Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination
Abstract
:1. Introduction
2. Cholinesterase and Anticholinesterase Agents
2.1. Cholinesterases
- The maximal inhibition remains significantly lower than 100%;
- The addition of a substrate to a solution containing an inhibitor partially restores the signal observed in the absence of an inhibitor;
- The signal toward the inhibitor weakly depends on the contact period (incubation time).
2.2. Anticholinesterase Drugs
3. Electrochemical AChE Biosensor Design
3.1. Cholinesterase Immobilization
- Physical adsorption on solid support (Figure 4A). The bare and modified surface of the electrode as a primary signal transducer or plastic films attached to such an electrode can be used as enzyme solid supports. This method offers the high stability of the enzyme during the storage of the biosensor due to the hydrophilic microenvironment of the enzyme established in the surface layer. Physical adsorption on the solid support including entrapment in the polymer gels (Figure 4B) or in the polyelectrolyte complexes makes it possible to preserve the native structure of an enzyme globule and its affinity toward inhibitors. Polyurethane [56], polyaniline [57,58,59], polypyrrole [60], polysiloxanes [61], sodium alginate [62], poly(vinyl acetate) photocurable polymer (PVA-SbQ) [63] and bovine serum albumin (BSA) [64] were used for this purpose. Possible leaching (desorption) of the enzyme can be suppressed by additional cover films deposited or attached to the enzyme layer. A similar approach has been described for the simultaneous immobilization of AChE with an auxiliary enzyme, choline oxidase (ChO) [65]. Carbon nanomaterials offer many advantages as enzyme supports due to a high surface to volume ratio, electroconductivity and a high adsorption capacity [66,67].
- The formation of self-assembled monolayers (Figure 4C) is specified because of the high importance of this immobilization protocol for biosensors utilizing golden electrodes or nanoparticles in their assembly [68,69,70,71]. The formation of Au-S bonds offers the site-specific surface immobilization of enzyme molecules. The use of thiolated linkers makes it possible to extend the surface layer and increase its accessibility for inhibitors. Au, as a highly conductive material, improves the conditions of electron transduction and enzyme electric “wiring” and is often combined with other modifiers added to increase the specific surface area (carbon nanomaterials, chitosan films, electropolymerized coatings, etc.).
- Cross-linking with glutaraldehyde (Figure 4D) increases the average molar mass of the protein so that the enzyme becomes insoluble and deposits on the solid support [64,72]. Glutaraldehyde interacts with amino and thiol functional groups to form Schiff bases. Although the reaction is reversible, the reverse hydrolysis of the product is less probable in the biosensor operation period. The reaction is mostly performed in the presence of the BSA protein protecting the active site of the enzyme from undesired chemical reactions. The reaction is complicated by the partial oligomerization of glutaraldehyde during storage.
- Covalent carbodiimide binding (Figure 4E) with carboxylated carriers [73,74]. Carbodiimide, specifically, N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide chloride (EDC), forms amide bonds between the carboxylic and amino functions and provides the site-specific immobilization of proteins to carboxylated materials, e.g., carbon nanotubes or carbon black. The reaction is performed in mild conditions (at room temperature). The addition of N-hydroxysuccinimide (NHS) prevents the hydrolysis of the unstable intermediate and increases the efficiency of the enzyme binding. Carbodiimide binding is easily combined with the use of Au supports covered with monolayers of mercaptopropionic and mercaptoundecanoic acids.
3.2. Cholinesterase Biosensor Signal Measurement
3.3. Anti-AD Drugs Determination
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tougu, V. Acetylcholinesterase: Mechanism of catalysis and inhibition. Curr. Med. Chem.—Cent. Nerv. Syst. Agents 2001, 1, 155–170. [Google Scholar] [CrossRef]
- Hofer, P.; Fringeli, U.P. Acetylcholinesterase kinetics. Biophys. Struct. Mech. 1981, 8, 45–59. [Google Scholar] [CrossRef]
