Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers
Abstract
:1. Introduction
2. Experimental
2.1. Chemicals and Reagents
2.2. Apparatus
2.3. Preparation of PLL/PEDOT−PG Nanocomposite
2.3.1. Preparation of PG
2.3.2. Synthesis of PLL/PEDOT−PG
2.4. Preparation of Molecularly Imprinted Electrode (MIP/PLL/PEDOT−PG/GCE)
2.5. Electrochemical Measurements
2.6. Detection of DBP in Real Samples
3. Results and Discussion
3.1. Characterization of PLL/PEDOT−PG Composite
3.2. Characterization of MIP/PLL/PEDOT−PG/GCE
3.3. Optimization of Preparation Conditions for MIP/PLL/PEDOT−PG/GCE
3.3.1. The Ratio of o-PD to DBP
3.3.2. The Cycles of Electropolymerization
3.3.3. Elution Time
3.3.4. Optimization of DBP Detection Conditions
- Incubation time
- Buffer pH
3.3.5. Electrochemical Detection of DBP
3.3.6. Selectivity of the Sensor
3.3.7. Repeatability, Reproducibility, and Stability of the Electrochemical Sensor
3.3.8. Determination of DBP in Practical Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xu, H.L.; Sheng, J.; Wu, X.; Zhan, K.; Tao, S.M.; Wen, X.; Liu, W.W.; Cudjoe, O.; Tao, F.B. Moderating effects of plastic packaged food on association of urinary phthalate metabolites with emotional symptoms in Chinese adolescents. Ecotox. Environ. Saf. 2021, 216, 112171. [Google Scholar] [CrossRef]
- Batool, S.; Batool, S.; Shameem, S.; Batool, T.; Batool, S. Effects of dibutyl phthalate and di(2-ethylhexyl) phthalate on hepatic structure and function of adult male mice. Toxicol. Ind. Health 2022, 38, 470–480. [Google Scholar] [CrossRef]
- Oluranti, O.I.; Alabi, B.A.; Michael, O.S.; Ojo, A.O.; Fatokun, B.P. Rutin prevents cardiac oxidative stress and inflammation induced by bisphenol A and dibutyl phthalate exposure via NRF-2/NF-κB pathway. Life Sci. 2021, 284, 119878. [Google Scholar] [CrossRef]
- Wang, J.; Tian, Y.C.; Wei, J.; Yu, H.B.; Lyu, C.J.; Song, Y.H. Impacts of dibutyl phthalate on biological municipal wastewater treatment in a pilot-scale A2/O-MBR system. Chemosphere 2022, 308, 136559. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, T.; Isama, K.; Matsuoka, A. Analysis of phthalic acid diesters, monoester, and other plasticizers in polyvinyl chloride household products in Japan. J. Environ. Sci. Health A 2011, 46, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Wright, R.J.; Bosch, R.; Gibson, M.I.; Christie-Oleza, J.A. Plasticizer degradation by marine bacterial isolates: A proteogenomic and metabolomic characterization. Environ. Sci. Technol. 2020, 54, 2244–2256. [Google Scholar] [CrossRef] [PubMed]
- He, Y.M.; Lin, W.C.; Shi, C.; Li, R.H.; Mu, C.K.; Wang, C.L.; Ye, Y.F. Accumulation, detoxification, and toxicity of dibutyl phthalate in the swimming crab. Chemosphere 2022, 289, 133183. [Google Scholar] [CrossRef]
- Zheng, D.; Cao, J.S.; Wang, P.F.; Zhao, J.Y.; Zhao, Y.J.; Zhang, T.; Li, C. Catalytic ozonation of dibutyl phthalate in the presence of Ag-doped NiFe2O4 and its mechanism. Environ. Technol. 2021, 45, 4528–4538. [Google Scholar] [CrossRef]
- Yu, H.; Wang, L.; Lin, Y.L.; Liu, W.X.; Tuyiringire, D.; Jiao, Y.Q.; Zhang, L.; Meng, Q.J.; Zhang, Y. Complete metabolic study by dibutyl phthalate degrading Pseudomonas sp.DNB-S1. Ecotox. Environ. Saf. 2020, 194, 110378. [Google Scholar] [CrossRef]
