Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Material Characterizations
2.3. Synthesis of Ce@SiO2 NGs and Ce@SiO2 NGs Entrapping COx (COx@Ce@SiO2 NGs)
2.4. Evaluation of Peroxidase-like Activity of Ce@SiO2 NGs
2.5. Quantitative Determination of H2O2 Using Ce@SiO2 NGs
2.6. Quantitative Determination of Choline Using COx@Ce@SiO2 NGs
2.7. Detection of H2O2 and Choline in Milk and Infant Formula Samples
3. Results and Discussion
3.1. Synthesis and Characterization of Ce@SiO2 NGs
3.2. Investigation of Peroxidase-like Activity of Ce@SiO2 NGs
3.3. Quantitative Detection of H2O2 Using Ce@SiO2 NGs
3.4. Quantitative Detection of Choline Using COx@Ce@SiO2 NGs
3.5. Choline and H2O2 Detection in Milk and Infant Formula Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zeisel, S.H. Nutritional importance of choline for brain development. J. Am. Coll. Nutr. 2004, 23 (Suppl. S6), 621S–626S. [Google Scholar] [CrossRef]
- Moretti, A.; Paoletta, M.; Liguori, S.; Bertone, M.; Toro, G.; Iolascon, G. Choline: An essential nutrient for skeletal muscle. Nutrients 2020, 12, 2144. [Google Scholar] [CrossRef]
- Cater, R.J.; Mukherjee, D.; Gil-Iturbe, E.; Erramilli, S.K.; Chen, T.; Koo, K.; Santander, N.; Reckers, A.; Kloss, B.; Gawda, T.; et al. Structural and molecular basis of choline uptake into the brain by FLVCR2. Nature 2024, 629, 704–709. [Google Scholar] [CrossRef]
- Arai, T.; Tanaka, M.; Goda, N. HIF-1-dependent lipin1 induction prevents excessive lipid accumulation in choline-deficient diet-induced fatty liver. Sci. Rep. 2018, 8, 14230. [Google Scholar] [CrossRef]
- Velazquez, R.; Ferreira, E.; Winslow, W.; Dave, N.; Piras, I.S.; Naymik, M.; Huentelman, M.J.; Tran, A.; Caccamo, A.; Oddo, S. Maternal choline supplementation ameliorates Alzheimer’s disease pathology by reducing brain homocysteine levels across multiple generations. Mol. Psychiatry 2020, 25, 2620–2629. [Google Scholar] [CrossRef]
- Abd El-Rahman, M.K.; Mazzone, G.; Mahmoud, A.M.; Sicilia, E.; Shoeib, T. Novel choline selective electrochemical membrane sensor with application in milk powders and infant formulas. Talanta 2021, 221, 121409. [Google Scholar] [CrossRef]
- Mathivanan, D.; Devi, K.S.; Sathiyan, G.; Tyagi, A.; da Silva, V.; Janegitz, B.; Prakash, J.; Gupta, R.K. Novel polypyrrole-graphene oxide-gold nanocomposite for high performance hydrogen peroxide sensing application. Sens. Actuator A-Phys. 2021, 328, 112769. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Duan, H.; Farajikhah, S.; Oveissi, F.; Dehghani, F.; Naficy, S. A highly flexible, physically stable, and selective hydrogel-based hydrogen peroxide sensor. Sens. Actuator B-Chem. 2022, 371, 132483. [Google Scholar] [CrossRef]
- Tian, X.; Qin, Y.; Jiang, Y.; Guo, X.; Wen, Y.; Yang, H. Chemically renewable SERS sensor for the inspection of H2O2 residue in food stuff. Food Chem. 2024, 438, 137777. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Nguyen, M.H.; Vu, M.T.; Duong, H.A.; Pham, H.V.; Mai, T.D. Dual-channeled capillary electrophoresis coupled with contactless conductivity detection for rapid determination of choline and taurine in energy drinks and dietary supplements. Talanta 2019, 193, 168–175. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Oveissi, F.; Dehghani, F.; Naficy, S. Paper-Based, Chemiresistive Sensor for Hydrogen Peroxide Detection. Adv. Mater. Technol. 2021, 6, 2001148. [Google Scholar] [CrossRef]
- Wu, W.; Huang, L.; Wang, E.; Dong, S. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 2020, 11, 9741–9756. [Google Scholar] [CrossRef]
