Special Issue—Biosensors and Neuroscience: Is Biosensors Engineering Ready to Embrace Design Principles from Neuroscience?
1. Introduction
2. Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
List of Contributions
- Zhuang, Y.; Han, T.; Yang, Q.; O’Malley, R.; Kumar, A.; Gerald, R.E., II; Huang, J. A Fiber-Optic Sensor-Embedded and Machine Learning Assisted Smart Helmet for Multi-Variable Blunt Force Impact Sensing in Real Time. Biosensors 2022, 12, 1159. https://doi.org/10.3390/bios12121159.
- Hong, E.; Glynn, C.; Wang, Q.; Rao, S. Non-Invasive Electroretinogram Recording with Simultaneous Optogenetics to Dissect Retinal Ganglion Cells Electrophysiological Dynamics. Biosensors 2023, 13, 42. https://doi.org/10.3390/bios13010042.
- Monge, F.A.; Fanni, A.M.; Donabedian, P.L.; Hulse, J.; Maphis, N.M.; Jiang, S.; Donaldson, T.N.; Clark, B.J.; Whitten, D.G.; Bhaskar, K.; et al. Selective In Vitro and Ex Vivo Staining of Brain Neurofibrillary Tangles and Amyloid Plaques by Novel Ethylene Ethynylene-Based Optical Sensors. Biosensors 2023, 13, 151. https://doi.org/10.3390/bios13020151.
- Chernov, M.M.; Swan, C.B.; Leiter, J.C. In Search of a Feedback Signal for Closed-Loop Deep Brain Stimulation: Stimulation of the Subthalamic Nucleus Reveals Altered Glutamate Dynamics in the Globus Pallidus in Anesthetized, 6-Hydroxydopamine-Treated Rats. Biosensors 2023, 13, 480. https://doi.org/10.3390/bios13040480.
- Gupta, B.; Perillo, M.L.; Siegenthaler, J.R.; Christensen, I.E.; Welch, M.P.; Rechenberg, R.; Banna, G.M.H.U.; Galstyan, D.; Becker, M.F.; Li, W.; et al. In Vitro Biofouling Performance of Boron-Doped Diamond Microelectrodes for Serotonin Detection Using Fast-Scan Cyclic Voltammetry. Biosensors 2023, 13, 576. https://doi.org/10.3390/bios13060576.
- Girardi, G.; Zumpano, D.; Goshi, N.; Raybould, H.; Seker, E. Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules. Biosensors 2023, 13, 601. https://doi.org/10.3390/bios13060601.
- Hadad, M.; Hadad, N.; Zestos, A.G. Carbon Electrode Sensor for the Measurement of Cortisol with Fast-Scan Cyclic Voltammetry. Biosensors 2023, 13, 626. https://doi.org/10.3390/bios13060626.
- Meah, A.; Vedarethinam, V.; Bronstein, R.; Gujarati, N.; Jain, T.; Mallipattu, S.K.; Li, Y.; Wang, J. Single-Cell Spatial MIST for Versatile, Scalable Detection of Protein Markers. Biosensors 2023, 13, 852. https://doi.org/10.3390/bios13090852.
- Smutok, O.; Katz, E. Biosensors: Electrochemical Devices—General Concepts and Performance. Biosensors 2023, 13, 44. https://doi.org/10.3390/bios13010044.
References
- Emerging Frontiers in Research and Innovation (EFRI-2022/23) 1. Engineered Living Systems (ELiS) 2. Brain-Inspired Dynamics for Engineering Energy-Efficient Circuits and Artificial Intelligence (BRAID). Available online: https://www.nsf.gov/pubs/2021/nsf21615/nsf21615.htm (accessed on 23 November 2023).
- EFRI Topic Ideas Request [Internet]. EFRI Topic Ideas Request. Available online: https://new.nsf.gov/funding/opportunities/efri-topic-ideas-request (accessed on 26 November 2023).