- Tao, Y.; Shi, H.T.; Jiao, Y.Q.; Han, S.Y.; Akindolie, M.S.; Yang, Y.; Chen, Z.B.; Zhang, Y. Effects of humic acid on the biodegradation of di-n-butyl phthalate in mollisol. J. Clean. Prod. 2020, 249, 119404. [Google Scholar] [CrossRef]
- Chen, W.J.; Wang, Z.G.; Xu, W.H.; Tian, R.M.; Zeng, J. Dibutyl phthalate contamination accelerates the uptake and metabolism of sugars by microbes in black soil. Environ. Pollut. 2020, 262, 114332. [Google Scholar] [CrossRef]
- Lin, Y.L.; Zhang, F.Q.; Li, R.; Hu, Y.; Yu, H.; Diogene, T.; Wang, L.; Zhang, Y. Effects of bok choy on the dissipation of dibutyl phthalate (DBP) in mollisol and its possible mechanisms of biochemistry and microorganisms. Ecotox. Environ. Saf. 2019, 181, 284–291. [Google Scholar] [CrossRef]
- Dobrzynska, M.M.; Tyrkiel, E.J.; Gajowik, A. Three generation study of reproductive and developmental toxicity following exposure of pubescent F0 male mice to di-n-butyl phthalate. Mutagenesis 2017, 32, 445–454. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.J.; Wan, Q.; Ge, J.; Feng, F.Y.; Yu, X.Y. Major factors dominating the fate of dibutyl phthalate in agricultural soils. Ecotox. Environ. Saf. 2019, 183, 109569. [Google Scholar] [CrossRef]
- Liao, C.S.; Chen, L.C.; Chen, B.S.; Lin, S.H. Bioremediation of endocrine disruptor di-n-butyl phthalate ester by Deinococcus radiodurans and Pseudomonas stutzeri. Chemosphere 2010, 78, 342–346. [Google Scholar] [CrossRef]
- Ge, J.J.; Cheng, J.; Li, Y.; Li, Q.X.; Yu, X.Y. Effects of dibutyl phthalate contamination on physiology, phytohormone homeostasis, rhizospheric and endophytic bacterial communities of Brassica rapa var. chinensis. Environ. Res. 2020, 189, 109953. [Google Scholar] [CrossRef]
- Bandforuzi, S.R.; Hadjmohammadi, M.R. Application of non-ionic surfactant as a developed method for the enhancement of two-phase solvent bar microextraction for the simultaneous determination of three phthalate esters from water samples. J. Chromatogr. A 2018, 1561, 39–47. [Google Scholar] [CrossRef]
- Zhu, F.; Zhang, H.; Qiu, M.; Wu, N.; Zeng, K.; Du, D.L. Dual-label time-resolved fluoroimmunoassay as an advantageous approach for investigation of diethyl phthalate & dibutyl phthalate in surface water. Sci. Total Environ. 2019, 695, 133793. [Google Scholar] [CrossRef]
- Xu, S.L.; Li, H.F.; Guo, M.; Wang, L.; Li, X.; Xue, Q. Liquid–liquid interfacial self-assembled triangular Ag nanoplate-based high-density and ordered SERS-active arrays for the sensitive detection of dibutyl phthalate (DBP) in edible oils. Analyst 2021, 146, 4858. [Google Scholar] [CrossRef]
- Zhou, Q.X.; Fang, Z.; Liao, X.K. Determination of phthalate esters from environmental water samples by micro-solid-phase extraction using TiO2 nanotube arrays before high-performance liquid chromatography. J. Sep. Sci. 2015, 38, 2526–2531. [Google Scholar] [CrossRef]
- González-Sálamo, J.; Hernández-Borges, J.; Afonso, M.; Delgado, M.R. Determination of phthalates in beverages using multiwalled carbon nanotubes dispersive solid hase extraction before HPLC–MS. J. Sep. Sci. 2018, 41, 2613–2622. [Google Scholar] [CrossRef]
- Sun, Q.; Chen, Y.; Li, F.; Jia, M.; Shi, G.Q. A one-step incubation ELISA kit for rapid determination of dibutyl phthalate in water, beverage and liquor. