Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution
Abstract
:1. Introduction
2. Principle and Instrumentation
3. Molecular Interaction Analysis
4. Molecular Imaging and Profiling
5. Tracking of Single Entities
6. Analysis of Single Cells
7. Development of New Methods
8. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Copeland, R.A.; Pompliano, D.L.; Meek, T.D. Drug–target residence time and its implications for lead optimization. Nat. Rev. Drug Discov. 2006, 5, 730–739. [Google Scholar] [CrossRef]
- Robers, M.B.; Dart, M.L.; Woodroofe, C.C.; Zimprich, C.A.; Kirkland, T.A.; Machleidt, T.; Kupcho, K.R.; Levin, S.; Hartnett, J.R.; Zimmerman, K.; et al. Target engagement and drug residence time can be observed in living cells with BRET. Nat. Commun. 2015, 6, 10091. [Google Scholar] [CrossRef]
- Copeland, R.A. The drug–target residence time model: A 10-year retrospective. Nat. Rev. Drug Discov. 2016, 15, 87–95. [Google Scholar] [CrossRef]
- de Witte, W.E.A.; Danhof, M.; van der Graaf, P.H.; de Lange, E.C.M. The implications of target saturation for the use of drug–target residence time. Nat. Rev. Drug Discov. 2019, 18, 84. [Google Scholar] [CrossRef]
- Bernetti, M.; Masetti, M.; Rocchia, W.; Cavalli, A. Kinetics of Drug Binding and Residence Time. Annu. Rev. Phys. Chem. 2019, 70, 143–171. [Google Scholar] [CrossRef] [PubMed]
- Pantsar, T.; Kaiser, P.D.; Kudolo, M.; Forster, M.; Rothbauer, U.; Laufer, S.A. Decisive role of water and protein dynamics in residence time of p38α MAP kinase inhibitors. Nat. Commun. 2022, 13, 569. [Google Scholar] [CrossRef] [PubMed]
- Homola, J.; Yee, S.; Gauglitz, G. Surface plasmon resonance sensors: Review. Sens. Actuators B-Chem. 1999, 54, 3–15. [Google Scholar] [CrossRef]
- Arroyo, J.O.; Kukura, P. Non-fluorescent schemes for single-molecule detection, imaging and spectroscopy. Nat. Photonics 2016, 10, 11–17. [Google Scholar] [CrossRef]
- Tao, N.J.; Boussaad, S.; Huang, W.L.; Arechabaleta, R.A.; D’Agnese, J. High resolution surface plasmon resonance spectroscopy. Rev. Sci. Instrum. 1999, 70, 4656–4660. [Google Scholar] [CrossRef]
- Boussaad, S.; Pean, J.; Tao, N.J. High-Resolution Multiwavelength Surface Plasmon Resonance Spectroscopy for Probing Conformational and Electronic Changes in Redox Proteins. Anal. Chem. 2000, 72, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Boussaad, S.; Wong, S.; Tao, N.J. High-Sensitivity Stark Spectroscopy Obtained by Surface Plasmon Resonance Measurement. Anal. Chem. 2000, 72, 4003–4008. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Boussaad, S.; Tao, N.J. Surface plasmon resonance enhanced optical absorption spectroscopy for studying molecular adsorbates. Rev. Sci. Instrum. 2001, 72, 3055–3060. [Google Scholar] [CrossRef]
- Zhang, H.Q.; Boussaad, S.; Tao, N.J. High-performance differential surface plasmon resonance sensor using quadrant cell photodetector. Rev. Sci. Instrum. 2003, 74, 150–153. [Google Scholar] [CrossRef]
- Homola, J. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem. 2003, 377, 528–539. [Google Scholar] [CrossRef] [PubMed]
- Forzani, E.S.; Zhang, H.; Chen, W.; Tao, N. Detection of Heavy Metal Ions in Drinking Water Using a High-Resolution Differential Surface Plasmon Resonance Sensor. Environ. Sci. Technol. 2005, 39, 1257–1262. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Forzani, E.S.; Tao, N. Detection of Heavy Metal Ions in Water by High-Resolution Surface Plasmon Resonance Spectroscopy Combined with Anodic Stripping Voltammetry. Anal. Chem. 2007, 79, 4427–4432. [Google Scholar] [CrossRef]
- Shan, X.; Foley, K.J.; Tao, N. A label-free optical detection method for biosensors and microfluidics. Appl. Phys. Lett. 2008, 92, 133901. [Google Scholar] [CrossRef]
- Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462–493. [Google Scholar] [CrossRef]
- Shan, X.; Huang, X.; Foley, K.J.; Zhang, P.; Chen, K.; Wang, S.; Tao, N. Measuring Surface Charge Density and Particle Height Using Surface Plasmon Resonance Technique. Anal. Chem. 2010, 82, 234–240. [Google Scholar] [CrossRef]