- Miao, Y.; He, N.; Zhu, J.-J. History and new developments of assays for cholinesterase activity and inhibition. Chem. Rev. 2010, 110, 5216–5234. [Google Scholar] [CrossRef]
- Kim, K.; Tsay, O.G.; Atwood, D.A.; Churchill, D.G. Destruction and detection of chemical warfare agents. Chem. Rev. 2011, 111, 5345–5403. [Google Scholar] [CrossRef]
- Tan, H.Y.; Loke, W.K.; Nguyen, N.-T.; Tan, S.N.; Tay, N.B.; Wang, W.; Ng, S.H. Lab-on-a-chip for rapid electrochemical detection of nerve agent Sarin. Biomed. Microdevices 2014, 16, 269–275. [Google Scholar] [CrossRef]
- Arduini, F.; Neagu, D.; Dall’Oglio, S.; Moscone, D.; Palleschi, G. Towards a portable prototype based on electrochemical cholinesterase biosensor to be assembled to soldier overall for nerve agent detection. Electroanalysis 2012, 24, 581–590. [Google Scholar] [CrossRef]
- Das, U. Organophosphorus pesticide as nerve agent: Inhibition and reactivation of AChE: A review. Asian J. Chem. 2022, 34, 767–773. [Google Scholar] [CrossRef]
- Pohanka, M. Biosensors containing acetylcholinesterase and butyrylcholinesterase as recognition tools for detection of various compounds. Chem. Pap. 2015, 69, 4–16. [Google Scholar] [CrossRef]
- Bucur, B.; Munteanu, F.-D.; Marty, J.-L.; Vasilescu, A. Advances in enzyme-based biosensors for pesticide detection. Biosensors 2018, 8, 27. [Google Scholar] [CrossRef]
- Staudenmayer, K.; Schecter, W.P. Chemical agents and terror medicine. In Essentials of Terror Medicine; Shapira, S.C., Hammond, J.S., Cole, L.A., Eds.; Springer: New York, NY, USA, 2009; pp. 223–239. [Google Scholar] [CrossRef]
- Ding, R.; Li, Z.; Xiong, Y.; Wu, W.; Yang, Q.; Hou, X. Electrochemical (bio)sensors for the detection of organophosphorus pesticides based on nanomaterial-modified electrodes: A review. Crit. Rev. Anal. Chem. 2023, 53, 1766–1791. [Google Scholar] [CrossRef]
- Cao, J.; Wang, M.; Yu, H.; She, Y.; Cao, Z.; Ye, J.; Abd El-Aty, A.M.; Hacımüftüoğlu, A.; Wang, J.; Lao, S. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides. J. Agric. Food Chem. 2020, 68, 7298–7315. [Google Scholar] [CrossRef]
- Stanciu, G.D.; Luca, A.; Rusu, R.N.; Bild, V.; Chiriac, S.I.B.; Solcan, C.; Bild, W.; Ababei, D.C. Alzheimer’s disease pharmacotherapy in relation to cholinergic system involvement. Biomolecules 2020, 10, 40. [Google Scholar] [CrossRef]
- Gholami, A. Alzheimer’s disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci. Lett. 2023, 817, 137532. [Google Scholar] [CrossRef]
- Khana, H.; Marya; Amin, S.; Kamal, M.A.; Patel, S. Flavonoids as acetylcholinesterase inhibitors: Current therapeutic standing and future prospects. Biomed. Pharmacother. 2018, 101, 860–870. [Google Scholar] [CrossRef]
- Li, J.; Chang, H.; Zhang, N.; He, Y.; Zhang, D.; Liu, B.; Fang, Y. Recent advances in enzyme inhibition based-electrochemical biosensors for pharmaceutical and environmental analysis. Talanta 2023, 253, 124092. [Google Scholar] [CrossRef]
- Tuzimski, T.; Petruczynik, A. Determination of anti-Alzheimer’s disease activity of selected plant ingredients. Molecules 2022, 27, 3222. [Google Scholar] [CrossRef]
- Llanes, L.C.; Kuehlewein, I.; de França, I.V.; da Silva, L.V.; da Cruz Junior, J.W. Anticholinesterase agents for Alzheimer’s disease treatment: An updated overview. Curr. Med. Chem. 2023, 30, 701–724. [Google Scholar] [CrossRef]
- Calderaro, A.; Patanè, G.T.; Tellone, E.; Barreca, D.; Ficarra, S.; Misiti, F.; Laganà, G. The neuroprotective potentiality of flavonoids on Alzheimer’s disease. Int. J. Mol. Sci. 2022, 23, 14835. [Google Scholar] [CrossRef]
- Masson, P.; Shaihutdinova, Z.; Lockridge, O. Drug and pro-drug substrates and pseudo-substrates of human butyrylcholinesterase. Biochem. Pharm. 2023, 218, 115910. [Google Scholar] [CrossRef]
- Masson, P.; Froment, M.-T.; Fortier, P.-L.; Visicchio, J.-E.; Bartels, C.F.; Lockridge, O. Butyrylcholinesterase-catalysed hydrolysis of aspirin, a negatively charged ester, and aspirin-related neutral esters. Biochim. Biophys. Acta 1998, 1387, 41–52. [Google Scholar] [CrossRef]
- Lindegardh, N.; Davies, G.R.; Tran, T.H.; Farrar, J.; Singhasivanon, P.; Day, N.P.J.; White, N.J. Rapid degradation of oseltamivir phosphate in clinical samples by plasma esterases. Antimicrob. Agents Chemother. 2006, 50, 3197–3199. [Google Scholar] [CrossRef] [PubMed]
- Muszalska-Kolos, I.; Lesniewska-Kowiel, M.A.; Plewa, S.; Klupczyńska, A. Tricyclic derivative of acyclovir and its esters in relation to the esters of acyclovir enzymatic stability: Enzymatic stability study. Molecules 2020, 25, 2156. [Google Scholar] [CrossRef] [PubMed]
- Harel, M.; Hyatt, J.L.; Brumshtein, B.; Morton, C.L.; Wadkins, R.M.; Silman, I.; Sussman, J.L.; Potter, P.M. The 3D structure of the anticancer prodrug CPT-11 with Torpedo californica acetylcholinesterase rationalizes its inhibitory action on AChE and its hydrolysis by butyrylcholinesterase and carboxylesterase. Chem. Biol. Interact. 2005, 157–158, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Morton, C.L.; Wadkins, R.M.; Danks, M.K.; Potter, P.M. The anticancer prodrug CPT-11 is a potent inhibitor of acetylcholinesterase but is rapidly catalyzed to SN-38 by butyrylcholinesterase. Cancer Res. 1999, 59, 1458–1463. [Google Scholar] [PubMed]
- Zhan, C.-G.; Zheng, F.; Landry, D.W. Fundamental reaction mechanism for cocaine hydrolysis in human butyrylcholinesterase. J. Am. Chem. Soc. 2003, 125, 2462–2474. [Google Scholar] [CrossRef] [PubMed]
- Gottås, A.; Øiestad, E.L.; Boix, F.; Vindenes, V.; Ripel, Å.; Thaulow, C.H.; Mørland, J. Levels of heroin and its metabolites in blood and brain extracellular fluid after i.v. heroin administration to freely moving rats. Br. J. Pharmacol. 2013, 170, 546–556. [Google Scholar] [CrossRef]
- Sussman, J.L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Atomic structure of acetylcholinesterase from Torpedo californica: A prototypic binding protein. Science 1991, 253, 872–879. [Google Scholar] [CrossRef]
- de Jong, L.P.; Groos, C.C.; van Dijk, C. The inhibition of cholinesterase by orgnophosphorus compounds in the presence of substrate. Biochim. Biophys. Acta 1971, 227, 475–478. [Google Scholar] [CrossRef]
- Zhao, B.; Moochhala, S.M.; Tham, S.-Y. Biologically active components of Physostigma venenosum. J. Chromatogr. B 2004, 812, 183–192. [Google Scholar] [CrossRef]
- Thal, L.; Fuld, P.A.; Masur, D.M.; Sharpless, N.S. Oral physostigmine and lecithin improve memory in Alzheimer disease. Ann. Neurol. 1983, 13, 491–496. [Google Scholar] [CrossRef]
- Camps, P.; Muños-Torrero, D. Cholinergic drugs in pharamcotherapy of Alzheimer’s disease. Mini-Rev. Med. Chem. 2002, 2, 11–25. [Google Scholar] [CrossRef]
- Evtugyn, G. Biosensors: Essentials; Lectures Notes in Analytical Chemistry; Springer: Berlin/Heidelberg, Germany, 2014; 274p. [Google Scholar] [CrossRef]
- Ramsay, R.R.; Tipton, K.F. Assessment of enzyme inhibition: A review with examples from the development of monoamine oxidase and cholinesterase inhibitory Drugs. Molecules 2017, 22, 1192. [Google Scholar] [CrossRef]
- Srinivasan, B. A guide to enzyme kinetics in early drug discovery. FEBS J. 2023, 290, 2292–2305. [Google Scholar] [CrossRef]
- Watkins, P.B.; Zimmerman, H.J.; Knapp, M.J.; Gracon, S.I.; Lewis, K.W. Hepatotoxic effects of tacrine administration in patients with Alzheimer’s disease. JAMA 1994, 271, 992–998. [Google Scholar] [CrossRef]
- Freeman, S.E.; Dawson, R.M. Tacrine: A pharmacological review. Prog. Neurobiol. 1991, 36, 257–277. [Google Scholar] [CrossRef]
- Turijski, V.; Krustev, A.; Getova-Spassova, D.; Spassov, V. Influence of tacrine on dopamine-induced reactions of the gastric smooth muscle of rats. Methods Find. Exp. Clin. Pharmacol. 2004, 26, 103–107. [Google Scholar] [CrossRef]
- Fu, H.; Li, W.; Liu, Y.; Lao, Y.; Liu, W.; Chen, C.; Yu, H.; Lee, N.T.K.; Chang, D.C.; Li, P.; et al. Mitochondrial proteomic analysis and characterization of the intracellular mechanisms of bis(7)-tacrine in protecting against glutamate-induced excitotoxicity in primary cultured neurons. J. Proteom. Res. 2007, 6, 2435–2446. [Google Scholar] [CrossRef]
- Birks, J.S.; Chong, L.Y.; Grimley, E.J. Rivastigmine for Alzheimer’s disease. Cochrane Database Syst. Rev. 2015, 9, CD001191. [Google Scholar] [CrossRef]
- Jann, M.W.; Shirley, K.L.; Small, G.W. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin. Pharmacokinet. 2002, 41, 719–739. [Google Scholar] [CrossRef]
- Corey-Bloom, J.; Anand, R.; Veach, J. A randomized trial evaluating the efficacy and safety of ENA 713 (rivastigmine tartrate), a new acetylcholinesterase inhibitor, in patients with mild to moderately severe Alzheimer’s disease. Int. J. Geriatr. Psychopharmacol. 1998, 1, 55–65. [Google Scholar]
- de Souza, F.M.; Busquet, N.; Blatner, M.; Maclean, K.N.; Restrepo, D. Galantamine improves olfactory learning in the Ts65Dn mouse model of down syndrome. Sci. Rep. 2011, 1, 137. [Google Scholar] [CrossRef] [PubMed]
