X. Sensitive Electrochemical Detection of Cholesterol Using a Portable Paper Sensor Based on the Synergistic Effect of Cholesterol Oxidase and Nanoporous Gold. Int. J. Biol. Macromol. 2021, 189, 356–362. [Google Scholar] [CrossRef]
- Salazar, P.; Martín, M.; González-Mora, J.L. In Situ Electrodeposition of Cholesterol Oxidase-Modified Polydopamine Thin Film on Nanostructured Screen Printed Electrodes for Free Cholesterol Determination. J. Electroanal. Chem. 2019, 837, 191–199. [Google Scholar] [CrossRef]
- Singh, S.; Solanki, P.R.; Pandey, M.K.; Malhotra, B.D. Cholesterol Biosensor Based on Cholesterol Esterase, Cholesterol Oxidase and Peroxidase Immobilized onto Conducting Polyaniline Films. Sens. Actuators B 2006, 115, 534–541. [Google Scholar] [CrossRef]
- Mukai, M.; Krause, M.R.; Regen, S.L. Peptide Recognition of Cholesterol in Fluid Phospholipid Bilayers. J. Am. Chem. Soc. 2015, 137, 12518–12520. [Google Scholar] [CrossRef]
- Sinha, A.; Basiruddin, S.K.; Chakraborty, A.; Jana, N.R. β-Cyclodextrin Functionalized Magnetic Mesoporous Silica Colloid for Cholesterol Separation. ACS Appl. Mater. Interfaces 2015, 7, 1340–1347. [Google Scholar] [CrossRef]
- Ballesta-Claver, J.; Salinas Velázquez, P.; Valencia-Mirón, M.C.; Capitán-Vallvey, L.F. SPE Biosensor for Cholesterol in Serum Samples Based on Electrochemiluminescent Luminol Copolymer. Talanta 2011, 86, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.R.; Yang, C.R.; Huang, Y.F.; Huang, C.C.; Chen, Y.L.; Chang, H.T. Ratiometric Fluorescence Probe of Vesicle-like Carbon Dots and Gold Clusters for Quantitation of Cholesterol. Chemosensors 2022, 10, 160. [Google Scholar] [CrossRef]
- Xiao, W.; Yang, Z.; Liu, J.; Chen, Z.C.; Li, H. Sensitive Cholesterol Determination by β-Cyclodextrin Recognition Based on Fluorescence Enhancement of Gold Nanoclusters. Microchem. J. 2022, 175, 107125. [Google Scholar] [CrossRef]
- Calvo, R.; Rodriguez Mariblanca, I.; Pini, V.; Dias, M.; Cebrian, V.; Thon, A.; Saad, A.; Salvador-Matar, A.; Ahumada, Ó.; Manso Silván, M.; et al. Novel Characterization Techniques for Multifunctional Plasmonic–Magnetic Nanoparticles in Biomedical Applications. Nanomaterials 2023, 13, 2929. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Leustean, L.; Inci, F.; Zheng, M.; Demirci, U.; Wang, S. Plasmonic-Based Platforms for Diagnosis of Infectious Diseases at the Point-of-Care. Biotechnol. Adv. 2019, 37, 107440. [Google Scholar] [CrossRef]
- Mauriz, E.; Lechuga, L.M. Plasmonic Biosensors for Single-Molecule Biomedical Analysis. Biosensors 2021, 11, 123. [Google Scholar] [CrossRef]
- Nyembe, S.; Mkhohlakali, A.; May, B.; Mhlanga, N.; Nyembe, S.; Mkhohlakali, A.; May, B. Application of Plasmonic Nanostructures in Molecular Diagnostics and Biosensor Technology: Challenges and Current Developments. In Plasmonic Nanostructures Basic Concepts Optim. ApplPlasmonic Nanostructures - Basic Concepts, Optimization and Applications; IntechOpen: Rijeka, Croatia, 2022. [Google Scholar] [CrossRef]
- Rosman, C.; Prasad, J.; Neiser, A.; Henkel, A.; Edgar, J.; Sönnichsen, C. Multiplexed Plasmon Sensor for Rapid Label-Free Analyte Detection. Nano Lett. 2013, 13, 3243–3247. [Google Scholar] [CrossRef]