- Shan, X.; Patel, U.; Wang, S.; Iglesias, R.; Tao, N. Imaging Local Electrochemical Current via Surface Plasmon Resonance. Science 2010, 327, 1363–1366. [Google Scholar] [CrossRef]
- Wang, W.; Foley, K.; Shan, X.; Wang, S.; Eaton, S.; Nagaraj, V.J.; Wiktor, P.; Patel, U.; Tao, N. Single cells and intracellular processes studied by a plasmonic-based electrochemical impedance microscopy. Nat. Chem. 2011, 3, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.M.; Hafner, J.H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Yang, Y.; Wang, S.; Nagaraj, V.J.; Liu, Q.; Wu, J.; Tao, N. Label-free measuring and mapping of binding kinetics of membrane proteins in single living cells. Nat. Chem. 2012, 4, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Guo, X. Surface plasmon resonance based biosensor technique: A review. J. Biophotonics 2012, 5, 483–501. [Google Scholar] [CrossRef] [PubMed]
- Mariani, S.; Minunni, M. Surface plasmon resonance applications in clinical analysis. Anal. Bioanal. Chem. 2014, 406, 2303–2323. [Google Scholar] [CrossRef] [PubMed]
- Wong, C.L.; Olivo, M. Surface Plasmon Resonance Imaging Sensors: A Review. Plasmonics 2014, 9, 809–824. [Google Scholar] [CrossRef]
- Lee, T.-H.; Hirst, D.J.; Kulkarni, K.; Del Borgo, M.P.; Aguilar, M.-I. Exploring Molecular-Biomembrane Interactions with Surface Plasmon Resonance and Dual Polarization Interferometry Technology: Expanding the Spotlight onto Biomembrane Structure. Chem. Rev. 2018, 118, 5392–5487. [Google Scholar] [CrossRef] [PubMed]
- Yeatman, E.; Ash, E. Surface-Plasmon Microscopy. Electron. Lett. 1987, 23, 1091–1092. [Google Scholar] [CrossRef]
- Rothenhausler, B.; Knoll, W. Surface-Plasmon Microscopy. Nature 1988, 332, 615–617. [Google Scholar] [CrossRef]
- Liu, L.; He, Y.; Zhang, Y.; Ma, S.; Ma, H.; Guo, J. Parallel scan spectral surface plasmon resonance imaging. Appl. Opt. 2008, 47, 5616–5621. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, S.; Ji, Y.; Liu, L.; Hu, Z.; Guo, J.; Ma, H.; He, Y. Quasi-Confocal, Multichannel Parallel Scan Hyperspectral Fluorescence Imaging Method Optimized for Analysis of Multicolor Microarrays. Anal. Chem. 2010, 82, 7752–7757. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; He, Y.; Liu, L.; Ma, S.; Chong, X.; Hu, Z.; Ma, H.; Guo, J. Two-channel, quasi-confocal parallel scan fluorescence imaging for detection of biochips. Opt. Lasers Eng. 2010, 48, 849–855. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, L.; Liu, L.; Chong, X.; Guo, J.; Ma, S.; Ji, Y.; He, Y. Parallel-scan based microarray imager capable of simultaneous surface plasmon resonance and hyperspectral fluorescence imaging. Biosens. Bioelectron. 2011, 30, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Ma, S.; Ji, Y.; Chong, X.; Liu, Z.; He, Y.; Guo, J. A two-dimensional polarization interferometry based parallel scan angular surface plasmon resonance biosensor. Rev. Sci. Instrum. 2011, 82, 023109. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, X.; Liu, Z.; Ma, S.; Du, C.; He, Y.; Guo, J. Polarization interference interrogation of angular surface plasmon resonance sensors with wide metal film thickness tolerance. Sens. Actuators B Chem. 2012, 173, 218–224. [Google Scholar] [CrossRef]
- Shi, H.; Liu, Z.; Wang, X.; Guo, J.; Liu, L.; Luo, L.; Guo, J.; Ma, H.; Sun, S.; He, Y. A symmetrical optical waveguide based surface plasmon resonance biosensing system. Sens. Actuators B Chem. 2013, 185, 91–96. [Google Scholar] [CrossRef]
- Jing, W.; Wang, Y.; Yang, Y.; Wang, Y.; Ma, G.; Wang, S.; Tao, N. Time-Resolved Digital Immunoassay for Rapid and Sensitive Quantitation of Procalcitonin with Plasmonic Imaging. ACS Nano 2019, 13, 8609–8617. [Google Scholar] [CrossRef]
- Berger, C.; Kooyman, R.; Greve, J. Resolution in Surface-Plasmon Microscopy. Rev. Sci. Instrum. 1994, 65, 2829–2836. [Google Scholar] [CrossRef]
- Yin, L.; Wang, W.; Wang, S.; Zhang, F.; Zhang, S.; Tao, N. How does fluorescent labeling affect the binding kinetics of proteins with intact cells? Biosens. Bioelectron. 2015, 66, 412–416. [Google Scholar] [CrossRef]