- Maelicke, A.; Albuquerque, X. Allosteric modulation of nicotinic acetylcholine receptors as a treatment strategy for Alzheimer’s disease. Eur. J. Pharmacol. 2000, 393, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Mehta, M.; Adem, A.; Sabbagh, M. New acetylcholinesterase inhibitors for Alzheimer’s disease. Int. J. Alzheimers Dis. 2012, 2012, 728983. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yan, H.; Tang, X. Progress in studies of huperzine A, a natural cholinesterase inhibitor from Chinese herbal medicine. Acta Pharmacol. Sin. 2006, 27, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Wang, Y.; Tian, J.; Liu, J.-P. Huperzine A for Alzheimer’s DISEASE: A systematic review and meta-analysis of randomized clinical trials. PLoS ONE 2013, 8, e74916. [Google Scholar] [CrossRef] [PubMed]
- Thal, L.J.; Schwartz, G.; Sano, M.; Weiner, M.; Knopman, D.; Harrell, L.; Bodenheimer, S.; Rossor, M.; Philpot, M.; Schor, J.; et al. A multicenter double-blind study of controlled release physostigmine for the treatment of symptoms secondary to Alzheimer’s disease. Neurology 1996, 47, 1389–1395. [Google Scholar] [CrossRef] [PubMed]
- Rogers, S.L.; Friedhoff, L.T. Pharmacokinetic and pharmacodynamic profile of donepezil HCl following single oral doses. Br. J. Clin. Pharmacol. 1998, 46 (Suppl. S1), 1–6. [Google Scholar] [CrossRef] [PubMed]
- Sugimuto, H.; Iimura, Y.; Yamanishi, Y.; Yamatsu, K. Synthesis and structure-activity relationships of acetylcholinesterase inhibitors: 1-benzyl-4-[(5,6-dimethoxy-1-oxoindan-2-yl)methyl]piperidine hydrochloride and related compounds. J. Med. Chem. 1995, 38, 4821–4829. [Google Scholar] [CrossRef]
- Singh, Y.P.; Kumar, H. Berberine derivatives as inhibitors of acetylcholinesterase: A systematic review. Chem. Biol. Drug Design 2023, 102, 1592–1603. [Google Scholar] [CrossRef]
- Bhole, R.P.; Chikhale, R.V.; Rathi, K.M. Current biomarkers and treatment strategies in Alzheimer disease: An overview and future perspectives. IBRO Neurosci. Rep. 2024, 16, 8–42. [Google Scholar] [CrossRef]
- Cañizares-Carmenate, Y.; Nam, N.-H.; Díaz-Amador, R.; Thuan, N.T.; Dung, P.T.P.; Torrens, F.; Pham-The, H.; Perez-Gimenez, F.; Castillo-Garit, J.A. Ligand-based discovery of new potential acetylcholinesterase inhibitors for Alzheimer’s disease treatment. SAR QSAR Environ. Res. 2022, 33, 49–61. [Google Scholar] [CrossRef]
- David, B.; Schneider, P.; Schäfer, P.; Pietruszka, J.; Gohlke, H. Discovery of new acetylcholinesterase inhibitors for Alzheimer’s disease: Virtual screening and in vitro characterization. J. Enzym. Inhib. Med. Chem. 2021, 36, 491–496. [Google Scholar] [CrossRef]
- Baheti, K.; Kale, M. Methodologies related to computational models in view of developing anti-Alzheimer drugs: An overview. Curr. Drug Discover. Technol. 2019, 16, 66–73. [Google Scholar] [CrossRef]
- Hart, A.L.; Collier, W.A.; Janssen, D. The response of screen-printed enzyme electrodes containing cholinesterases to organo-phosphates in solution and from commercial formulations. Biosens. Bioelectron. 1997, 12, 645–654. [Google Scholar] [CrossRef]
- Paneru, S.; Kumar, D. A Novel electrochemical biosensor based on polyaniline-embedded copper oxide nanoparticles for high-sensitive paraoxon-ethyl (PE) detection. Appl. Biochem. Biotechnol. 2023, 195, 4485–4502. [Google Scholar] [CrossRef]
- Rachmawati, A.; Sanjaya, A.R.; Putri, Y.M.T.A.; Gunlazuardi, J.; Ivandini, T.A. An acetylcholinesterase-based biosensor for isoprocarb using a gold nanoparticles-polyaniline modified graphite pencil electrode. Anal. Sci. 2023, 39, 911–923. [Google Scholar] [CrossRef]
- Shrestha, D.; Nayaju, T.; Shrestha, B.K.; Maharjan, B.; Kang, K.; Bacirhonde, P.M.; Park, C.H.; Kim, C.S. Fabrication of flexible glucose sensor based on heterostructure ZnO nanosheets decorated PU/Chitosan-PANI hybrid nanofiber. Microchem. J. 2024, 197, 109915. [Google Scholar] [CrossRef]
- Loguercio, L.F.; Thesing, A.; Demingos, P.; de Albuquerque, C.D.L.; Rodrigues, R.S.B.; Brolo, A.G.; Santos, J.F.L. Efficient acetylcholinesterase immobilization for improved electrochemical performance in polypyrrole nanocomposite-based biosensors for carbaryl pesticide. Sens. Actuators B 2021, 339, 129875. [Google Scholar] [CrossRef]