- Kumalasari, M.R.; Alfanaar, R.; Andreani, A.S. Gold Nanoparticles (AuNPs): A Versatile Material for Biosensor Application. Talanta Open 2024, 9, 100327. [Google Scholar] [CrossRef]
- Pellas, V.; Hu, D.; Mazouzi, Y.; Mimoun, Y.; Blanchard, J.; Guibert, C.; Salmain, M.; Boujday, S. Gold Nanorods for LSPR Biosensing: Synthesis, Coating by Silica, and Bioanalytical Applications. Biosensors 2020, 10, 146. [Google Scholar] [CrossRef]
- Ferrari, E. Gold Nanoparticle-Based Plasmonic Biosensors. Biosensors 2023, 13, 411. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold Nanoparticles: Preparation, Properties, and Applications in Bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Yong, K.T.; Roy, I.; Dinh, X.Q.; Yu, X.; Luan, F. A Review on Functionalized Gold Nanoparticles for Biosensing Applications. Plasmonics 2011, 6, 491–506. [Google Scholar] [CrossRef]
- Jazayeri, M.H.; Amani, H.; Pourfatollah, A.A.; Pazoki-Toroudi, H.; Sedighimoghaddam, B. Various Methods of Gold Nanoparticles (GNPs) Conjugation to Antibodies. Sens. Biosens. Res. 2016, 9, 17–22. [Google Scholar] [CrossRef]
- Chen, Y.; Xianyu, Y.; Jiang, X. Surface Modification of Gold Nanoparticles with Small Molecules for Biochemical Analysis. Acc. Chem. Res. 2017, 50, 310–319. [Google Scholar] [CrossRef]
- Pellas, V.; Sallem, F.; Blanchard, J.; Miche, A.; Concheso, S.M.; Méthivier, C.; Salmain, M.; Boujday, S. Silica-Coated Gold Nanorods Biofunctionalization for Localized Surface Plasmon Resonance (LSPR) Biosensing. Talanta 2023, 255, 124245. [Google Scholar] [CrossRef]
- Ghosh, S.K.; Pal, T. Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticles: From Theory to Applications. Chem. Rev. 2007, 107, 4797–4862. [Google Scholar] [CrossRef]
- Taylor, A.B.; Zijlstra, P. Single-Molecule Plasmon Sensing: Current Status and Future Prospects. ACS Sens. 2017, 2, 1103–1122. [Google Scholar] [CrossRef]
- Yu, T.; Wei, Q. Plasmonic Molecular Assays: Recent Advances and Applications for Mobile Health. Nano Res. 2018, 11, 5439. [Google Scholar] [CrossRef]
- Hill, R.T. Plasmonic Biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015, 7, 152. [Google Scholar] [CrossRef]
- D’Agata, R.; Bellassai, N.; Spoto, G. Exploiting the Design of Surface Plasmon Resonance Interfaces for Better Diagnostics: A Perspective Review. Talanta 2024, 266, 125033. [Google Scholar] [CrossRef] [PubMed]
- Karimzadeh, A.; Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Peptide Based Biosensors. TrAC Trends Anal. Chem. 2018, 107, 1–20. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, J.; Boyd, B.J. Peptide-Based Biosensors. Talanta 2015, 136, 114–127. [Google Scholar] [CrossRef] [PubMed]
- Saadati, A.; Hassanpour, S.; de la Guardia, M.; Mosafer, J.; Hashemzaei, M.; Mokhtarzadeh, A.; Baradaran, B. Recent Advances on Application of Peptide Nucleic Acids as a Bioreceptor in Biosensors Development. TrAC Trends Anal. Chem. 2019, 114, 56–68. [Google Scholar] [CrossRef]
- Koyiloth, M.; Gummadi, S.N. Interaction of Human Phospholipid Scramblase 1 with Cholesterol via CRAC Motif Is Essential for Functional Regulation and Subcellular Localization. Int. J. Biol. Macromol. 2022, 209, 850–857. [Google Scholar] [CrossRef]