- Yin, L.; Yang, Y.; Wang, S.; Wang, W.; Zhang, S.; Tao, N. Measuring Binding Kinetics of Antibody-Conjugated Gold Nanoparticles with Intact Cells. Small 2015, 11, 3782–3788. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Wang, S.; Yin, L.; Yang, Y.; Guan, Y.; Wang, W.; Xu, H.; Tao, N. Quantification of Epidermal Growth Factor Receptor Expression Level and Binding Kinetics on Cell Surfaces by Surface Plasmon Resonance Imaging. Anal. Chem. 2015, 87, 9960–9965. [Google Scholar] [CrossRef] [PubMed]
- Huang, B.; Yu, F.; Zare, R. Surface plasmon resonance imaging using a high numerical aperture microscope objective. Anal. Chem. 2007, 79, 2979–2983. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shan, X.; Wang, S.; Chen, H.; Tao, N. Plasmonic Imaging and Detection of Single DNA Molecules. ACS Nano 2014, 8, 3427–3433. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Tang, Z.; Wang, Y.; Ma, G.; Tao, N. Probing Single Molecule Binding and Free Energy Profile with Plasmonic Imaging of Nanoparticles. J. Am. Chem. Soc. 2019, 141, 16071–16078. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Wan, Z.; Zhu, H.; Tao, N. Roles of entropic and solvent damping forces in the dynamics of polymer tethered nanoparticles and implications for single molecule sensing. Chem. Sci. 2020, 11, 1283–1289. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, Z.; Chen, H.-Y.; Wang, W.; Tao, N.; Wang, H. Single-molecule calorimeter and free energy landscape. Proc. Natl. Acad. Sci. USA 2021, 118, e2104598118. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yu, H.; Shan, X.; Wang, W.; Liu, X.; Wang, S.; Tao, N. Label-Free Tracking of Single Organelle Transportation in Cells with Nanometer Precision Using a Plasmonic Imaging Technique. Small 2015, 11, 2878–2884. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Syu, G.-D.; Shan, X.; Henson, B.; Wang, S.; Desai, P.J.; Zhu, H.; Tao, N. Measuring Ligand Binding Kinetics to Membrane Proteins Using Virion Nano-oscillators. J. Am. Chem. Soc. 2018, 140, 11495–11501. [Google Scholar] [CrossRef]
- Wang, S.; Shan, X.; Patel, U.; Huang, X.; Lu, J.; Li, J.; Tao, N. Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance. Proc. Natl. Acad. Sci. USA 2010, 107, 16028–16032. [Google Scholar] [CrossRef]
- Liu, R.; Shan, X.; Wang, H.; Tao, N. Plasmonic Measurement of Electron Transfer between a Single Metal Nanoparticle and an Electrode through a Molecular Layer. J. Am. Chem. Soc. 2019, 141, 11694–11699. [Google Scholar] [CrossRef]
- Wang, H.; Yu, H.; Wang, Y.; Shan, X.; Chen, H.-Y.; Tao, N. Phase imaging of transition from classical to quantum plasmonic couplings between a metal nanoparticle and a metal surface. Proc. Natl. Acad. Sci. USA 2020, 117, 17564–17570. [Google Scholar] [CrossRef]
- Yang, Y.; Shen, G.; Wang, H.; Li, H.; Zhang, T.; Tao, N.; Ding, X.; Yu, H. Interferometric plasmonic imaging and detection of single exosomes. Proc. Natl. Acad. Sci. USA 2018, 115, 10275–10280. [Google Scholar] [CrossRef]
- Qian, C.; Wu, G.; Jiang, D.; Zhao, X.; Chen, H.-B.; Yang, Y.; Liu, X.-W. Identification of Nanoparticles via Plasmonic Scattering Interferometry. Angew. Chem. Int. Ed. 2019, 58, 4217–4220. [Google Scholar] [CrossRef]
- Liu, Y.-N.; Chen, H.-B.; Liu, X.-W. Rapid Assessment of Water Toxicity by Plasmonic Nanomechanical Sensing. Anal. Chem. 2020, 92, 1309–1315. [Google Scholar] [CrossRef]
- Zhou, X.-L.; Yang, Y.; Wang, S.; Liu, X.-W. Surface Plasmon Resonance Microscopy: From Single-Molecule Sensing to Single-Cell Imaging. Angew. Chem. Int. Ed. 2020, 59, 1776–1785. [Google Scholar] [CrossRef]
- Chen, H.-B.; Jiang, D.; Liu, Y.-N.; Qian, C.; Zhou, X.-L.; Liu, X.-W. Probing the Deposition Kinetics of Nanoparticles by Plasmonic Imaging and Counting Single Nanoparticles. Environ. Sci. Technol. Lett. 2020, 7, 298–302. [Google Scholar] [CrossRef]
- Chen, H.-B.; Jiang, D.; Zhou, X.-L.; Qian, C.; Yang, Y.; Liu, X.-W. Tracking Interfacial Dynamics of a Single Nanoparticle Using Plasmonic Scattering Interferometry. Anal. Chem. 2020, 92, 13327–13335. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-N.; Lv, Z.-T.; Lv, W.-L.; Liu, X.-W. Plasmonic probing of the adhesion strength of single microbial cells. Proc. Natl. Acad. Sci. USA 2020, 117, 27148–27153. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, H.-B.; Qian, C.; Zhou, X.-L.; Liu, X.-W. Determining the Aggregation Kinetics of Nanoparticles by Single Nanoparticle Counting. ACS EST Water 2021, 1, 672–679. [Google Scholar] [CrossRef]
- Liu, Y.-N.; Lv, Z.-T.; Yang, S.-Y.; Liu, X.-W. Optical Tracking of the Interfacial Dynamics of Single SARS-CoV-2 Pseudoviruses. Environ. Sci. Technol. 2021, 55, 4115–4122. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hao, H.; Zhang, Y.-J.; Zheng, Q.; Tan, S.; Zhao, J.; Chen, H.-B.; Chen, J.-J.; Gu, Y.; Yu, H.-Q.; et al. Patterning of transition metal dichalcogenides catalyzed by surface plasmons with atomic precision. Chem 2021, 7, 1626–1638. [Google Scholar] [CrossRef]
- Jiang, D.; Zhao, X.; Liu, Y.-N.; Chen, H.-B.; Lv, W.-L.; Qian, C.; Liu, X.-W. Label-Free Probing of Molecule Binding Kinetics Using Single-Particle Interferometric Imaging. Anal. Chem. 2021, 93, 7965–7969. [Google Scholar] [CrossRef]
- Jiang, D.; Chen, H.-B.; Zhou, X.-L.; Liu, X.-W. Single-Particle Electrochemical Imaging Provides Insights into Silver Nanoparticle Dissolution at the Solution–Solid Interface. ACS Appl. Mater. Interfaces 2022, 14, 22658–22665. [Google Scholar] [CrossRef]
- Lv, Z.-T.; Qian, C.; Liu, Y.-N.; Lv, Y.-H.; Liu, X.-W. Optical Tracking of Surfactant-Tuned Bacterial Adhesion: A Single-Cell Imaging Study. Appl. Environ. Microbiol. 2022, 88, e01626-22. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhou, X.-L.; Yang, S.-Y.; Min, Y.; Chen, J.-J.; Liu, X.-W. Plasmonic imaging of the layer-dependent electrocatalytic activity of two-dimensional catalysts. Nat. Commun. 2022, 13, 7869. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Qian, C.; Lv, W.; Zhao, X.; Liu, X. Dynamic imaging of interfacial electrochemistry on single Ag nanowires by azimuth-modulated plasmonic scattering interferometry. Nat. Commun. 2023, 14, 4194. [Google Scholar] [CrossRef]
- Liu, Y.-N.; Lv, Z.-T.; Lv, W.-L.; Liu, D.-F.; Liu, X.-W. Label-Free Optical Imaging of the Electron Transfer in Single Live Microbial Cells. Nano Lett. 2023, 23, 558–566. [Google Scholar] [CrossRef]
- Wan, J.-H.; Qian, C.; Wu, G.; Liu, X.-W. High-Resolution, High-Throughput Plasmonic Imaging of Nanomaterials. Anal. Chem. 2023, 95, 7271–7277. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.-L.; Qian, C.; Cao, C.-X.; Lv, Z.-T.; Liu, X.-W. Plasmonic Scattering Imaging of Surface-Bonded Nanoparticles at the Solution–Solid Interface. ACS Appl. Mater. Interfaces 2023, 15, 29561–29567. [Google Scholar] [CrossRef]
- Wang, Z.-K.; Yuan, Z.-X.; Qian, C.; Liu, X.-W. Plasmonic Probing of Deoxyribonucleic Acid Hybridization at the Single Base Pair Resolution. Anal. Chem. 2023, 95, 18398–18406. [Google Scholar] [CrossRef]
- Jiang, Y.; Su, H.; Wei, W.; Wang, Y.; Chen, H.-Y.; Wang, W. Tracking the rotation of single CdS nanorods during photocatalysis with surface plasmon resonance microscopy. Proc. Natl. Acad. Sci. USA 2019, 116, 6630–6634. [Google Scholar] [CrossRef]
- Liu, S.; Zhou, K.; Yuan, T.; Lei, W.; Chen, H.-Y.; Wang, X.; Wang, W. Imaging the Thermal Hysteresis of Single Spin-Crossover Nanoparticles. J. Am. Chem. Soc. 2020, 142, 15852–15859. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, T.; Su, H.; Zhou, K.; Yin, L.; Wang, W. A Bubble-STORM Approach for Super-Resolved Imaging of Nucleation Sites in Hydrogen Evolution Reactions. ACS Sens. 2021, 6, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shan, X.; Wang, S.; Chen, H.; Tao, N. Molecular Scale Origin of Surface Plasmon Resonance Biosensors. Anal. Chem. 2014, 86, 8992–8997. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Shan, X.; Wang, S.; Tao, N. Achieving High Spatial Resolution Surface Plasmon Resonance Microscopy with Image Reconstruction. Anal. Chem. 2017, 89, 2704–2707. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhai, C.; Zeng, Q.; Khan, A.L.; Yu, H. Quantitative Amplitude and Phase Imaging with Interferometric Plasmonic Microscopy. ACS Nano 2019, 13, 13595–13601. [Google Scholar] [CrossRef]
- Yang, Y.; Zhai, C.; Zeng, Q.; Khan, A.; Yu, H. Multifunctional Detection of Extracellular Vesicles with Surface Plasmon Resonance Microscopy. Anal. Chem. 2020, 92, 4884–4890. [Google Scholar] [CrossRef]