- Raghu, P.; Swamy, B.E.K.; Madhusudana, R.T.; Chandrashekar, B.N.; Reddaiah, K. Sol-gel immobilized biosensor for the detection of organophosphorous pesticides: A voltammetric method. Bioelectrochemistry 2012, 83, 19–34. [Google Scholar] [CrossRef]
- Weng, Y.; Yang, Y.; Li, Y.; Xu, L.; Chen, X.; Song, H.; Zhao, C.-X. Alginate-based materials for enzyme encapsulation. Adv. Colloid Interface Sci. 2023, 318, 102957. [Google Scholar] [CrossRef]
- Nunes, G.S.; Jeanty, G.; Marty, J.-L. Enzyme immobilization procedures on screen-printed electrodes used for the detection of anticholinesterase pesticides: Comparative study. Anal. Chim. Acta 2004, 523, 107–115. [Google Scholar] [CrossRef]
- Kumar, T.H.V.; Sundramoort, A.K. Electrochemical biosensor for methyl parathion based on single-walled carbon nanotube/glutaraldehyde crosslinked acetylcholinesterase-wrapped bovine serum albumin nanocomposites. Anal. Chim. Acta 2019, 1074, 131–141. [Google Scholar] [CrossRef] [PubMed]
- López, M.S.-P.; Pérez, J.P.H.; López-Cabarcos, E.; López-Ruiz, B. Amperometric biosensors based on choline oxidase entrapped in polyacrylamide microgel. Electroanalysis 2007, 19, 370–378. [Google Scholar] [CrossRef]
- Qin, Y.; Jiang, X.; Wang, X.; Gao, X.; Zhao, L. Luminescent solid-state carbon dots synthesized based on the one-step hydrothermal method for the immobilization of α-glucosidase and imaging screening of enzyme inhibitors. J. Alloys Compd. 2024, 978, 173475. [Google Scholar] [CrossRef]
- Kumar, A.; Purohit, B.; Mahato, K.; Roy, S.; Srivastava, A.; Chandra, P. Design and development of ultrafast sinapic acid sensor based on electrochemically nanotuned gold nanoparticles and solvothermally reduced graphene oxide. Electroanalysis 2020, 32, 59–69. [Google Scholar] [CrossRef]
- Phongphut, A.; Chayasombat, B.; Cass, A.E.G.; Sirisuk, A.; Phisalaphong, M.; Prichanont, S.; Thanachayanont, C. Clay/Au nanoparticle composites as acetylcholinesterase carriers and modified-electrode materials: A comparative study. Appl. Clay Sci. 2020, 194, 105704. [Google Scholar] [CrossRef]
- Vu, T.T.; Dau, T.N.N.; Ly, C.T.; Pham, D.C.; Nguyen, T.T.N.; Pham, V.T. Aqueous electrodeposition of (AuNPs/MWCNT–PEDOT) composite for high-affinity acetylcholinesterase electrochemical sensors. J. Mater. Sci. 2020, 55, 9070–9081. [Google Scholar] [CrossRef]
- Hu, X.; Dinu, C.Z. Nanoporous gold electrode for ultrasensitive detection of neurotoxin fasciculin. Anal. Chim. Acta 2019, 1085, 91–97. [Google Scholar] [CrossRef]
- Handali, P.R.; Webb, L.J. Gold nanoparticles are an immobilization platform for active and stable acetylcholinesterase: Demonstration of a general surface protein functionalization strategy. ACS Appl. Bio Mater. 2023, 6, 209–217. [Google Scholar] [CrossRef]
- Theyagarajan, K.; Kim, Y.-J. Recent developments in the design and fabrication of electrochemical biosensors using functional materials and molecules. Biosensors 2023, 13, 424. [Google Scholar] [CrossRef]
- Khaldi, K.; Sam, S.; Lounas, A.; Yaddaden, C.; Gabouze, N.-E. Comparative investigation of two methods for acetylcholinesterase enzyme immobilization on modified porous silicon. Appl. Surf. Sci. 2017, 421A, 148–154. [Google Scholar] [CrossRef]
- Shamagsumova, R.V.; Vasyk, A.V.; Shurpik, D.N.; Evtyugin, V.G.; Stoikov, I.I.; Evtyugin, G.A. An acetylcholinesterase sensor based on a pillar[6]arene–silver nanoparticle composite for the determination of drugs for the treatment of Alzheimer’s disease. J. Anal. Chem. 2022, 77, 429–438. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Zhang, T.; Zheng, Z.; Jing, H.; Liu, C. Improving pesticide residue detection: Immobilized enzyme microreactor embedded in microfluidic paper-based analytical devices. Food Chem. 2024, 439, 138179. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Y.; Chen, L.; Zheng, Z.; Liu, C. Screening of acetylcholinesterase inhibitors by capillary electrophoresis with oriented-immobilized enzyme microreactors based on gold nanoparticles. Molecules 2024, 29, 118. [Google Scholar] [CrossRef]
- Rajagopalan, V.; Venkataraman, S.; Rajendran, D.S.; Kumar, V.V.; Kumar, V.V.; Rangasamy, G. Acetylcholinesterase biosensors for electrochemical detection of neurotoxic pesticides and acetylcholine neurotransmitter: A literature review. Environ. Res. 2023, 227, 115724. [Google Scholar] [CrossRef]
- Zhang, P.; Sun, T.; Rong, S.; Zeng, D.; Yu, H.; Zhang, Z.; Chang, D.; Pan, H. A sensitive amperometric AChE-biosensor for organophosphate pesticides detection based on conjugated polymer and Ag-rGO-NH2 nanocomposite. Bioelectrochemistry 2019, 127, 163–170. [Google Scholar] [CrossRef]
