Ti3C2Tx MXene-Based Fluorescent Aptasensor for Detection of Dimethoate Pesticide
Abstract
:1. Introduction
2. Experimental Section
2.1. Chemicals and Reagents
2.2. Synthesis and Characterization of CQDs
2.3. Preparation and Characterization of CQDs-Apt
2.4. Preparation and Characterization of Ti3C2Tx Flakes
2.5. Fluorescence Detection of Dimethoate in Standard Solutions
2.6. Detection of Dimethoate in Real Samples
2.7. Statistical Analysis
3. Results and Discussion
3.1. Mechanism of Fluorescent Aptasensor
3.2. Characterization of CQDs and CQDs-Aptamer
3.3. Characterization of Ti3C2Tx Flakes
3.4. Feasibility and Optimization of Aptasensor for Dimethoate Detection
3.5. Sensitivity Analysis of Aptasensor for Dimethoate Detection
3.6. Evaluation of Specificity and Reproducibility
Type of Sensor | Detection Range | LOD | Applicability | Reference |
---|---|---|---|---|
Raman based on Ag, CuO and Ag-Cu NPs | 3–20 μM | 3 μM | Water | [20] |
SERS based on AgNPs | 0.5–10 μM | 0.5 μM | Olive leaves | [19] |
Colorimetric sensor based on AuNPs | 1–40 nM | 6.2 nM | Tap water, green tea, apple juice | [44] |
Colorimetric sensor based on MIP-CoZn ZIF | 0.02–1.2 μM | 5.6 nM | Fruit, wastewater | [7] |
Fluorescent sensor based on animal waste biomass carbon dots | 0.15–5 μM | 0.064 μM | Environment water | [3] |
Electrochemical sensor based on MIP-glassy carbon electrode | 0.1–1 nM | Not mentioned | Wheat flour | [45] |
MIP fluorescent sensor based on FRET | 0.6–34 nM | 18 pM | Vegetables | [15] |
Fluorescent sensor based on AgNPs/OxMWCNTs | 0.044–1.528 μM | 0.013 μM | Lake water, orange | [46] |
Fluorescent biosensor based on CQDs and MXene | 0.001–50 μM | 0.218 nM | Apple juice, tap water | This work |
3.7. Application in Real Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guerrini, L.; Sanchez-Cortes, S.; Cruz, V.L.; Martinez, S.; Ristori, S.; Feis, A. Surface-enhanced Raman spectra of dimethoate and omethoate. J. Raman Spectrosc. 2011, 42, 980–985. [Google Scholar] [CrossRef]
- Abdelhameed, R.M.; Abdel-Gawad, H.; Emam, H.E. Macroporous Cu-MOF@cellulose acetate membrane serviceable in selective removal of dimethoate pesticide from wastewater. J. Environ. Chem. Eng. 2021, 9, 105121. [Google Scholar] [CrossRef]
- Liu, H.C.; Ding, J.; Chen, L.G.; Ding, L. A novel fluorescence assay based on self-doping biomass carbon dots for rapid detection of dimethoate. J. Photochem. Photobiol. A-Chem. 2020, 400, 9. [Google Scholar] [CrossRef]
- Sousa, J.C.G.; Ribeiro, A.R.; Barbosa, M.O.; Pereira, M.F.R.; Silva, A.M.T. A review on environmental monitoring of water organic pollutants identified by EU guidelines. J. Hazard. Mater. 2018, 344, 146–162. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. Pesticide Residues in Food: 1993, Evaluations, Sponsored Jointly by FAO and WHO. In Proceedings of the Joint Meeting of the FAO Panel of Experts on Pesticide Residues in Food and the Environment and the WHO Expert Group on Pesticide Residues, Geneva, Switzerland, 20–29 September 1993; Part 1, Residues. 1987; Volume 349, pp. 2510–2518. Available online: https://www.fao.org/3/cb2762en/cb2762en.pdf (accessed on 5 October 2023).