- Xu, Y.; Li, C.; Jiang, Y.; Guo, M.; Yang, Y.; Yang, Y.; Yu, H. Electrochemical Impedance Spectroscopic Detection of E. coli with Machine Learning. J. Electrochem. Soc. 2020, 167, 047508. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, Q.; Xie, F.; Wang, J.; Yang, Y.; Xu, Y.; Li, J.; Yu, H. Automated Nanoparticle Analysis in Surface Plasmon Resonance Microscopy. Anal. Chem. 2021, 93, 7399–7404. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, X.; Zhai, C.; Wang, J.; Zeng, Q.; Yang, Y.; Yu, H. A Single-Shot Autofocus Approach for Surface Plasmon Resonance Microscopy. Anal. Chem. 2021, 93, 2433–2439. [Google Scholar] [CrossRef]
- Yang, Y.; Zeng, Q.; Luo, Q.; Wang, C.; Yu, H. Dynamic Single-Molecule Sensors: A Theoretical Study. ACS Sens. 2022, 7, 2069–2074. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.; Zhou, X.; Yang, Y.; Sun, Y.; Wang, J.; Zhai, C.; Li, J.; Yu, H. Dynamic single-molecule sensing by actively tuning binding kinetics for ultrasensitive biomarker detection. Proc. Natl. Acad. Sci. USA 2022, 119, e2120379119. [Google Scholar] [CrossRef] [PubMed]
- Zhai, C.; Xie, F.; Xu, J.; Yang, Y.; Zheng, W.; Hu, H.; Ding, X.; Yu, H. Correlation between membrane proteins and sizes of extracellular vesicles and particles: A potential signature for cancer diagnosis. J. Extracell. Vesicles 2023, 12, 12391. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, C.; Yang, Y.-t.; Yu, H.; Li, J.-H. Polarization-Sensitive Asymmetric Scattering at the Single-Particle Scale via Surface Plasmon Resonance Microscopy. Anal. Chem. 2023, 95, 18898–18906. [Google Scholar] [CrossRef]
- Zhai, C.; Long, J.; He, J.; Zheng, Y.; Wang, B.; Xu, J.; Yang, Y.; Jiang, L.; Yu, H.; Ding, X. Precise Identification and Profiling of Surface Proteins of Ultra Rare Tumor Specific Extracellular Vesicle with Dynamic Quantitative Plasmonic Imaging. ACS Nano 2023, 17, 16656–16667. [Google Scholar] [CrossRef]
- Son, T.; Lee, C.; Seo, J.; Choi, I.H.; Kim, D. Surface plasmon microscopy by spatial light switching for label-free imaging with enhanced resolution. Opt. Lett. 2018, 43, 959–962. [Google Scholar] [CrossRef]
- Kuai, Y.; Chen, J.; Tang, X.; Xiang, Y.; Lu, F.; Kuang, C.; Xu, L.; Shen, W.; Cheng, J.; Gui, H.; et al. Label-free surface-sensitive photonic microscopy with high spatial resolution using azimuthal rotation illumination. Sci. Adv. 2019, 5, eaav5335. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Dong, W.; Wan, Z.; Wang, S.; Tao, N. Plasmonic scattering imaging of single proteins and binding kinetics. Nat. Methods 2020, 17, 1010–1017. [Google Scholar] [CrossRef]
- Zhang, P.; Ma, G.; Wan, Z.; Wang, S. Quantification of Single-Molecule Protein Binding Kinetics in Complex Media with Prism-Coupled Plasmonic Scattering Imaging. ACS Sens. 2021, 6, 1357–1366. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, X.; Wang, R.; Jiang, J.; Wan, Z.; Wang, S. Label-Free Imaging of Nanoscale Displacements and Free-Energy Profiles of Focal Adhesions with Plasmonic Scattering Microscopy. ACS Sens. 2021, 6, 4244–4254. [Google Scholar] [CrossRef]
- Zhang, P.; Jiang, J.; Zhou, X.; Kolay, J.; Wang, R.; Wan, Z.; Wang, S. Label-free imaging and biomarker analysis of exosomes with plasmonic scattering microscopy. Chem. Sci. 2022, 13, 12760–12768. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, X.; Jiang, J.; Kolay, J.; Wang, R.; Ma, G.; Wan, Z.; Wang, S. In Situ Analysis of Membrane-Protein Binding Kinetics and Cell–Surface Adhesion Using Plasmonic Scattering Microscopy. Angew. Chem. Int. Ed. 2022, 61, e202209469. [Google Scholar] [CrossRef] [PubMed]
- Bocková, M.; Slaby, J.; Springer, T.; Homola, J.; Bohn, P.; Pemberton, J. Advances in Surface Plasmon Resonance Imaging and Microscopy and Their Biological Applications. Annu. Rev. Anal. Chem. 2019, 12, 151–176. [Google Scholar] [CrossRef] [PubMed]
