Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design of Metal-Sensing Bacteria
2.2. Cell Growth Conditions
2.3. Hydrogel Preparation
2.4. Bioluminescence Assays
2.5. Analysis of Cd Partitioning Between Hydrogel and External Aqueous Solution
2.5.1. Experimental Electrochemical Setup
2.5.2. Cadmium Content Quantification by Stripping Chronopotentiometry
2.5.3. Kinetics of Cd Partitioning at Hydrogel/Solution Interface
3. General Theoretical Framework for the Interpretation of the Time-Dependent Bioluminescence by Whole-Cell Bioreporters
3.1. Nomenclature
3.2. Theoretical Formulation of the Bioluminescence Emission over Time: Case of Planktonic Biosensors
3.3. Determination of Boltzmann Cd Accumulation in the Hydrogel Due to Electrostatics
3.4. Theoretical Formulation of the Bioluminescence Emission over Time: Case of Hydrogels-Embedded Biosensors
4. Results and Discussion
4.1. Cadmium Partitioning Between Hydrogel and Solution
4.1.1. Time-Dependence of the Cadmium Concentration in the Hydrogels
4.1.2. Boltzmann Cd Enrichment Factor in the Hydrogel,
4.2. Analysis of Biosensor Responses to Cadmium Exposure
4.2.1. Comparing the Time Dependence of Bioluminescence Cell Response in Solution and in Hydrogel
4.2.2. Time-Dependent Response of Constitutive Lux-Biosensors in the Hydrogel and Solution Measurement Configurations
4.2.3. Response of Cd-Inducible Lux-Biosensors in Solution and Hydrogel as a Function of Total Cell Concentration
4.2.4. Comparison Between Bioluminescence Emitted per Cell in Relation and Total Amount of Cd per Cell in the Solution and Hydrogel Scenarios
4.2.5. Comparative Analysis of the Bioluminescence Emitted per Cell in the Solution and Hydrogel Scenarios with the Account of Electrostatics-Mediated Cd Accumulation in the Hydrogel
4.2.6. Comparing the Bioluminescence Emitted per Cell Versus Free Cd Concentration per Cell in the Solution and Hydrogel Scenarios
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Latin Symbols | |
Cell radius | |
Bosma number (dimensionless) | |
Total number concentration of bacteria applicable to the whole sample volume | |
Total number concentration of bacteria in the silica hydrogels | |
Number concentration of photoactive biosensors in the silica hydrogels | |
Number concentration of photoactive biosensors when dispersed in solution | |
and the maximum number concentration of photoactive cells | |
Maximum number concentration of photoactive cells | |
Total molar concentration of Cd in the whole sample volume | |
Total molar concentration of Cd in the solution positioned on top of the hydrogels (at equilibrium) | |
Total molar concentration of Cd concentration in the hydrogels | |
Molar concentration of bound Cd species in solution (x = solution) or in the hydrogels (x = gel) | |
Molar concentration of free Cd ions in solution (x = solution) or in the hydrogels (x = gel) | |
Diffusion coefficient of Cd(II) in solution | |
Effective Boltzmann enrichment factor of Cd species in the hydrogels (at equilibrium) | |
Thickness of the hydrogel | |
Metal biouptake flux | |
Dimensionless thermodynamic stability constant of Cd complexes in solution | |
Dimensionless thermodynamic stability constant of Cd complexes in the hydrogels | |
Hill constant, related to the affinity of the promoter (that controls the lux-reporter gene transcription) for the complex formed between intracellular Cd and the regulatory protein ZntR | |