- Volynsky, P.E.; Galimzyanov, T.R.; Akimov, S.A. Interaction of Peptides Containing CRAC Motifs with Lipids in Membranes of Various Composition. Biochem. Moscow Suppl. Ser. A 2021, 15, 98–108. [Google Scholar] [CrossRef]
- Li, H.; Yao, Z.X.; Degenhardt, B.; Teper, G.; Papadopoulos, V. Cholesterol Binding at the Cholesterol Recognition/Interaction Amino Acid Consensus (CRAC) of the Peripheral-Type Benzodiazepine Receptor and Inhibition of Steroidogenesis by an HIV TAT-CRAC Peptide. Proc. Natl. Acad. Sci. USA 2001, 98, 1267–1272. [Google Scholar] [CrossRef]
- Li, H.; Papadopoulos, V. Peripheral-Type Benzodiazepine Receptor Function in Cholesterol Transport. Identification of a Putative Cholesterol Recognition/Interaction Amino Acid Sequence and Consensus Pattern. Endocrinology 1998, 139, 4991–4997. [Google Scholar] [CrossRef]
- Giarola, J.F.; Santos, J.; Estevez, M.C.; Ventura, S.; Pallarès, I.; Lechuga, L.M. An α-Helical Peptide-Based Plasmonic Biosensor for Highly Specific Detection of α-Synuclein Toxic Oligomers. Anal. Chim. Acta 2024, 1304, 342559. [Google Scholar] [CrossRef]
- Heo, N.S.; Oh, Y.; Ryu, M.Y.; Hoon Baek, S.; Park, J.; Choi, C.; Huh, Y.S.; Park, J.P. Affinity Peptide-Guided Plasmonic Biosensor for Detection of Noroviral Protein and Human Norovirus. Biotechnol. Bioprocess Eng. 2019, 24, 318–325. [Google Scholar] [CrossRef]
- Dey, S.; Dolci, M.; Zijlstra, P. Single-Molecule Optical Biosensing: Recent Advances and Future Challenges. ACS Phys. Chem. Au 2023, 3, 143–156. [Google Scholar] [CrossRef] [PubMed]
- Calvo, R.; Thon, A.; Saad, A.; Salvador-Matar, A.; Manso-Silván, M.; Ahumada, Ó.; Pini, V. Size Characterization of Plasmonic Nanoparticles with Dark-Field Single Particle Spectrophotometry. Sci. Rep. 2022, 12, 17231. [Google Scholar] [CrossRef] [PubMed]
- Sriram, M.; Markhali, B.P.; Nicovich, P.R.; Bennett, D.T.; Reece, P.J.; Brynn Hibbert, D.; Tilley, R.D.; Gaus, K.; Vivekchand, S.R.C.; Gooding, J.J. A Rapid Readout for Many Single Plasmonic Nanoparticles Using Dark-Field Microscopy and Digital Color Analysis. Biosens. Bioelectron. 2018, 117, 530–536. [Google Scholar] [CrossRef] [PubMed]
- Pini, V.; Thon, A.; Salvador-Matar Renteria, A.; Cebrián Hernando, V.; García Aguado, C.; Ahumada Heredero, J.Ó. Biosensor Platform and Method for the Simultaneous, Multiplexed, Ultra-Sensitive and High Throughput Optical Detection of Biomarkers. U.S. Patent US11519843B2, 6 December 2022. [Google Scholar]
- Thon, A.; Pini, V.; Salvador-Matar Renteria, A.; Cebrián Hernardo, V.; García Aguado, C.; Ahumada Heredero, J.Ó. Method for Optically Detecting Biomarkers. U.S. Patent US11519856B2, 6 December 2022. [Google Scholar]
- Bernardo, A.L.; Mohammed-Sadhakathullah, A.H.M.; Angelucci, C.B.; Estrany, F.; Berghella, A.; Torras, J.; Armelin, E.; Oddi, S.; Dainese, E. Non-Enzymatic Cholesterol Biosensor: Electrochemical Sensing Based on Peptide-PLA Thin Film. Int. J. Biol. Macromol. 2024, 281, 136337. [Google Scholar] [CrossRef] [PubMed]