- Song, D.; Wang, Y.; Lu, X.; Gao, Y.; Li, Y.; Gao, F. Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides. Sens. Actuators B 2018, 267, 5–13. [Google Scholar] [CrossRef]
- Shamagsumova, R.V.; Efimova, O.Y.; Gorbatchuk, V.V.; Evtugyn, V.G.; Stoikov, I.I.; Evtugyn, G.A. Electrochemical acetylcholinesterase biosensor based on polylactide–nanosilver composite for the determination of anti-dementia drugs. Anal. Lett. 2019, 52, 1558–1578. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, H.; Yang, L. Ultra-highly sensitive and stable acetylcholinesterase biosensor based on TiO2-NRs and rGO. Microchem. J. 2021, 168, 106435. [Google Scholar] [CrossRef]
- Zhao, C.; Zhao, Y.; Wang, L.; Lu, K.; Guo, W.; Lu, X.; Gao, F. AuNPs and CNTs embellished three-dimensional bloom-like α-Fe2O3 nanocomposites for highly sensitive electrochemical pesticides detection. Microchem. J. 2023, 191, 108762. [Google Scholar] [CrossRef]
- Li, R.; Zhang, W.; Meng, F.; Li, X.; Li, Z.; Fang, Y.; Zhang, M. Hollow Prussian blue with ultrafine silver nanoparticle agents (Ag-HPB) integrated sensitive and flexible biosensing platform with highly enzyme loading capability. Talanta 2024, 266 Pt 1, 125036. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, A.; Davletshina, R.; Sharafieva, I.; Evtugyn, G. Electrochemical biosensor based on polyelectrolyte complexes for the determination of reversible inhibitors of acetylcholinesterase. Talanta 2019, 194, 723–730. [Google Scholar] [CrossRef]
- Zamfir, L.-G.; Rotariu, L.; Bala, C. Acetylcholinesterase biosensor for carbamate drugs based on tetrathiafulvalene-tetracyanoquinodimethane / ionic liquid conductive gels. Biosens. Bioelectron. 2013, 46, 61–67. [Google Scholar] [CrossRef]
- Shamagsumova, R.V.; Shurpik, D.N.; Evtugyn, V.G.; Stoikov, I.I.; Evtugyn, G.A. Electrochemical determination of malathion on an acetylcholinesterase-modified glassy carbon electrode. Anal. Lett. 2018, 51, 1911–1926. [Google Scholar] [CrossRef]
- Shamagsumova, R.V.; Shurpik, D.N.; Kuzin, Y.I.; Stoikov, I.I.; Rogov, A.M.; Evtugyn, G.A. Pillar[6]arene: Electrochemistry and application in electrochemical (bio)sensors. J. Electroanal. Chem. 2022, 913, 116281. [Google Scholar] [CrossRef]
- Wu, F.; Wang, B.; Guo, H.; Kang, K.; Ji, X.; Wang, L.; Guo, S.; Ren, J. Rational design of a novel MOF-based ternary nanocomposite for effectively monitoring harmful organophosphates in foods and the environment. Anal. Methods 2023, 15, 1168–1177. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Zuo, X.; Lu, X.; Li, Z.; Gao, F. Hierarchical porous hollow N-doped Cu-based MOF derivatives as highly sensitive electrochemical sensing platform for pesticides detection. Sens. Actuators B 2022, 362, 131749. [Google Scholar] [CrossRef]
- Jing, C.; Kuang, Y.; Gu, X.; Xu, M.; Wu, Y.; Wang, X. An acetylcholine electrochemical biosensor based on bi-enzyme functionalized nanofiber composites. J. Electrochem. Soc. 2023, 170, 077513. [Google Scholar] [CrossRef]
- Upadhyay, S.; Rao, G.R.; Sharma, M.K.; Bhattacharya, B.K.; Rao, V.K.; Vijayaraghavan, R. Immobilization of acetylcholinesterase-choline oxidase on a gold-platinum bimetallic nanoparticles modified glassy carbon electrode for the sensitive detection of organophosphate pesticides, carbamates and nerve agents. Biosens. Bioelectron. 2009, 25, 832–838. [Google Scholar] [CrossRef]
- Chauhan, N.; Balayan, S.; Jain, U. Sensitive biosensing of neurotransmitter: 2D material wrapped nanotubes and MnO2 composites for the detection of acetylcholine. Synth. Met. 2020, 263, 116354. [Google Scholar] [CrossRef]
- Pchelintsev, N.A.; Millner, P.A. A novel procedure for rapid surface functionalisation and mediator loading of screen-printed carbon electrodes. Anal. Chim. Acta 2008, 612, 190–197. [Google Scholar] [CrossRef] [PubMed]
- Kaniewska, M.; Jońca, J.; Połeć, I.; Sikora, T.; Marty, L.-L.; Trojanowicz, M. Enantioselective inhibition of immobilized acetylcholinesterase in biosensor determination of pesticides. Cent. Eur. J. Chem. 2012, 10, 1760–1765. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, X.; Dai, Z.; Liu, S.; Tang, Z. Detection of mixed organophosphorus pesticides in real samples using quantum dots/bi-enzyme assembly multilayers. J. Mater. Chem. 2011, 21, 16955–16962. [Google Scholar] [CrossRef]