Kinetic constant pertaining to the internalization of free metals via dedicated membrane transporter | |
Kinetic constant for photon emission per mole of luciferase | |
Bioluminescence produced by metal-detecting whole-cell bacterial sensors | |
Bioluminescence produced by constitutive whole-cell bacterial sensors | |
Basal level of bioluminescence produced by constitutive lux-biosensors | |
Maximum bioluminescence reached in the second emission regime for the constitutive lux-biosensors | |
Maximum bioluminescence reached in the second emission regime for the Cd-inducible biosensors | |
Total number of cells introduced in the sample | |
) | |
; = | |
, | |
Surface area of an individual sensing cell | |
Cross-sectional area of the hydrogel | |
Volume of the hydrogel | |
Volume of the solution on top of the hydrogel | |
Total sample volume | |
Greek Symbols | |
Henry coefficient for passive adsorption of Cd at the surface of the biosensors in solution | |
Henry coefficient for passive adsorption of Cd at the surface of the biosensors in the hydrogels | |
Characteristic timescale over which bioluminescence is emitted by a given luciferase–luciferin complex | |
Gel volume fraction |
References
- van der Meer, J.R. Bacterial Sensors: Synthetic Design and Application Principles; Morgan and Claypool; Springer Nature: San Rafael, CA, USA, 2022; Volume 2. [Google Scholar]
- Hynninen, A.; Tonismann, K.; Virta, M. Improving the Sensitivity of Bacterial Bioreporters for Heavy Metals. Bioeng. Bugs 2010, 1, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Ron, E.Z. Biosensing Environmental Pollution. Curr. Opin. Biotechnol. 2007, 18, 252–256. [Google Scholar] [CrossRef] [PubMed]
- Yagi, K. Applications of Whole-Cell Bacterial Sensors in Biotechnology and Environmental Science. Appl. Microbiol. Biotechnol. 2007, 73, 1251–1258. [Google Scholar] [CrossRef] [PubMed]
- Magrisso, S.; Erel, Y.; Belkin, S. Microbial Reporters of Metal Bioavailability. Microbiol. Biotechnol. 2008, 1, 320–330. [Google Scholar] [CrossRef]
- Pepi, M.; Reniero, D.; Baldi, F.; Barbieri, P. A Comparison of MER::LUX Whole Cell Biosensors and Moss, a Bioindicator, for Estimating Mercury Pollution. Water Air Soil Pollut. 2006, 173, 163–175. [Google Scholar] [CrossRef]
- Yoon, Y.; Kim, S.; Chae, Y.; Kang, Y.; Lee, Y.; Jeong, S.-W.; An, Y.-J. Use of Tunable Whole-Cell Bioreporters to Assess Bioavailable Cadmium and Remediation Performance in Soils. PLoS ONE 2016, 11, e0154506. [Google Scholar] [CrossRef]
- Shetty, R.S.; Deo, S.K.; Shah, P.; Sun, Y.; Rosen, B.P.; Daunert, S. Luminescence-Based Whole-Cell-Sensing Systems for Cadmium and Lead Using Genetically Engineered Bacteria. Anal. Bioanal. Chem. 2003, 376, 11–17. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, Y.; Amor, K.; Huang, W.E.; Porcelli, D.; Thompson, I. Monitoring Cr Toxicity and Remediation Processes—Combining a Whole-Cell Bioreporter and Cr Isotope Techniques. Water Res. 2019, 153, 295–303. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Y.; Wells, M. A Case Study Comparing Lead-Response in Different Bioreporters: What Constitutes a Good Biosensor? CSCEE Case Stud. Chem. Environ. Eng. 2022, 5, 100192. [Google Scholar] [CrossRef]
- Werlen, C.; Jaspers, M.C.M.; van der Meer, J.R. Measurement of Biologically Available Naphthalene in Gas and Aqueous Phases by Use of a Pseudomonas putida Biosensor. Appl. Environ. Microbiol. 2004, 70, 43–51. [Google Scholar] [CrossRef]