- National Science Foundation. Emerging Frontiers in Research and Innovation (EFRI). Available online: https://www.nsf.gov/eng/efma/efri.jsp (accessed on 28 May 2023).
- Sokoloff, L. Cerebral Metabolism and Visualization of Cerebral Activity. In Comprehensive Human Physiology: From Cellular Mechanisms to Integration; Greger, R., Windhorst, U., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1996; pp. 579–602. [Google Scholar] [CrossRef]
- Sokoloff, L. Chapter 2: The brain as a chemical machine. In Progress in Brain Research; Yu, A.C.H., Hertz, L., Norenberg, M.D., Syková, E., Waxman, S.G., Eds.; Elsevier: Amsterdam, The Netherlands, 1992; pp. 19–33. Available online: https://www.sciencedirect.com/science/article/pii/S0079612308617367 (accessed on 28 May 2023).
- Sarpeshkar, R. Analog versus Digital: Extrapolating from Electronics to Neurobiology. Neural Comput. 1998, 10, 1601–1638. [Google Scholar] [CrossRef]
- Teo, J.J.; Sarpeshkar, R. The Merging of Biological and Electronic Circuits. iScience 2020, 23, 101688. [Google Scholar] [CrossRef]
- Mead, C. How we created neuromorphic engineering. Nat. Electron. 2020, 3, 434–435. [Google Scholar] [CrossRef]
- Zhang, W.; Gao, B.; Tang, J.; Yao, P.; Yu, S.; Chang, M.F.; Wu, H. Neuro-inspired computing chips. Nat. Electron. 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Mehonic, A.; Kenyon, A.J. Brain-inspired computing needs a master plan. Nature 2022, 604, 255–260. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.; Preissl, R.; Datta, P.; Flickner, M.; Singh, R.; Esser, S.; McQuinn, E.; Appuswamy, R.; Risk, W.P.; Simon, H.D.; et al. Ten to Power 14. 2012. Report No.: RJ10502. Available online: https://dominoweb.draco.res.ibm.com/19b9020d53e753db85257ab7005ffa18.html (accessed on 23 November 2023).
- Greenwald, H.S.; Oertel, C.K. Future Directions in Machine Learning. Front. Robot. AI 2017, 3, 79. Available online: https://www.frontiersin.org/articles/10.3389/frobt.2016.00079 (accessed on 28 May 2023). [CrossRef]
- Aimone, J.B. Neural algorithms and computing beyond Moore’s law. Commun. ACM 2019, 62, 110. [Google Scholar] [CrossRef]
- Monaco, J.; Rajan, K.; Hwang, G. A brain basis of dynamical intelligence for AI and computational neuroscience. arXiv 2021, arXiv:2105.07284. [Google Scholar]
- Olshausen, B.A.; Field, D.J. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Res. 1997, 37, 3311–3325. [Google Scholar] [CrossRef] [PubMed]
- Monaco, J.D.; Hwang, G.M. Neurodynamical Computing at the Information Boundaries of Intelligent Systems. Cogn. Comput. 2022, 1–13. [Google Scholar] [CrossRef]
- Monaco, J.D.; Rao, G.; Roth, E.D.; Knierim, J.J. Attentive scanning behavior drives one-trial potentiation of hippocampal place fields. Nat. Neurosci. 2014, 17, 725–731. [Google Scholar] [CrossRef]
- Kudithipudi, D.; Aguilar-Simon, M.; Babb, J.; Bazhenov, M.; Blackiston, D.; Bongard, J.; Siegelmann, H. Biological underpinnings for lifelong learning machines. Nat. Mach. Intell. 2022, 4, 196–210. [Google Scholar] [CrossRef]
- Zador, A.; Escola, S.; Richards, B.; Ölveczky, B.; Bengio, Y.; Boahen, K.; Tsao, D. Catalyzing next-generation Artificial Intelligence through NeuroAI. Nat. Commun. 2023, 14, 1597. [Google Scholar] [CrossRef] [PubMed]
- Aimone, J.B.; Parekh, O. The brain’s unique take on algorithms. Nat. Commun. 2023, 14, 4910. [Google Scholar] [CrossRef] [PubMed]
- Ngai, J. BRAIN 2.0: Transforming neuroscience. Cell 2022, 185, 4–8. [Google Scholar] [CrossRef] [PubMed]
- The Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative. Available online: https://braininitiative.nih.gov/ (accessed on 25 November 2023).