- Shamsabadi, A.; Haghighi, T.; Carvalho, S.; Frenette, L.C.; Stevens, M.M. The nanozyme revolution: Enhancing the performance of medical biosensing platforms. Adv. Mater. 2024, 36, 2300184. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Lee, J.; Cho, A.; Kim, M.S.; Choi, D.; Han, J.W.; Kim, M.I.; Lee, J. Rational development of co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral ph for paper-based colorimetric detection of multiple biomarkers. Adv. Funct. Mater. 2022, 32, 2112428. [Google Scholar] [CrossRef]
- Vu, T.H.; Nguyen, P.T.; Kim, M.I. Polydopamine-coated Co3O4 nanoparticles as an efficient catalase mimic for fluorescent detection of sulfide ion. Biosensors 2022, 12, 1047. [Google Scholar] [CrossRef]
- Lee, J.; Le, X.A.; Chun, H.; Vu, T.H.; Choi, D.; Han, B.; Kim, M.I.; Lee, J. Active site engineering of Zn-doped mesoporous ceria toward highly efficient organophosphorus hydrolase-mimicking nanozyme. Biosens. Bioelectron. 2024, 246, 115882. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Vu, T.H.; Kim, M.I. Histidine–cysteine–copper hybrid nanoflowers as active site-inspired laccase mimics for the colorimetric detection of phenolic compounds in PDMS microfluidic devices. Sens. Actuator B-Chem. 2024, 413, 135845. [Google Scholar] [CrossRef]
- Tian, Q.; Li, S.; Tang, Z.; Zhang, Z.; Du, D.; Zhang, X.; Niu, X.; Lin, Y. Nanozyme-enabled biomedical diagnosis: Advances, trends, and challenges. Adv. Healthc. Mater. 2024, 2401630. [Google Scholar] [CrossRef]
- Zhang, S.; Wei, Q.; Shang, Y.; Zhang, Q.; Wang, Q. D-Serine enzymatic metabolism induced formation of a powder-remoldable PAAM–CS hydrogel. Chem. Commun. 2017, 53, 12270–12273. [Google Scholar] [CrossRef]
- Cui, Z.-K.; Kim, S.; Baljon, J.J.; Wu, B.M.; Aghaloo, T.; Lee, M. Microporous methacrylated glycol chitosan-montmorillonite nanocomposite hydrogel for bone tissue engineering. Nat. Commun. 2019, 10, 3523. [Google Scholar] [CrossRef]
- Nguyen, P.T.; Ahn, H.T.; Kim, M.I. Reagent-free colorimetric assay for galactose using agarose gel entrapping nanoceria and galactose oxidase. Nanomaterials 2020, 10, 895. [Google Scholar] [CrossRef]
- Kim, M.I.; Park, C.Y.; Seo, J.M.; Kang, K.S.; Park, K.S.; Kang, J.; Hong, K.S.; Choi, Y.; Lee, S.Y.; Park, J.P.; et al. In situ biosynthesis of a metal nanoparticle encapsulated in alginate gel for imageable drug-delivery system. ACS Appl. Mater. Interfaces 2021, 13, 36697–36708. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Lee, D.H.; Nguyen, P.T.; Le, P.G.; Kim, M.I. Foldable paper microfluidic device based on single iron site-containing hydrogel nanozyme for efficient glucose biosensing. Chem. Eng. J. 2023, 454, 140541. [Google Scholar] [CrossRef]
- Qi, M.; Pan, H.; Shen, H.; Xia, X.; Wu, C.; Han, X.; He, X.; Tong, W.; Wang, X.; Wang, Q. Nanogel multienzyme mimics synthesized by biocatalytic ATRP and metal coordination for bioresponsive fluorescence imaging. Angew. Chem.-Int. Ed. 2020, 132, 11846–11851. [Google Scholar] [CrossRef]
- Wang, H.; Liu, X.; Yan, X.; Du, Y.; Pu, F.; Ren, J.; Qu, X. An ATPase-Mimicking MXene nanozyme pharmacologically breaks the ironclad defense system for ferroptosis cancer therapy. Biomaterials 2024, 307, 122523. [Google Scholar] [CrossRef] [PubMed]
- Kaygusuz, H.; Torlak, E.; Akın-Evingür, G.; Özen, İ.; Von Klitzing, R.; Erim, F.B. Antimicrobial cerium ion-chitosan crosslinked alginate biopolymer films: A novel and potential wound dressing. Int. J. Biol. Macromol. 2017, 105, 1161–1165. [Google Scholar] [CrossRef]
- Ma, T.; Zhai, X.; Huang, Y.; Zhang, M.; Li, P.; Du, Y.J. Cerium ions crosslinked sodium alginate-carboxymethyl chitosan spheres with antibacterial activity for wound healing. J. Rare Earths 2022, 40, 1407–1416. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, L.; Wang, J. Cerium alginate cross-linking with biochar beads for fast fluoride removal over a wide pH range. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 636, 128161. [Google Scholar] [CrossRef]
- Li, X.-J.; Yan, C.-J.; Luo, W.-J.; Gao, Q.; Zhou, Q.; Liu, C.; Zhou, S. Exceptional cerium (III) adsorption performance of poly (acrylic acid) brushes-decorated attapulgite with abundant and highly accessible binding sites. Chem. Eng. J. 2016, 284, 333–342. [Google Scholar] [CrossRef]
- Chen, Z.; Song, S.; Zeng, H.; Ge, Z.; Liu, B.; Fan, Z. 3D printing MOF nanozyme hydrogel with dual enzymatic activities and visualized glucose monitoring for diabetic wound healing. Chem. Eng. J. 2023, 471, 144649. [Google Scholar] [CrossRef]
- Nosrati, H.; Heydari, M.; Khodaei, M. Cerium oxide nanoparticles: Synthesis methods and applications in wound healing. Mater. Today Bio 2023, 23, 100823. [Google Scholar] [CrossRef]
- Othman, A.; Gowda, A.; Andreescu, D.; Hassan, M.H.; Babu, S.; Seo, J.; Andreescu, S. Two decades of ceria nanoparticles research: Structure, properties and emerging applications. Mater. Horiz. 2024, 11, 3213–3266. [Google Scholar] [CrossRef]
- Ganganboina, A.B.; Doong, R.A. Nitrogen doped graphene quantum dot-decorated earth-abundant nanotubes for enhanced capacitive deionization. Environ. Sci.-Nano 2020, 7, 228–237. [Google Scholar] [CrossRef]
- Anandan, C.; Bera, P. XPS studies on the interaction of CeO2 with silicon in magnetron sputtered CeO2 thin films on Si and Si3N4 substrates. Appl. Surf. Sci. 2013, 283, 297–303. [Google Scholar] [CrossRef]
- Hosu, O.; Lettieri, M.; Papara, N.; Ravalli, A.; Sandulescu, R.; Cristea, C.; Marrazza, G. Colorimetric multienzymatic smart sensors for hydrogen peroxide, glucose and catechol screening analysis. Talanta 2019, 204, 525–532. [Google Scholar] [CrossRef]
- Li, P.; Zhang, S.; Xu, C.; Zhang, L.; Liu, Q.; Chu, S.; Li, S.; Mao, G.; Wang, H. Coating Fe3O4 quantum dots with sodium alginate showing enhanced catalysis for capillary array-based rapid analysis of H2O2 in milk. Food Chem. 2022, 380, 132188. [Google Scholar] [CrossRef]
- Chen, S.; Li, Z.; Huang, Z.; Jia, Q. Investigation of efficient synergistic and protective effects of chitosan on copper nanoclusters: Construction of highly active and stable nanozyme for colorimetric and fluorometric dual-signal biosensing. Sens. Actuator B-Chem. 2021, 332, 129522. [Google Scholar] [CrossRef]
- Liu, H.; Ding, Y.; Yang, B.; Liu, Z.; Liu, Q.; Zhang, X. Colorimetric and ultrasensitive detection of H2O2 based on Au/Co3O4-CeOx nanocomposites with enhanced peroxidase-like performance. Sens. Actuator B-Chem. 2018, 271, 336–345. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, H.; Gao, L.-N.; Fu, M.; Luo, X.; Zhang, X.; Liu, Q.; Zeng, R.-C. Compounds. Fe-doped Ag2S with excellent peroxidase-like activity for colorimetric determination of H2O2. J. Alloys Compd. 2019, 785, 1189–1197. [Google Scholar] [CrossRef]
- Huang, X.; Zhou, H.; Huang, Y.; Jiang, H.; Yang, N.; Shahzad, S.A.; Meng, L.; Yu, C. Silver nanoparticles decorated and tetraphenylethene probe doped silica nanoparticles: A colorimetric and fluorometric sensor for sensitive and selective detection and intracellular imaging of hydrogen peroxide. Biosens. Bioelectron. 2018, 121, 236–242. [Google Scholar] [CrossRef]