- Huo, Z.; Li, Y.; Chen, B.; Zhang, W.; Yang, X.; Yang, X. Recent advances in surface plasmon resonance imaging and biological applications. Talanta 2023, 255, 124213. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Ren, Z.; Zhao, W.; Wang, L.; Yan, X.; Zhu, A.; Qiu, F.; Zhang, K. Research advances on surface plasmon resonance biosensors. Nanoscale 2022, 14, 564–591. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.F.; Chen, J.J.; Zhang, T.L.; Dai, X.Q.; Wang, X.L.; Zhou, J.X.; Kong, W.F.; Liu, Q.; Qu, J.L.; Shao, Y.H. Recent Advances in Surface Plasmon Resonance Microscopy. Chemosensors 2022, 10, 509. [Google Scholar] [CrossRef]
- Ding, X.X.; Cao, Y.T.; Wang, X.; Lu, X.C.; Huang, C.J. Review-Advances in Surface Plasmon Resonance Microscopy and Its Applications to Single Cells, Viruses, and Molecules. J. Electrochem. Soc. 2022, 169, 77515. [Google Scholar] [CrossRef]
- Chin, L.; Son, T.; Hong, J.; Liu, A.; Skog, J.; Castro, C.; Weissleder, R.; Lee, H.; Im, H. Plasmonic Sensors for Extracellular Vesicle Analysis: From Scientific Development to Translational Research. ACS Nano 2020, 14, 14528–14548. [Google Scholar] [CrossRef] [PubMed]
- Kretschm, E.; Raether, H. Radiative Decay of Non Radiative Surface Plasmons Excited by Light. Z. Naturforschung Part A-Astrophys. Phys. Und Phys. Chem. A 1968, 23, 2135–2136. [Google Scholar]
- Beusink, J.B.; Lokate, A.M.C.; Besselink, G.A.J.; Pruijn, G.J.M.; Schasfoort, R.B.M. Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens. Bioelectron. 2008, 23, 839–844. [Google Scholar] [CrossRef]
- Otsuki, S.; Ishikawa, M. Wavelength-scanning surface plasmon resonance imaging for label-free multiplexed protein microarray assay. Biosens Bioelectron 2010, 26, 202–206. [Google Scholar] [CrossRef] [PubMed]
- Shen, G.; Han, Z.; Liu, W.; Chen, Y. Color surface plasmon resonance imaging. Chem. J. Chin. Univ.-Chin. 2007, 28, 1651–1653. [Google Scholar]
- Xu, J.; Chen, Y. A Coupling Scheme of Surface Plasmon Resonance Sensing. China Patent No. ZL 201410018681.4, 2016. [Google Scholar]
- Xu, J.; Chen, Y. A Scissor Type Surface Plasmon Resonance Imager Based on Liquid Core Coupler. China Patent No. ZL 201410017895. X, 2016. [Google Scholar]
- Xu, J.; Chen, Y. Surface Plasmon Resonance Imager Based on Liquid Core Coupler. China Patent No. ZL 201410017971.7, 2017. [Google Scholar]
- Xu, J.; Chen, Y. Surface plasmon resonance sensing with adjustable sensitivity based on a flexible liquid core coupling unit. Talanta 2018, 184, 468–474. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Hu, F.; Yang, W.; Xu, J.; Chen, Y. A critical review of advances in surface plasmon resonance imaging sensitivity. TrAC Trends Anal. Chem. 2017, 97, 354–362. [Google Scholar] [CrossRef]
- Ritchie, R. Optical Emission from Surface Plasmons. Phys. Status Solidi 1970, 39, 297–308. [Google Scholar] [CrossRef]
- Loison, O.; Fort, E. Transmission surface plasmon resonance microscopy. Appl. Phys. Lett. 2013, 103, 133110. [Google Scholar] [CrossRef]
- Ladd, J.; Taylor, A.; Piliarik, M.; Homola, J.; Jiang, S. Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal. Bioanal. Chem. 2009, 393, 1157–1163. [Google Scholar] [CrossRef]
- Chrastinova, L.; Pastva, O.; Bockova, M.; Sacha, P.; Suttnar, J.; Stikarova, J.; Hlavackova, A.; Kotlin, R.; Cermak, J.; Homola, J.; et al. The Potential Prognostic Markers for Myelodysplatic Syndromes Studied By Surface Plasmon Resonance Imaging and Mass Spectrometry. Blood 2016, 128, 5510. [Google Scholar] [CrossRef]
- Hu, F.; Xu, J.; Chen, Y. Surface Plasmon Resonance Imaging Detection of Sub-femtomolar MicroRNA. Anal. Chem. 2017, 89, 10071–10077. [Google Scholar] [CrossRef]
- Wang, X.; Xu, J.; Liu, C.; Chen, Y. Specific interaction of platinated DNA and proteins by surface plasmon resonance imaging. RSC Adv. 2016, 6, 21900–21906. [Google Scholar] [CrossRef]
- Juhász, A.; Csapó, E.; Ungor, D.; Tóth, G.; Vécsei, L.; Dékány, I. Kinetic and Thermodynamic Evaluation of Kynurenic Acid Binding to GluR1270-300 Polypeptide by Surface Plasmon Resonance Experiments. J. Phys. Chem. B 2016, 120, 7844–7850. [Google Scholar] [CrossRef]
- Liu, C.; Wang, X.; Xu, J.; Chen, Y. Chemical Strategy to Stepwise Amplification of Signals in Surface Plasmon Resonance Imaging Detection of Saccharides and Glycoconjugates. Anal. Chem. 2016, 88, 10011–10018. [Google Scholar] [CrossRef]