- MICrONS Machine Intelligence from Cortical Networks. Available online: https://www.iarpa.gov/research-programs/microns (accessed on 25 November 2023).
- Human Brain Project. Available online: https://www.humanbrainproject.eu/en/ (accessed on 25 November 2023).
- Grand Challenges—Reverse-Engineer the Brain. Available online: http://www.engineeringchallenges.org/challenges/9109.aspx (accessed on 10 January 2021).
- whitehouse.gov. A Nanotechnology-Inspired Grand Challenge for Future Computing. 2015. Available online: https://obamawhitehouse.archives.gov/blog/2015/10/15/nanotechnology-inspired-grand-challenge-future-computing (accessed on 10 January 2021).
- Levenstein, D.; Alvarez, V.A.; Amarasingham, A.; Azab, H.; Chen, Z.S.; Gerkin, R.C.; Redish, A.D. On the Role of Theory and Modeling in Neuroscience. J. Neurosci. 2023, 43, 1074–1088. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G. Two-stage model of memory trace formation: A role for “noisy” brain states. Neuroscience 1989, 31, 551–570. [Google Scholar] [CrossRef]
- Buzsáki, G. Hippocampal sharp wave-ripple: A cognitive biomarker for episodic memory and planning. Hippocampus 2015, 25, 1073–1188. [Google Scholar] [CrossRef]
- Buzsáki, G.; Wang, X.J. Mechanisms of Gamma Oscillations. Annu. Rev. Neurosci. 2012, 35, 203–225. [Google Scholar] [CrossRef]
- Mel, B.W.; Schiller, J.; Poirazi, P. Synaptic plasticity in dendrites: Complications and coping strategies. Curr. Opin. Neurobiol. 2017, 43, 177–186. [Google Scholar] [CrossRef]
- Imam, N.; Cleland, T.A. Rapid online learning and robust recall in a neuromorphic olfactory circuit. Nat. Mach. Intell. 2020, 2, 181–191. [Google Scholar] [CrossRef]
- Posch, C.; Serrano-Gotarredona, T.; Linares-Barranco, B.; Delbruck, T. Retinomorphic Event-Based Vision Sensors: Bioinspired Cameras with Spiking Output. Proc. IEEE 2014, 102, 1470–1484. [Google Scholar] [CrossRef]
- Gallego, G.; Delbrück, T.; Orchard, G.; Bartolozzi, C.; Taba, B.; Censi, A.; Scaramuzza, D. Event-Based Vision: A Survey. IEEE Trans. Pattern Anal. Mach. Intell. 2022, 44, 154–180. [Google Scholar] [CrossRef] [PubMed]
- Bartolozzi, C.; Indiveri, G.; Donati, E. Embodied neuromorphic intelligence. Nat. Commun. 2022, 13, 1024. [Google Scholar] [CrossRef]
- Robinson, B.S.; Norman-Tenazas, R.; Cervantes, M.; Symonette, D.; Johnson, E.C.; Joyce, J.; Gray-Roncal, W. Online learning for orientation estimation during translation in an insect ring attractor network. Sci. Rep. 2022, 12, 3210. [Google Scholar] [CrossRef]
- Zhu, L.; Mangan, M.; Webb, B. Neuromorphic sequence learning with an event camera on routes through vegetation. Sci. Robot. 2023, 8, eadg3679. [Google Scholar] [CrossRef]
- Monaco, J.; Hwang, G.; Schultz, K.; Zhang, K. Cognitive Swarming: An Approach from the Theoretical Neuroscience of Hippocampal Function; SPIE Defense + Commercial Sensing; SPIE: Baltimore, MD, USA, 2019; Volume 10982. [Google Scholar] [CrossRef]