- Hung, S.H.; Lee, J.Y.; Hu, C.C.; Chiu, T.C. Gold-nanoparticle-based fluorescent "turn-on" sensor for selective and sensitive detection of dimethoate. Food Chem. 2018, 260, 61–65. [Google Scholar] [CrossRef]
- Amirzehni, M.; Hassanzadeh, J.; Vahid, B. Surface imprinted CoZn-bimetalic MOFs as selective colorimetric probe: Application for detection of dimethoate. Sens. Actuator B-Chem. 2020, 325, 128768. [Google Scholar] [CrossRef]
- Nair, R.V.; Chandran, P.R.; Mohamed, A.P.; Pillai, S. Sulphur-doped graphene quantum dot based fluorescent turn-on aptasensor for selective and ultrasensitive detection of omethoate. Anal. Chim. Acta 2021, 1181, 8. [Google Scholar] [CrossRef] [PubMed]
- Khan, B.A.; Farid, A.; Asi, M.R.; Shah, H.; Badshah, A.K. Determination of residues of trichlorfon and dimethoate on guava using HPLC. Food Chem. 2009, 114, 286–288. [Google Scholar] [CrossRef]
- Nemati, M.; Tuzen, M.; Farazajdeh, M.A.; Kaya, S.; Mogaddam, M.R.A. Development of dispersive solid-liquid extraction method based on organic polymers followed by deep eutectic solvents elution; application in extraction of some pesticides from milk samples prior to their determination by HPLC-MS/MS. Anal. Chim. Acta 2022, 1199, 10. [Google Scholar] [CrossRef]
- Walorczyk, S. Validation and use of a QuEChERS-based gas chromatographic-tandem mass spectrometric method for multiresidue pesticide analysis in blackcurrants including studies of matrix effects and estimation of measurement uncertainty. Talanta 2014, 120, 106–113. [Google Scholar] [CrossRef]
- Bempelou, E.; Varikou, K.; Anagnostopoulos, C.; Charalampous, A.; Samari, N.; Economou, L.; Garantonakis, N.; Liapis, K. Toxicity of Insecticides in the Adult and Larva Olive Fruit Fly, after Estimation of the Dislodgeable Foliar and Fruit Residues in Olive Trees by LC-MS/MS and GC-MS/MS. Agriculture 2023, 13, 543. [Google Scholar] [CrossRef]
- Yang, G.D.; Xu, X.Q.; Shen, M.C.; Wang, W.; Xu, L.J.; Chen, G.N.; Fu, F.F. Determination of organophosphorus pesticides by capillary electrophoresis-inductively coupled plasma mass spectrometry with collective sample-introduction technique. Electrophoresis 2009, 30, 1718–1723. [Google Scholar] [CrossRef] [PubMed]
- Mali, B.D.; Garad, M.V.; Patil, V.B.; Padalikar, S.V. Thin-layer chromatographic detection of dichlorvos and dimethoate using orcinol. J. Chromatogr. A 1995, 704, 540–543. [Google Scholar] [CrossRef]
- Li, S.H.; Luo, J.H.; Yin, G.H.; Xu, Z.; Le, Y.; Wu, X.F.; Wu, N.C.; Zhang, Q. Selective determination of dimethoate via fluorescence resonance energy transfer between carbon dots and a dye-doped molecularly imprinted polymer. Sens. Actuator B-Chem. 2015, 206, 14–21. [Google Scholar] [CrossRef]
- Elshafey, R.; Abo-Sobehy, G.F.; Radi, A. Graphene oxide/graphene quantum dots: A platform for probing ds-DNA-dimethoate interaction and dimethoate sensing. J. Electroanal. Chem. 2021, 899, 11. [Google Scholar] [CrossRef]
- Lang, Q.L.; Han, L.; Hou, C.T.; Wang, F.; Liu, A.H. A sensitive acetylcholinesterase biosensor based on gold nanorods modified electrode for detection of organophosphate pesticide. Talanta 2016, 156, 34–41. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, J.K.; Wu, J.F.; Wang, L.; Hu, J.D.; Li, S.X.; Zhang, H. A deep learning-enabled smartphone platform for rapid and sensitive colorimetric detection of dimethoate pesticide. Anal. Bioanal. Chem. 2023, 12, 7127–7138. [Google Scholar] [CrossRef]
- Tognaccini, L.; Ricci, M.; Gellini, C.; Feis, A.; Smulevich, G.; Becucci, M. Surface Enhanced Raman Spectroscopy for In-Field Detection of Pesticides: A Test on Dimethoate Residues in Water and on Olive Leaves. Molecules 2019, 24, 292. [Google Scholar] [CrossRef]