- Li, M.; Xu, J.; Zheng, Q.; Guo, C.; Chen, Y. Chemical-Based Surface Plasmon Resonance Imaging of Fingerprints. Anal. Chem. 2022, 94, 7238–7245. [Google Scholar] [CrossRef]
- Ma, G.; Shan, X.; Wang, S.; Tao, N. Quantifying Ligand–Protein Binding Kinetics with Self-Assembled Nano-oscillators. Anal. Chem. 2019, 91, 14149–14156. [Google Scholar] [CrossRef]
- Wang, Y.; Jing, W.; Tao, N.; Wang, H. Probing Single-Molecule Binding Event by the Dynamic Counting and Mapping of Individual Nanoparticles. ACS Sens. 2021, 6, 523–529. [Google Scholar] [CrossRef]
- Syal, K.; Iriya, R.; Yang, Y.; Yu, H.; Wang, S.; Haydel, S.E.; Chen, H.-Y.; Tao, N. Antimicrobial Susceptibility Test with Plasmonic Imaging and Tracking of Single Bacterial Motions on Nanometer Scale. ACS Nano 2016, 10, 845–852. [Google Scholar] [CrossRef]
- Son, T.; Lee, C.; Moon, G.; Lee, D.; Cheong, E.; Kim, D. Enhanced surface plasmon microscopy based on multi-channel spatial light switching for label-free neuronal imaging. Biosens. Bioelectron. 2019, 146, 111738. [Google Scholar] [CrossRef]
- Zhang, P.; Zhou, L.; Wang, R.; Zhou, X.; Jiang, J.; Wan, Z.; Wang, S. Evanescent scattering imaging of single protein binding kinetics and DNA conformation changes. Nat. Commun. 2022, 13, 2298. [Google Scholar] [CrossRef]
- Shan, X.; Fang, Y.; Wang, S.; Guan, Y.; Chen, H.-Y.; Tao, N. Detection of Charges and Molecules with Self-Assembled Nano-Oscillators. Nano Lett. 2014, 14, 4151–4157. [Google Scholar] [CrossRef]
- Wang, R.; Jiang, J.; Zhou, X.; Wan, Z.; Zhang, P.; Wang, S. Rapid Regulation of Local Temperature and Transient Receptor Potential Vanilloid 1 Ion Channels with Wide-Field Plasmonic Thermal Microscopy. Anal. Chem. 2022, 94, 14503–14508. [Google Scholar] [CrossRef]
- Piliarik, M.; Sandoghdar, V. Direct optical sensing of single unlabelled proteins and super-resolution imaging of their binding sites. Nat. Commun. 2014, 5, 4495. [Google Scholar] [CrossRef]
- Ortega Arroyo, J.; Cole, D.; Kukura, P. Interferometric scattering microscopy and its combination with single-molecule fluorescence imaging. Nat. Protoc. 2016, 11, 617–633. [Google Scholar] [CrossRef]
- Cole, D.; Young, G.; Weigel, A.; Sebesta, A.; Kukura, P. Label-Free Single-Molecule Imaging with Numerical-Aperture-Shaped Interferometric Scattering Microscopy. ACS Photonics 2017, 4, 211–216. [Google Scholar] [CrossRef]
- Young, G.; Hundt, N.; Cole, D.; Fineberg, A.; Andrecka, J.; Tyler, A.; Olerinyova, A.; Ansari, A.; Marklund, E.G.; Collier, M.P.; et al. Quantitative mass imaging of single biological macromolecules. Science 2018, 360, 423–427. [Google Scholar] [CrossRef]
- Park, J.-S.; Lee, I.-B.; Moon, H.-M.; Joo, J.-H.; Kim, K.-H.; Hong, S.-C.; Cho, M. Label-free and live cell imaging by interferometric scattering microscopy. Chem. Sci. 2018, 9, 2690–2697. [Google Scholar] [CrossRef]
- Taylor, R.W.; Mahmoodabadi, R.G.; Rauschenberger, V.; Giessl, A.; Schambony, A.; Sandoghdar, V. Interferometric scattering microscopy reveals microsecond nanoscopic protein motion on a live cell membrane. Nat. Photonics 2019, 13, 480–487. [Google Scholar] [CrossRef]
- Taylor, R.W.; Sandoghdar, V. Interferometric Scattering Microscopy: Seeing Single Nanoparticles and Molecules via Rayleigh Scattering. Nano Lett. 2019, 19, 4827–4835. [Google Scholar] [CrossRef]
- Young, G.; Kukura, P. Interferometric Scattering Microscopy. Annu. Rev. Phys. Chem. 2019, 70, 301–322. [Google Scholar] [CrossRef]
- Li, N.; Canady, T.D.; Huang, Q.; Wang, X.; Fried, G.A.; Cunningham, B.T. Photonic resonator interferometric scattering microscopy. Nat. Commun. 2021, 12, 1744. [Google Scholar] [CrossRef]
- Merryweather, A.J.; Schnedermann, C.; Jacquet, Q.; Grey, C.P.; Rao, A. Operando optical tracking of single-particle ion dynamics in batteries. Nature 2021, 594, 522–528. [Google Scholar] [CrossRef]
- Heermann, T.; Steiert, F.; Ramm, B.; Hundt, N.; Schwille, P. Mass-sensitive particle tracking to elucidate the membrane-associated MinDE reaction cycle. Nat. Methods 2021, 18, 1239–1246. [Google Scholar] [CrossRef] [PubMed]