- Hadzic, A.; Hwang, G.M.; Zhang, K.; Schultz, K.M.; Monaco, J.D. Bayesian optimization of distributed neurodynamical controller models for spatial navigation. Array 2022, 15, 100218. [Google Scholar] [CrossRef]
- Monaco, J.D.; Hwang, G.M.; Schultz, K.M.; Zhang, K. Cognitive swarming in complex environments with attractor dynamics and oscillatory computing. Biol. Cybern. 2020, 114, 269–284. [Google Scholar] [CrossRef] [PubMed]
- Aboumerhi, K.; Güemes, A.; Liu, H.; Tenore, F.; Etienne-Cummings, R. Neuromorphic applications in medicine. J. Neural Eng. 2023, 20, 041004. [Google Scholar] [CrossRef]
- Donati, E.; Indiveri, G. Neuromorphic bioelectronic medicine for nervous system interfaces: From neural computational prim-itives to medical applications. Prog. Biomed. Eng. 2023, 5, 013002. [Google Scholar] [CrossRef]
- Aitken, K.; Mihalas, S. Neural population dynamics of computing with synaptic modulations. eLife 2023, 12, e83035. [Google Scholar] [CrossRef]
- Boahen, K. Dendrocentric learning for synthetic intelligence. Nature 2022, 612, 43–50. [Google Scholar] [CrossRef]
- Davies, M.; Wild, A.; Orchard, G.; Sandamirskaya, Y.; Guerra, G.A.F.; Joshi, P.; Risbud, S.R. Advancing Neuromorphic Computing with Loihi: A Survey of Results and Outlook. Proc. IEEE 2021, 109, 911–934. [Google Scholar] [CrossRef]
- Schuman, C.D.; Kulkarni, S.R.; Parsa, M.; Mitchell, J.P.; Date, P.; Kay, B. Opportunities for neuromorphic computing algorithms and applications. Nat. Comput. Sci. 2022, 2, 10–19. [Google Scholar] [CrossRef]
- Poirazi, P.; Papoutsi, A. Illuminating dendritic function with computational models. Nat. Rev. Neurosci. 2020, 21, 303–321. [Google Scholar] [CrossRef]
- Gidon, A.; Zolnik, T.A.; Fidzinski, P.; Bolduan, F.; Papoutsi, A.; Poirazi, P.; Larkum, M.E. Dendritic action potentials and computation in human layer 2/3 cortical neurons. Science 2020, 367, 83–87. [Google Scholar] [CrossRef]
- Rashid, S.K.; Pedrosa, V.; Dufour, M.A.; Moore, J.J.; Chavlis, S.; Delatorre, R.G.; Basu, J. The dendritic spatial code: Branch-specific place tuning and its experience-dependent decoupling. Neuroscience 2020. [Google Scholar] [CrossRef]
- Kerlin, A.; Mohar, B.; Flickinger, D.; MacLennan, B.J.; Dean, M.B.; Davis, C.; Svoboda, K. Functional clustering of dendritic activity during decision-making. eLife 2019, 8, e46966. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Foster, D.J.; Pfeiffer, B.E. Alternating sequences of future and past behavior encoded within hippocampal theta oscillations. Science 2020, 370, 247–250. [Google Scholar] [CrossRef] [PubMed]
- Monaco, J.D.; Guzman, R.M.D.; Blair, H.T.; Zhang, K. Spatial synchronization codes from coupled rate-phase neurons. PLoS Comput. Biol. 2019, 15, e1006741. [Google Scholar] [CrossRef] [PubMed]
- Emerging Frontiers in Research and Innovation 2009 (EFRI-2009) BioSensing & BioActuation: Interface of Living and Engineered Systems (BSBA) Hydrocarbons from Biomass (HyBi). Available online: https://www.nsf.gov/pubs/2008/nsf08599/nsf08599.htm (accessed on 25 November 2023).