- Cao, X.; Guo, Y.; Zhao, M.; Li, J.; Wang, C.; Xia, J.; Zou, T.; Wang, Z. An efficient multi-enzyme cascade platform based on mesoporous metal-organic frameworks for the detection of organophosphorus and glucose. Food Chem. 2022, 381, 132282. [Google Scholar] [CrossRef]
- Snejdarkova, M.; Svobodova, L.; Evtugyn, G.; Budnikov, H.; Karyakin, A.; Nikolelis, D.P.; Hianik, T. Acetylcholinesterase sensors based on gold electrodes modified with dendrimer and polyaniline. A comparative research. Anal. Chim. Acta 2004, 514, 79–88. [Google Scholar] [CrossRef]
- Cuartero, M.; Pérez, S.; García, M.S.; García-Cánovas, F.; Ortuño, J.A. Comparative enzymatic studies using ion-selective electrodes. The case of cholinesterases. Talanta 2018, 180, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Cuartero, M.; García, M.S.; García-Cánovas, F.; Ortuño, J.Á. New approach for the potentiometric-enzymatic assay of reversible-competitive enzyme inhibitors. Application to acetylcholinesterase inhibitor galantamine and its determination in pharmaceuticals and human urine. Talanta 2013, 110, 8–14. [Google Scholar] [CrossRef]
- Ghindilis, A.L.; Morzunova, T.G.; Barmin, A.V.; Kurochkin, I.N. Potentiometric biosensors for cholinesterase inhibitor analysis based on mediatorless bioelectrocatalysis. Biosens. Bioelectron. 1996, 11, 873–880. [Google Scholar] [CrossRef]
- Veloso, A.J.; Nagy, P.M.; Zhang, B.; Dhar, D.; Liang, A.; Ibrahim, T.; Mikhaylichenko, S.; Aubert, I.; Kerman, K. Miniaturized electrochemical system for cholinesterase inhibitor detection. Anal. Chim. Acta 2013, 774, 73–78. [Google Scholar] [CrossRef]
- Zhang, Q.; Hu, Y.; Wu, D.; Ma, S.; Wang, J.; Rao, J.; Xu, L.; Xu, H.; Shao, H.; Guo, Z.; et al. Protein-mimicking nanowire-inspired electro-catalytic biosensor for probing acetylcholinesterase activity and its inhibitors. Talanta 2018, 183, 258–267. [Google Scholar] [CrossRef]
- Gu, S.; Lu, Y.; Ding, Y.; Li, L.; Zhang, F.; Wu, C. Droplet-based microfluidics for dose–response assay of enzyme inhibitors by electrochemical method. Anal. Chim. Acta 2013, 796, 68–74. [Google Scholar] [CrossRef]
- Levien, M.; Farka, Z.; Pastucha, M.; Skladal, P.; Nasri, Z.; Weltmann, K.-D.; Fricke, K. Functional plasma-polymerized hydrogel coatings for electrochemical biosensing. Appl. Surf. Sci. 2022, 584, 152511. [Google Scholar] [CrossRef]
- Turan, J.; Kesik, M.; Soylemez, S.; Goker, S.; Kolb, M.; Bahadir, M.; Toppare, L. Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs. J. Electroanal. Chem. 2014, 735, 43–50. [Google Scholar] [CrossRef]
- Vandeput, M.; Parsajoo, C.; Vanheuverzwijn, J.; Patris, S.; Yardim, Y.; le Jeune, A.; Sarakbi, A.; Mertens, D.; Kauffmann, J.M. Flow-through enzyme immobilized amperometric detector for the rapid screening of acetylcholinesterase inhibitors by flow injection analysis. J. Pharm. Biomed. Anal. 2015, 102, 267–275. [Google Scholar] [CrossRef]
- Ivanov, A.; Stoikov, D.; Shafigullina, I.; Shurpik, D.; Stoikov, I.; Evtugyn, G. Flow-through acetylcholinesterase sensor with replaceable enzyme reactor. Biosensors 2022, 12, 676. [Google Scholar] [CrossRef]
- Caratelli, V.; Ciampaglia, A.; Guiducci, J.; Sancesario, G.; Moscone, D.; Arduini, F. Precision medicine in Alzheimer’s disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosens. Bioelectron. 2020, 165, 112411. [Google Scholar] [CrossRef] [PubMed]
- Kostelnik, A.; Kopel, P.; Cegan, A.; Pohanka, M. Construction of an acetylcholinesterase sensor based on synthesized paramagnetic nanoparticles, a simple tool for neurotoxic compounds assay. Sensors 2017, 17, 676. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Chen, S.; Cai, J.; Song, D. Comparison of drug sensitivity using acetylcholinesterase biosensor based on nanoparticles-chitosan sol-gel composite. J. Electroanal. Chem. 2007, 611, 60–66. [Google Scholar] [CrossRef]
- Wang, B.; Ye, C.; Zhong, X. Electrochemical biosensor for organophosphate pesticides and Huperzine-A detection based on pd wormlike nanochains/graphitic carbon nitride nanocomposites and acetylcholinesterase. Electroanalysis 2016, 28, 304–311. [Google Scholar] [CrossRef]
- Omran, S.; Shoukry, E.M.; Mohamed, E.F.; Khaled, E.; El-Attar, R.O. Novel simple enzymatic potentiometric approach for toxicological assessment of anticholinesterase and Alzheimer’s drugs Enzymatic approach toxicological assessment. Egypt. Pharm. J. 2022, 21, 472–481. [Google Scholar] [CrossRef]