- Tecon, R.; Wells, M.; Van Der Meer, J.R. A New Green Fluorescent Protein-Based Bacterial Biosensor for Analysing Phenanthrene Fluxes. Environ. Microbiol. 2006, 8, 697–708. [Google Scholar] [CrossRef] [PubMed]
- Tecon, R.; van der Meer, J.R. Information from Single-Cell Bacterial Biosensors: What Is It Good For? Curr. Opin. Biotechnol. 2006, 17, 4–10. [Google Scholar] [CrossRef] [PubMed]
- Stocker, J.; Balluch, D.; Gsell, M.; Harms, H.; Feliciano, J.; Daunert, S.; Malik, K.A.; van der Meer, J.R. Development of a Set of Simple Bacterial Biosensors for Quantitative and Rapid Measurements of Arsenite and Arsenate in Potable Water. Environ. Sci. Technol. 2003, 37, 4743–4750. [Google Scholar] [CrossRef] [PubMed]
- Pagnout, C.; Présent, R.M.; Billard, P.; Rotureau, E.; Duval, J.F.L. What Do Luminescent Bacterial Metal-Sensors Probe? Insights from Confrontation between Experiments and Flux-Based Theory. Sens. Actuators B Chem. 2018, 270, 482–491. [Google Scholar] [CrossRef]
- Duval, J.F.L.; Pagnout, C. Decoding the Time-Dependent Response of Bioluminescent Metal-Detecting Whole-Cell Bacterial Sensors. ACS Sens. 2019, 4, 1373–1383. [Google Scholar] [CrossRef]
- Duval, J.F.L.; Pagnout, C. Bimodal Stringence-Mediated Response of Metal-Detecting Luminescent Whole Cell Bioreporters: Experimental Evidence and Quantitative Theory. Sens. Actuators B Chem. 2020, 309, 127751. [Google Scholar] [CrossRef]
- Delatour, E.; Pagnout, C.; Zaffino, M.L.; Duval, J.F.L. Comparative Analysis of Cell Metabolic Activity Sensing by Escherichia coli rrnB P1-Lux and Cd Responsive-Lux Biosensors: Time-Resolved Experiments and Mechanistic Modelling. Biosensors 2022, 12, 763. [Google Scholar] [CrossRef]
- Ore, S.; Mertens, J.; Brandt, K.K.; Smolders, E. Copper Toxicity to Bioluminescent Nitrosomonas europaea in Soil Is Explained by the Free Metal Ion Activity in Pore Water. Environ. Sci. Technol. 2010, 44, 9201–9206. [Google Scholar] [CrossRef]
- McLean, J.E.; Pabst, M.W.; Miller, C.D.; Dimkpa, C.O.; Anderson, A.J. Effect of Complexing Ligands on the Surface Adsorption, Internalization, and Bioresponse of Copper and Cadmium in a Soil Bacterium, Pseudomonas putida. Chemosphere 2013, 91, 374–382. [Google Scholar] [CrossRef]
- Slaveykova, V.I.; Wilkinson, K.J. Predicting the Bioavailability of Metals and Metal Complexes: Critical Review of the Biotic Ligand Model. Environ. Chem. 2005, 2, 9–24. [Google Scholar] [CrossRef]
- Hassler, C.S.; Slaveykova, V.I.; Wilkinson, K.J. Some Fundamental (and Often Overlooked) Considerations Underlying the Free Ion Activity and Biotic Ligand Models. Environ. Toxicol. Chem. 2004, 23, 283–291. [Google Scholar] [CrossRef] [PubMed]
- Duval, J.F.L.; Maffei, L.; Delatour, E.; Zaffino, M.; Pagnout, C. Kinetics of Metal Detection by Luminescence-Based Whole-Cell Biosensors: Connecting Biosensor Response to Metal Bioavailability, Speciation and Cell Metabolism. Phys. Chem. Chem. Phys. 2023, 25, 30276–30295. [Google Scholar] [CrossRef] [PubMed]
- Delatour, E.; Pagnout, C.; Zaffino, M.; Duval, J.F.L. Exploiting Catabolite Repression and Stringent Response to Control Delay and Multimodality of Bioluminescence Signal by Metal Whole-Cell Biosensors: Interplay between Metal Bioavailability and Nutritional Medium Conditions. Biosensors 2022, 12, 327. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, B.; Schillereff, D.N.; Chiverrell, R.C.; Tefsen, B.; Wells, M. Whole-Cell Biosensors for Determination of Bioavailable Pollutants in Soils and Sediments: Theory and Practice. Sci. Total Environ. 2022, 811, 152178. [Google Scholar] [CrossRef]