- Bañuls, M.J.; Puchades, R.; Maquieira, Á. Chemical Surface Modifications for the Development of Silicon-Based Label-Free Integrated Optical (IO) Biosensors: A Review. Anal. Chim. Acta 2013, 777, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, M.; Tsounidi, D.; Petrou, P.S.; Beltsios, K.G.; Kakabakos, S.E. Functionalization of Silicon Dioxide and Silicon Nitride Surfaces with Aminosilanes for Optical Biosensing Applications. Med. Devices Sens. 2020, 3, e10072. [Google Scholar] [CrossRef]
- Soler, M.; Lechuga, L.M. Biochemistry Strategies for Label-Free Optical Sensor Biofunctionalization: Advances towards Real Applicability. Anal. Bioanal. Chem. 2022, 414, 5071. [Google Scholar] [CrossRef]
- Oliveira, J.P.; Prado, A.R.; Keijok, W.J.; Antunes, P.W.P.; Yapuchura, E.R.; Guimarães, M.C.C. Impact of Conjugation Strategies for Targeting of Antibodies in Gold Nanoparticles for Ultrasensitive Detection of 17β-Estradiol. Sci. Rep. 2019, 9, 13859. [Google Scholar] [CrossRef]
- Gopalan, A.I.; Lee, K.-P.; Ragupathy, D. Development of a Stable Cholesterol Biosensor Based on Multi-Walled Carbon Nanotubes-Gold Nanoparticles Composite Covered with a Layer of Chitosan-Room-Temperature Ionic Liquid Network. Biosens. Bioelectron. 2009, 24, 2211–2217. [Google Scholar] [CrossRef]
- Carvalho-De-Souza, J.L.; Nag, O.K.; Oh, E.; Huston, A.L.; Vurgaftman, I.; Pepperberg, D.R.; Bezanilla, F.; Delehanty, J.B. Cholesterol Functionalization of Gold Nanoparticles Enhances Photoactivation of Neural Activity. ACS Chem. Neurosci. 2019, 10, 1478–1487. [Google Scholar] [CrossRef]
- Gautam, S.; Loh, K.C. Immobilization of Hydrophobic Peptidic Ligands to Hydrophilic Chromatographic Matrix: A Preconcentration Approach. Anal. Biochem. 2012, 423, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://mobyle.rpbs.univ-paris-diderot.fr (accessed on 3 April 2024).
Diameter (nm) | 100 |
Peak SPR Wavelength (nm) | 569 |
NPS/ml | 2.48 × 10 11 |
Molarity (pM) | 4.10 × 10 2 |
Moles | 4.14 × 10 −13 |
Molar Ext. (M−1 cm−1) | 1.21 × 10 11 |
Absorption Molar Ext. (M−1 cm−1) | 5.82 × 10 10 |
Scattering Molar Ext. (M−1 cm−1) | 6.27 × 10 10 |
Size Dispersity %PDI | <4% |
Size Accuracy (+/− nm) | 2 |
Surface Modification | WCA (°) |
---|---|
Si | 39 ± 2 |
Si-APTES | 59 ± 1 |
PEG (linker) | 67 ± 3 |
PEG-C-pept | 78 ± 3 |
PEG-C-pept/GNPs-Chol | 83 ± 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernardo, A.L.; Parra, A.; Cebrián, V.; Ahumada, Ó.; Oddi, S.; Dainese, E. Innovative Peptide-Based Plasmonic Optical Biosensor for the Determination of Cholesterol. Biosensors 2024, 14, 551. https://doi.org/10.3390/bios14110551
Bernardo AL, Parra A, Cebrián V, Ahumada Ó, Oddi S, Dainese E. Innovative Peptide-Based Plasmonic Optical Biosensor for the Determination of Cholesterol. Biosensors. 2024; 14(11):551. https://doi.org/10.3390/bios14110551
Chicago/Turabian StyleBernardo, Ana Lia, Anne Parra, Virginia Cebrián, Óscar Ahumada, Sergio Oddi, and Enrico Dainese. 2024. "Innovative Peptide-Based Plasmonic Optical Biosensor for the Determination of Cholesterol" Biosensors 14, no. 11: 551. https://doi.org/10.3390/bios14110551
APA StyleBernardo, A. L., Parra, A., Cebrián, V., Ahumada, Ó., Oddi, S., & Dainese, E. (2024). Innovative Peptide-Based Plasmonic Optical Biosensor for the Determination of Cholesterol. Biosensors, 14(11), 551. https://doi.org/10.3390/bios14110551