- Ansari, Z.; Saha, A.; Singha, S.S.; Sen, K. Phytomediated generation of Ag, CuO and Ag-Cu nanoparticles for dimethoate sensing. J. Photochem. Photobiol. A-Chem. 2018, 367, 200–211. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.Y.; Wang, L.K.; Huang, Y.J.; Guo, J.J.; Cao, X.Y.; Shen, F.; Luo, Y.L.; Sun, C.Y. Aptamer-based fluorescent detection of bisphenol A using nonconjugated gold nanoparticles and CdTe quantum dots. Sens. Actuator B-Chem. 2016, 222, 815–822. [Google Scholar] [CrossRef]
- Li, Y.; Su, R.F.; Li, H.X.; Guo, J.J.; Hildebrandt, N.; Sun, C.Y. Fluorescent Aptasensors: Design Strategies and Applications in Analyzing Chemical Contamination of Food. Anal. Chem. 2022, 94, 193–224. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Yu, H.; Niu, X.; Wang, Q.; Liu, Y.; Wu, Y. Aptamer-mediated carbon dots as fluorescent signal for ultrasensitive detection of carbendazim in vegetables and fruits. J. Food Compos. Anal. 2022, 114, 104730. [Google Scholar] [CrossRef]
- Cui, H.Y.; Fu, X.Q.; Yang, L.; Xing, S.; Wang, X.F. 2D titanium carbide nanosheets based fluorescent aptasensor for sensitive detection of thrombin. Talanta 2021, 228, 7. [Google Scholar] [CrossRef] [PubMed]
- Sheng, A.Z.; Wang, P.; Yang, J.Y.; Tang, L.F.; Chen, F.; Zhang, J. MXene Coupled with CRISPR-Cas12a for Analysis of Endotoxin and Bacteria. Anal. Chem. 2021, 93, 4676–4681. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, F.; Zhang, H.; Zhang, Y.; Liu, M.; Liu, Y. Universal Ti3C2 MXenes Based Self-Standard Ratiometric Fluorescence Resonance Energy Transfer Platform for Highly Sensitive Detection of Exosomes. Anal. Chem. 2018, 90, 12737–12744. [Google Scholar] [CrossRef] [PubMed]
- Kalkal, A.; Kadian, S.; Kumar, S.; Manik, G.; Sen, P.; Kumar, S.; Packirisamy, G. Ti3C2-MXene decorated with nanostructured silver as a dual-energy acceptor for the fluorometric neuron specific enolase detection. Biosens. Bioelectron. 2022, 195, 113620. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.Z.; Wang, L.; Tu, Z.; Sun, X.; He, Q.H.; Lei, Z.J.; Xu, C.X.; Liu, Y.; Zhang, X.; Yang, J.Y.; et al. Organophosphorus pesticides detection using broad-specific single-stranded DNA based fluorescence polarization aptamer assay. Biosens. Bioelectron. 2014, 55, 216–219. [Google Scholar] [CrossRef]
- Wei, Q.Y.; Zhang, P.Y.; Pu, H.B.; Sun, D.W. A fluorescence aptasensor based on carbon quantum dots and magnetic Fe3O4 nanoparticles for highly sensitive detection of 17 beta-estradiol. Food Chem. 2022, 373, 10. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, D.W.; Pu, H.; Wei, Q.; Lin, X. Ti3C2Tx MXenes loaded with Au nanoparticle dimers as a surface-enhanced Raman scattering aptasensor for AFB1 detection. Food Chem. 2022, 372, 131293. [Google Scholar] [CrossRef]
- Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644. [Google Scholar] [CrossRef]
- Lv, M.C.; Pu, H.B.; Sun, D.W. Preparation of Fe3O4@UiO-66(Zr)@Ag NPs core-shell-satellite structured SERS substrate for trace detection of organophosphorus pesticides residues. Spectrochim. Acta Part A-Mol. Biomol. Spectrosc. 2023, 294, 122548. [Google Scholar] [CrossRef]
- Manzanares-Palenzuela, C.L.; Pourrahimi, A.M.; Gonzalez-Julian, J.; Sofer, Z.; Pykal, M.; Otyepka, M.; Pumera, M. Interaction of single- and double-stranded DNA with multilayer MXene by fluorescence spectroscopy and molecular dynamics simulations. Chem. Sci. 2019, 10, 10010–10017. [Google Scholar] [CrossRef]
- Peng, X.; Zhang, Y.; Lu, D.; Guo, Y.; Guo, S. Ultrathin Ti3C2 nanosheets based “off-on” fluorescent nanoprobe for rapid and sensitive detection of HPV infection. Sens. Actuator B-Chem. 2019, 286, 222–229. [Google Scholar] [CrossRef]
- Zhu, S.J.; Meng, Q.N.; Wang, L.; Zhang, J.H.; Song, Y.B.; Jin, H.; Zhang, K.; Sun, H.C.; Wang, H.Y.; Yang, B. Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging. Angew. Chem.-Int. Ed. 2013, 52, 3953–3957. [Google Scholar] [CrossRef]