- Date, A.; Pasini, P.; Daunert, S. Fluorescent and Bioluminescent Cell-Based Sensors: Strategies for Their Preservation. Adv. Biochem. Eng. Biotechnol. 2010, 117, 57–75. [Google Scholar] [CrossRef]
- Rajan Premkumar, J.; Rosen, R.; Belkin, S.; Lev, O. Sol–Gel Luminescence Biosensors: Encapsulation of Recombinant E. coli Reporters in Thick Silicate Films. Anal. Chim. Acta 2002, 462, 11–23. [Google Scholar] [CrossRef]
- Davis, T.A.; Kalis, E.J.J.; Pinheiro, J.P.; Town, R.M.; van Leeuwen, H.P. Cd(II) Speciation in Alginate Gels. Environ. Sci. Technol. 2008, 42, 7242–7247. [Google Scholar] [CrossRef]
- Town, R.M.; Kalis, E.J.J.; Van Leeuwen, H.P. Dynamic Metal Speciation in Biogels. In Surface Chemistry, Bioavailability and Metal Homeostasis in Aquatic Organisms: An Integrated Approach; Bury, N.R., Handy, R.D., Eds.; Society for Experimental Biology: London, UK, 2010; pp. 29–66. [Google Scholar]
- Stewart, P.S. Diffusion in Biofilms. J. Bacteriol. 2003, 185, 1485–1491. [Google Scholar] [CrossRef]
- Nassif, N.; Coiffier, A.; Coradin, T.; Roux, C.; Livage, J.; Bouvet, O. Viability of Bacteria in Hybrid Aqueous Silica Gels. J. Sol-Gel Sci. Technol. 2003, 26, 1141–1144. [Google Scholar] [CrossRef]
- Premkumar, J.R.; Lev, O.; Rosen, R.; Belkin, S. Encapsulation of Luminous Recombinant E. coli in Sol–Gel Silicate Films. Adv. Mater. 2001, 13, 1773–1775. [Google Scholar] [CrossRef]
- Moretta, R.; De Stefano, L.; Terracciano, M.; Rea, I. Porous Silicon Optical Devices: Recent Advances in Biosensing Applications. Sensors 2021, 21, 1336. [Google Scholar] [CrossRef] [PubMed]
- Rathnayake, I.V.N.; Munagamage, T.; Pathirathne, A.; Megharaj, M. Whole Cell Microalgal-Cyanobacterial Array Biosensor for Monitoring Cd, Cr and Zn in Aquatic Systems. Water Sci. Technol. 2021, 84, 1579–1593. [Google Scholar] [CrossRef] [PubMed]
- Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction of Escherichia coli K-12 in-Frame, Single-Gene Knockout Mutants: The Keio Collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [Google Scholar] [CrossRef] [PubMed]
- Riether, K.; Dollard, M.-A.; Billard, P. Assessment of Heavy Metal Bioavailability Using Escherichia coli zntAp::Lux and copAp::Lux-Based Biosensors. Appl. Microbiol. Biotechnol. 2001, 57, 712–716. [Google Scholar] [CrossRef]
- Pupov, D.; Petushkov, I.; Esyunina, D.; Murakami, K.S.; Kulbachinskiy, A. Region 3.2 of the σ Factor Controls the Stability of rRNA Promoter Complexes and Potentiates Their Repression by DksA. Nucleic Acids Res. 2018, 46, 11477–11487. [Google Scholar] [CrossRef]
- van Leeuwen, H.; Town, R. Stripping Chronopotentiometry at Scanned Deposition Potential (SSCP). Part 1. Fundamental Features. J. Electroanal. Chem. 2002, 536, 129–140. [Google Scholar] [CrossRef]
- Ariño, C.; Banks, C.E.; Bobrowski, A.; Crapnell, R.D.; Economou, A.; Królicka, A.; Pérez-Ràfols, C.; Soulis, D.; Wang, J. Electrochemical Stripping Analysis. Nat. Rev. Methods Prim. 2022, 2, 62. [Google Scholar] [CrossRef]
- Companys, E.; Galceran, J.; Pinheiro, J.P.; Puy, J.; Salaün, P. A Review on Electrochemical Methods for Trace Metal Speciation in Environmental Media. Curr. Opin. Electrochem. 2017, 3, 144–162. [Google Scholar] [CrossRef]
- Gustafsson, J.P. Visual MINTEQ Version 3.0. KTH, Department of Land and Water Resources Engineering, Stockolm, Sweden, 2009. Available online: https://vminteq.com/ (accessed on 2 November 2024).