- Remani, K.; Binitha, N.N. Cobalt doped ceria catalysts for the oxidative abatement of gaseous pollutants and colorimetric detection of H2O2. Mater. Res. Bull. 2021, 139, 111253. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, H.; Qin, X.; Shen, Y.; Wei, X.; Liu, G. Metalloporphyrin and gold nanoparticles modified hollow zeolite imidazole Framework-8 with excellent peroxidase like activity for quick colorimetric determination of choline in infant formula milk powder. Food Chem. 2022, 384, 132552. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Song, D.; Zhang, W.; Fang, S.; Zhou, Q.; Zhang, H.; Liang, Z.; Li, Y.J. Choline oxidase-integrated copper metal–organic frameworks as cascade nanozymes for one-step colorimetric choline detection. J. Agric. Food Chem. 2022, 70, 5228–5236. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Chen, G.-Y.; Chai, T.-Q.; Chen, L.-X.; Chen, H.; Yang, F.-Q. Construction of Mn-decorated zeolitic imidazolate framework-90 nanostructure as superior oxidase-like mimic for colorimetric detection of glucose and choline. Talanta 2024, 271, 125708. [Google Scholar] [CrossRef]
- Alizadeh, N.; Salimi, A.; Hallaj, R. Mimicking peroxidase-like activity of Co3O4-CeO2 nanosheets integrated paper-based analytical devices for detection of glucose with smartphone. Sens. Actuator B-Chem. 2019, 288, 44–52. [Google Scholar] [CrossRef]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
Sample | Linear Range (μM) | LOD (μM) | References |
---|---|---|---|
Poly(ANI-co-AA) composite film | 25–200 | 35.6 | [35] |
Fe3O4 QDs | 10–400 | 4.5 | [36] |
CS@GSH-CuNCs | 20–200 | 6.7 | [37] |
Au/Co3O4-CeOx NCs | 10–100 | 5.29 | [38] |
Fe–Ag2S | 10–150 | 7.82 | [39] |
Ag@TPE-SiO2 NPs | 5–160 | 2.1 | [40] |
Co/CeO2 | 3.33–100 | 3.33 | [41] |
Ce@SiO2 NGs | 5–1000 | 1.3 | This work |
Sample | Linear Range (μM) | LOD (μM) | References |
---|---|---|---|
Au/HZIF-8@TCPP(Fe) | 50–2000 | 50 | [42] |
ChOx@MOF | 6–300 | 2 | [43] |
Mn/ZIF-90 | 5−50 and 50−1000 | 5.6 | [44] |
CS@GSH-CuNCs | 20–150 | 6.5 | [37] |
Ce@SiO2 NGs | 4–400 | 2 | This work |
Original Amount (µM) | Spiked Level (µM) | Measured (µM) | Recovery (%) (n = 3) | CV (%) | ||
---|---|---|---|---|---|---|
Choline | Milk #1 | 7.9 | 50 | 57.0 | 98.4 | 3.2 |
100 | 111.0 | 102.8 | 3.6 | |||
200 | 209.8 | 100.9 | 0.3 | |||
Milk #2 | 6.6 | 50 | 57.2 | 101.1 | 2.3 | |
100 | 103.9 | 97.5 | 1.3 | |||
200 | 204.7 | 99.1 | 1.0 | |||
Infant formula #1 | 8.2 | 50 | 59.2 | 101.8 | 3.8 | |
100 | 111.4 | 103.0 | 1.1 | |||
200 | 214.0 | 102.8 | 2.1 | |||
Infant formula #2 | 8.1 | 50 | 57.6 | 99.2 | 3.6 | |
100 | 109.3 | 101.1 | 4.1 | |||
200 | 219.0 | 105.3 | 2.4 | |||
H2O2 | Milk #1 | 0 | 25 | 25.9 | 103.7 | 1.8 |
50 | 50.8 | 101.5 | 1.2 | |||
100 | 99.5 | 99.5 | 2.7 | |||
Milk #2 | 0 | 25 | 25.24 | 101.0 | 2.5 | |
50 | 49.4 | 98.8 | 3.6 | |||
100 | 101.8 | 101.8 | 2.7 | |||
Infant formula #1 | 0 | 25 | 25.7 | 103.0 | 2.4 | |
50 | 50.4 | 100.8 | 4.0 | |||
100 | 97.5 | 97.5 | 2.7 | |||
Infant formula #2 | 0 | 25 | 25.1 | 100.3 | 2.5 | |
50 | 51.3 | 102.6 | 3.1 | |||
100 | 100.6 | 100.6 | 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vu, T.H.; Yu, B.J.; Kim, M.I. Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline. Biosensors 2024, 14, 563. https://doi.org/10.3390/bios14120563
Vu TH, Yu BJ, Kim MI. Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline. Biosensors. 2024; 14(12):563. https://doi.org/10.3390/bios14120563
Chicago/Turabian StyleVu, Trung Hieu, Byung Jo Yu, and Moon Il Kim. 2024. "Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline" Biosensors 14, no. 12: 563. https://doi.org/10.3390/bios14120563
APA StyleVu, T. H., Yu, B. J., & Kim, M. I. (2024). Choline Oxidase-Incorporated ATRP-Based Cerium Nanogels as Nanozymes for Colorimetric Detection of Hydrogen Peroxide and Choline. Biosensors, 14(12), 563. https://doi.org/10.3390/bios14120563