- Zheng, M.; Xie, Z.G.; Qu, D.; Li, D.; Du, P.; Jing, X.B.; Sun, Z.C. On Off On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect. ACS Appl. Mater. Interfaces 2013, 5, 13242–13247. [Google Scholar] [CrossRef] [PubMed]
- Wei, Q.Y.; Zhang, P.Y.; Liu, T.; Pu, H.B.; Sun, D.W. A fluorescence biosensor based on single-stranded DNA and carbon quantum dots for acrylamide detection. Food Chem. 2021, 356, 9. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.L.; Hu, H.; Yang, Y.S.; Piao, Y.X. Graphite nanoparticle as nanoquencher for 17-estradiol detection using shortened aptamer sequence. Analyst 2018, 143, 4163–4170. [Google Scholar] [CrossRef]
- Jangir, D.K.; Tyagi, G.; Mehrotra, R.; Kundu, S. Carboplatin interaction with calf-thymus DNA: A FTIR spectroscopic approach. J. Mol. Struct. 2010, 969, 126–129. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, X.M.; Ding, M.M.; Tang, X.M.; Zhang, S.X.; Zhang, X.M.; Xie, Z.L. The role of lateral size of MXene nanosheets in membrane filtration of dyeing wastewater: Membrane characteristic and performance. Chemosphere 2022, 294, 9. [Google Scholar] [CrossRef]
- Liang, M.S.; Lin, B.X.; Tang, Z.J.; Zhang, L.; Guo, M.L.; Cao, Y.J.; Wang, Y.M.; Yu, Y. A Facile, Label-free and Versatile Fluorescence Sensing Nanoplatform Based on Titanium Carbide Nanosheets for the Detection of Various Targets. J. Fluoresc. 2022, 32, 2189–2198. [Google Scholar] [CrossRef]
- Sheng, Z.; Zhang, J.F.; Li, C.Y.; Chen, L.G. Fluorescent switching technology based on fluorescence resonance energy transfer for detecting dimethoate pesticides in environmental water. Anal. Methods 2016, 8, 8506–8513. [Google Scholar] [CrossRef]
- Patel, S.; Shrivas, K.; Sinha, D.; Monisha; Patle, T.K.; Yadav, S.; Thakur, S.S.; Deb, M.K.; Pervez, S. Smartphone-integrated printed-paper sensor designed for on-site determination of dimethoate pesticide in food samples. Food Chem. 2022, 383, 132449. [Google Scholar] [CrossRef]
- Chen, N.Y.; Liu, H.Y.; Zhang, Y.J.; Zhou, Z.W.; Fan, W.P.; Yu, G.C.; Shen, Z.Y.; Wu, A.G. A colorimetric sensor based on citrate-stabilized AuNPs for rapid pesticide residue detection of terbuthylazine and dimethoate. Sens. Actuator B-Chem. 2018, 255, 3093–3101. [Google Scholar] [CrossRef]
- Capoferri, D.; Del Carlo, M.; Ntshongontshi, N.; Iwuoha, E.I.; Sergi, M.; Di Ottavio, F.; Compagnone, D. MIP-MEPS based sensing strategy for the selective assay of dimethoate. Application to wheat flour samples. Talanta 2017, 174, 599–604. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.W.; Lin, Z.Y.; Chan, T.Y.; Chiu, T.C.; Hu, C.C. Oxidized multiwalled carbon nanotubes decorated with silver nanoparticles for fluorometric detection of dimethoate. Food Chem. 2017, 224, 353–358. [Google Scholar] [CrossRef] [PubMed]
Samples | Dimethoate Add (μM) | Detected Concentration (μM) | Recovery (%) | RSD (%, n = 3) |
---|---|---|---|---|
Apple juice | 0.1 | 0.099 | 99.6 | 2.52 |
1 | 1.012 | 101.2 | 3.18 | |
10 | 10.436 | 104.4 | 2.84 | |
Tap water | 0.1 | 0.097 | 97.4 | 2.42 |
1 | 0.991 | 99.1 | 3.60 | |
10 | 9.616 | 96.2 | 3.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Pu, H.; Wei, Q. Ti3C2Tx MXene-Based Fluorescent Aptasensor for Detection of Dimethoate Pesticide. Biosensors 2024, 14, 69. https://doi.org/10.3390/bios14020069
Li Z, Pu H, Wei Q. Ti3C2Tx MXene-Based Fluorescent Aptasensor for Detection of Dimethoate Pesticide. Biosensors. 2024; 14(2):69. https://doi.org/10.3390/bios14020069
Chicago/Turabian StyleLi, Zhichao, Hongbin Pu, and Qingyi Wei. 2024. "Ti3C2Tx MXene-Based Fluorescent Aptasensor for Detection of Dimethoate Pesticide" Biosensors 14, no. 2: 69. https://doi.org/10.3390/bios14020069
APA StyleLi, Z., Pu, H., & Wei, Q. (2024). Ti3C2Tx MXene-Based Fluorescent Aptasensor for Detection of Dimethoate Pesticide. Biosensors, 14(2), 69. https://doi.org/10.3390/bios14020069