- Volkmer, B.; Heinemann, M. Condition-Dependent Cell Volume and Concentration of Escherichia coli to Facilitate Data Conversion for Systems Biology Modeling. PLoS ONE 2011, 6, e23126. [Google Scholar] [CrossRef]
- Duval, J.F.L. Dynamics of Metal Uptake by Charged Biointerphases: Bioavailability and Bulk Depletion. Phys. Chem. Chem. Phys. 2013, 15, 7873–7888. [Google Scholar] [CrossRef]
- Présent, R.M.; Rotureau, E.; Billard, P.; Pagnout, C.; Sohm, B.; Flayac, J.; Gley, R.; Pinheiro, J.P.; Duval, J.F.L. Impact of Intracellular Metallothionein on Metal Biouptake and Partitioning Dynamics at Bacterial Interfaces. Phys. Chem. Chem. Phys. 2017, 19, 29114–29124. [Google Scholar] [CrossRef] [PubMed]
- Duval, J.F.L.; van Leeuwen, H.P. Electrokinetics of Diffuse Soft Interfaces. 1. Limit of Low Donnan Potentials. Langmuir 2004, 20, 10324–10336. [Google Scholar] [CrossRef] [PubMed]
- Lesniewska, N.; Beaussart, A.; Duval, J.F.L. Conditional Existence of Donnan Potential in Soft Particles and Surfaces: Dependence on Steric Effects Mediated by Electrolyte Ions and Structural Charges. J. Mol. Liq. 2023, 387, 122643. [Google Scholar] [CrossRef]
- Kariuki, S.; Dewald, H.D. Evaluation of Diffusion Coefficients of Metallic Ions in Aqueous Solutions. Electroanalysis 1996, 8, 307–313. [Google Scholar] [CrossRef]
- Scally, S.; Davison, W.; Zhang, H. Diffusion Coefficients of Metals and Metal Complexes in Hydrogels Used in Diffusive Gradients in Thin Films. Anal. Chim. Acta 2006, 558, 222–229. [Google Scholar] [CrossRef]
- Duval, J.F.L.; van Leeuwen, H.P. Rates of Ionic Reactions with Charged Nanoparticles in Aqueous Media. J. Phys. Chem. A 2012, 116, 6443–6451. [Google Scholar] [CrossRef]
- Glud, R.N. Oxygen Dynamics of Marine Sediments. Mar. Biol. Res. 2008, 4, 243–289. [Google Scholar] [CrossRef]
- Gosmann, B.; Rehm, H.-J. Influence of Growth Behaviour and Physiology of Alginate-Entrapped Microorganisms on the Oxygen Consumption. Appl. Microbiol. Biotechnol. 1988, 29, 554–559. [Google Scholar] [CrossRef]
- Omar, S.H. Oxygen Diffusion through Gels Employed for Immobilization. Appl. Microbiol. Biotechnol. 1993, 40, 173–181. [Google Scholar] [CrossRef]
- Hooijmans, C.M.; Briasco, C.A.; Huang, J.; Geraats, B.G.; Barbotin, J.N.; Thomas, D.; Luyben, K.C. Measurement of Oxygen Concentration Gradients in Gel-Immobilized Recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 1990, 33, 611–618. [Google Scholar] [CrossRef]
- Chang, H.N.; Moo-Young, M. Estimation of Oxygen Penetration Depth in Immobilized Cells. Appl. Microbiol. Biotechnol. 1988, 29, 107–112. [Google Scholar] [CrossRef]
- Galceran, J.; Companys, E.; Puy, J.; Cecilia, J.; Garces, J.L. AGNES: A New Electroanalytical Technique for Measuring Free Metal Ion Concentration. J. Electroanal. Chem. 2004, 566, 95–109. [Google Scholar] [CrossRef]