- Dear Colleague Letter: Bioinspired Design Collaborations to Accelerate the Discovery-Translation Process (BioDesign). Available online: https://www.nsf.gov/pubs/2023/nsf23055/nsf23055.jsp (accessed on 25 November 2023).
- NSF Convergence Accelerator Phases 1 and 2 for the 2023 Cohort—Tracks K, L, M. Available online: https://new.nsf.gov/funding/opportunities/nsf-convergence-accelerator-phases-1-2-2023-cohort (accessed on 28 November 2023).
- Emerging Frontiers in Research and Innovation (EFRI): Biocomputing through EnGINeering Organoid Intelligence (BEGIN OI). Available online: https://new.nsf.gov/funding/opportunities/emerging-frontiers-research-innovation-efri (accessed on 28 November 2023).
Award # | Abbreviated Title | Principal Investigator |
---|---|---|
2223495 | Optical Neural Co-Processors for Predictive and Adaptive Brain Restoration and Augmentation | Arka Majumdar 1 |
2223725 | Using Proto-Object Based Saliency Inspired By Cortical Local Circuits to Limit the Hypothesis Space for Deep Learning Models | Ralph Etienne-Cummings 1 |
2223793 | Unsupervised Continual Learning with Hierarchical Timescales and Plasticity Mechanisms | Gianfranco Doretto 1 |
2223811 | Rapid contextual learning in resilient autonomous systems | Thomas Cleland 1 |
2223822 | Neurally Inspired, Resilient Closed Loop Feedback Control of Learned Motor Dynamics | Vikash Gilja 1 |
2223827 | DenPro3D—Dendritic Processing of Spike Sequences in Biological and Artificial Brains | Kwabena Boahen 1 |
2223839 | Principles of sleep-dependent memory consolidation for adaptive and continual learning in artificial intelligence | Maksim Bazhenov 1 |
2317706 | Efficient Learning of Spatiotemporal Regularities in Humans and Machines through Temporal Scaffolding | Dhireesha Kudithipudi 2 |
2317974 | Emulating Cerebellar Temporally Coherent Signaling for Ultraefficient Emergent Prediction | Mark Hersam 2 |
2318065 | Brain-inspired Algorithms for Autonomous Robots (BAAR) | Junmin Wang 2 |
2318081 | Resilient autonomous navigation inspired by the insect central complex and sensorimotor control motifs | Floris van Breugel 2 |
2318101 | Neuroscience Inspired Visual Analytics | Vijaykrishnan Narayanan 2 |
2318139 | Fractional-order neuronal dynamics for next generation memcapacitive computing networks | Fidel Santamaria 2 |
2318152 | Scalable-Learning Neuromorphics | Dmitri Strukov 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, G.M.; Simonian, A.L. Special Issue—Biosensors and Neuroscience: Is Biosensors Engineering Ready to Embrace Design Principles from Neuroscience? Biosensors 2024, 14, 68. https://doi.org/10.3390/bios14020068
Hwang GM, Simonian AL. Special Issue—Biosensors and Neuroscience: Is Biosensors Engineering Ready to Embrace Design Principles from Neuroscience? Biosensors. 2024; 14(2):68. https://doi.org/10.3390/bios14020068
Chicago/Turabian StyleHwang, Grace M., and Aleksandr L. Simonian. 2024. "Special Issue—Biosensors and Neuroscience: Is Biosensors Engineering Ready to Embrace Design Principles from Neuroscience?" Biosensors 14, no. 2: 68. https://doi.org/10.3390/bios14020068
APA StyleHwang, G. M., & Simonian, A. L. (2024). Special Issue—Biosensors and Neuroscience: Is Biosensors Engineering Ready to Embrace Design Principles from Neuroscience? Biosensors, 14(2), 68. https://doi.org/10.3390/bios14020068