Surface Layer Assembly | Signal Measurement | Inhibitor, Concentration Range, LOD | Ref. |
---|---|---|---|
GCE modified with CB, pillar [6]arene and nanoAg, AChE from electric eel covalently immobilized via carbodiimide binding | Amperometry, mediated thiocholine oxidation | LODs: huperzine A 1.2 nM, galantamine 12.5 nM, donepezil 2.5 nM, berberine 10 nM | [74] |
GCE modified with CB and Co phtalocyanine, AChE from electric eel implemented in the PAA-PSS polyelectrolyte complexes | Amperometry, mediated oxidation of thiocholine | Donepezil, 0.1 nM–1.0 µM, IC50 24.7 nM Berberine 10 nM–0.1 mM, IC50 590 nM | [84] |
Carbon paste electrode with TTF-TCNQ/ionic liquid, AChE included in the ionic liquid gel | Amperometry, thiocholine oxidation | Eserine 0.1–1000 nM, LOD 0.026 nM | [85] |
GCE modified with CB and pillar [6]arene, AChE from electric eel covalently immobilized via carbodiimide binding | Amperometry, mediated thiocholine oxidation | Berberine 10 nM–10 µM, LOD 1.0 nM | [87] |
Au electrode modified with PAMAM dendrimer and co-immobilized AChE from electric eel and ChO via Au-S binding (amperometry) or adsorbed on polyaniline (potentiometry) | Amperometry, H2O2 oxidation, potentiometry, polyaniline equilibrium potential shift | Eserine, LOD 0.1 and 7000 nM for amperometric and potentiometric sensors, respectively | [97] |
Screen-printed Au electrode | DPV, thiocholine oxidation, AChE in solution | Donepezil, IC50 28 ± 7 nM | [101] |
GCE/rGO covered with L-cysteine–Ag(I) coordination polymer in Nafion matrix | Amperometry, H2O2 reduction in the mixture of AChE–ChO incubated with acetylthiocholine and donepezil | Donepezil, IC50 1.4 nM Tacrine IC50 3.5 nM | [102] |
SPCE with poly(methacrylate) and physically adsorbed AChE from electric eel | Amperometry, thiocholine oxidation | Eserine, 3–1000 ng/mL, IC75 2 µg/mL | [104] |
Graphite electrode covered with electropolymerized thiophene derivative covalently attached to AChE and ChO | Amperometry | Donepezil, 0.4–5.0 and 5–50 µg/L, LOD 27 ng/L | [105] |
Au disk electrode modified with cysteamine and AChE from electric eel covalently attached via Au-S bonding | Amperometry, thiocholine oxidation | IC50, µM: donepezil 0.50, neostigmine 0.71, eserine 0.77, tacrine 1.37, galantamine 1.20 | [106] |
SPCE modified with CB and pillar [5]arene, the AChE from electric eel immobilized via carbodiimide binding to the inner walls of flow cell | Amperometry, mediated thiocholine oxidation | Donepezil 1.0 nM–1.0 µM, IC50 40 nM, LOD 0.5 nM. Berberine 1.0 µM–1.0 mM, IC50 1.24 µM, LOD 0.12 µM | [107] |
SPCB on paper support with Prussian blue and BChE from horse serum immobilized via spotting the filter paper | Amperometry, mediated thiocholine oxidation | Physostigmine: 0.01–1.0 µM, LOD 5 nM | [108] |
GCE modified with nanoAu/silica gel and physically adsorbed AChE from electric eel | Amperometry, oxidation of thiocholine | Galantamine and neostigmine 0–10 µM | [110] |
GCE/nanoPd/g-C3N4/adsorbed AChE | Amperometry, oxidation of thiocholine | Huperzine A 3.89 nM–20.80 µM, LOD 1.30 nM | [111] |
SCE containing α-cyclodextrin in PVC matrix, AChE or BChE in solution incubated with an inhibitor | Potentiometry | Rivastigmine 0.247–1.45, LOD 0.097, Pyridostigmine 0.179–0.975, LOD 0.113, meclofenoxate 375–1725, LOD 30.924, memantine 3.55–18.38, LOD 1.056, methotrexate 1.0–37.0, LOD 3.557, cyclopentolate 2.88–15.6, LOD 0.947, oxfendazole 3.12–34.32, LOD 1.434, carbazepine 2.344–9.50, LOD 0.590 ng/mL | [112] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanov, A.; Shamagsumova, R.; Larina, M.; Evtugyn, G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination. Biosensors 2024, 14, 93. https://doi.org/10.3390/bios14020093
Ivanov A, Shamagsumova R, Larina M, Evtugyn G. Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination. Biosensors. 2024; 14(2):93. https://doi.org/10.3390/bios14020093
Chicago/Turabian StyleIvanov, Alexey, Rezeda Shamagsumova, Marina Larina, and Gennady Evtugyn. 2024. "Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination" Biosensors 14, no. 2: 93. https://doi.org/10.3390/bios14020093
APA StyleIvanov, A., Shamagsumova, R., Larina, M., & Evtugyn, G. (2024). Electrochemical Acetylcholinesterase Sensors for Anti-Alzheimer’s Disease Drug Determination. Biosensors, 14(2), 93. https://doi.org/10.3390/bios14020093