- López-Solis, L.; Galceran, J.; Puy, J.; Companys, E. Absence of Gradients and Nernstian Equilibrium Stripping (AGNES): An Electroanalytical Technique for Chemical Speciation: A Tutorial Review. Chemosensors 2022, 10, 351. [Google Scholar] [CrossRef]
- Monterroso, S.C.C.; Carapuca, H.M.; Simao, J.E.J.; Duarte, A.C. Optimisation of Mercury Film Deposition on Glassy Carbon Electrodes: Evaluation of the Combined Effects of pH, Thiocyanate Ion and Deposition Potential. Anal. Chim. Acta 2004, 503, 203–212. [Google Scholar] [CrossRef]
- Chito, D.; Weng, L.; Galceran, J.; Companys, E.; Puy, J.; van Riemsdijk, W.H.; van Leeuwen, H.P. Determination of Free Zn2+ Concentration in Synthetic and Natural Samples with AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and DMT (Donnan Membrane Technique). Sci. Total Environ. 2012, 421–422, 238–244. [Google Scholar] [CrossRef]
- Domingos, R.F.; Huidobro, C.; Companys, E.; Galceran, J.; Puy, J.; Pinheiro, J.P. Comparison of AGNES (Absence of Gradients and Nernstian Equilibrium Stripping) and SSCP (Scanned Stripping Chronopotentiometry) for Trace Metal Speciation Analysis. J. Electroanal. Chem. 2008, 617, 141–148. [Google Scholar] [CrossRef]
- Rotureau, E.; Pla-Vilanova, P.; Galceran, J.; Companys, E.; Pinheiro, J.P. Towards Improving the Electroanalytical Speciation Analysis of Indium. Anal. Chim. Acta 2019, 1052, 57–64. [Google Scholar] [CrossRef]
- Tehrani, M.H.; Companys, E.; Dago, A.; Puy, J.; Galceran, J. Free Indium Concentration Determined with AGNES. Sci. Total Environ. 2018, 612, 269–275. [Google Scholar] [CrossRef]
- Brown, W.; Chitumbo, K. Solute Diffusion in Hydrated Polymer Networks. Part 1.—Cellulose Gels. J. Chem. Soc. Faraday Trans. 1 1975, 71, 1. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion, 2nd ed.; Clarendon Press: Oxford, UK, 1975; ISBN 978-0-19-853344-3. [Google Scholar]
- Kalis, E.J.J.; Davis, T.A.; Town, R.M.; Van Leeuwen, H.P. Impact of Ionic Strength on Cd(II) Partitioning between Alginate Gel and Aqueous Media. Environ. Sci. Technol. 2009, 43, 1091–1096. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotureau, E.; Pagnout, C.; Duval, J.F.L. Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors. Biosensors 2024, 14, 552. https://doi.org/10.3390/bios14110552
Rotureau E, Pagnout C, Duval JFL. Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors. Biosensors. 2024; 14(11):552. https://doi.org/10.3390/bios14110552
Chicago/Turabian StyleRotureau, Elise, Christophe Pagnout, and Jérôme F. L. Duval. 2024. "Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors" Biosensors 14, no. 11: 552. https://doi.org/10.3390/bios14110552
APA StyleRotureau, E., Pagnout, C., & Duval, J. F. L. (2024). Physicochemical Rationale of Matrix Effects Involved in the Response of Hydrogel-Embedded Luminescent Metal Biosensors. Biosensors, 14(11), 552. https://doi.org/10.3390/bios14110552