- Kashkanova, A.D.; Blessing, M.; Gemeinhardt, A.; Soulat, D.; Sandoghdar, V. Precision size and refractive index analysis of weakly scattering nanoparticles in polydispersions. Nat. Methods 2022, 19, 586–593. [Google Scholar] [CrossRef]
- Küppers, M.; Albrecht, D.; Kashkanova, A.D.; Lühr, J.; Sandoghdar, V. Confocal interferometric scattering microscopy reveals 3D nanoscopic structure and dynamics in live cells. Nat. Commun. 2023, 14, 1962. [Google Scholar] [CrossRef]
- Dahmardeh, M.; Mirzaalian Dastjerdi, H.; Mazal, H.; Köstler, H.; Sandoghdar, V. Self-supervised machine learning pushes the sensitivity limit in label-free detection of single proteins below 10 kDa. Nat. Methods 2023, 20, 442–447. [Google Scholar] [CrossRef]
Imaging Method | Spatial Resolution | Field of View | Sensitivity | Time Resolution | Applications | Advantage | Disadvantage |
---|---|---|---|---|---|---|---|
SPRi based on prism | micrometer level, limited by long propagation length of surface plasmonic wave. | millimeter scale | low | limited by speed of the imager | multiple molecule events in ensemble, single cell | simple and low-cost device | low spatial resolution |
SPRM based on high numerical aperture objective | sub-micrometer level, limited by diffraction effect perpendicular to propagation direction of surface plasmonic waves; micrometer level, limited by propagation length of surface plasmonic wave along the propagation direction of surface plasmonic wave. | small, ~160 μm in diameter, limited by high numerical aperture objective | low | single biological entities such as cell (subcellular level) and bacterial, sparsely distributed single nanoparticles, etc. single-molecule sensing by monitoring change in z-axis fluctuations of nanoparticle modified with target molecules. | improved spatial resolution | SPRM images of the analyte are accompanied by a parabolic tail of many microns long. (SPRM with azimuthal rotation illumination can improve resolution with tradeoff of temporal resolution) | |
SPSM | sub-micrometer or micrometer level, diffraction-limited at any lateral direction. For NA 0.28 of imaging objective, spatial resolution can be ~1.4 μm, which is ~7 times higher than SPRM with same wavelength of 660 nm. | small, ~160 μm in diameter, for objective-coupled SPSM; millimeter scale for prism-coupled SPSM. | large proteins as small as IgG (150 kDa) [121] | single molecules, single biological entities such as cell (at single adhesion site level) and exosome, densely distributed single nanoparticles, etc. simultaneous analyses of hundreds of cells by prism-coupled SPSM. | high spatial resolution with Gaussian point spread function without parabolic tails, large field of view for prism-coupled SPSM | ||
Evanescent scattering microscopy (ESM) | sub-micrometer or micrometer level, diffraction-limited at any lateral direction, with higher spatial resolution than SPSM owing employment of shorter incident wavelength. | small, ~160 μm in diameter, for objective-coupled ESM; millimeter scale for prism-coupled ESM. | medium-sized single proteins as small as BSA (66 kDa) [121] | single molecules, single biological entities such as cell ( at single adhesion site level) and exosome, densely distributed single nanoparticles, etc. simultaneous in situ analyses of hundreds of cells by prism-coupled ESM. | higher spatial resolution owing the employment of short incident wavelength than SPSM. | the evanescent waves have lower electric field enhancements than surface plasmon waves. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, J.; Zhang, P.; Chen, Y. Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution. Biosensors 2024, 14, 84. https://doi.org/10.3390/bios14020084
Xu J, Zhang P, Chen Y. Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution. Biosensors. 2024; 14(2):84. https://doi.org/10.3390/bios14020084
Chicago/Turabian StyleXu, Jiying, Pengfei Zhang, and Yi Chen. 2024. "Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution" Biosensors 14, no. 2: 84. https://doi.org/10.3390/bios14020084
APA StyleXu, J., Zhang, P., & Chen, Y. (2024). Surface Plasmon Resonance Biosensors: A Review of Molecular Imaging with High Spatial Resolution. Biosensors, 14(2), 84. https://doi.org/10.3390/bios14020084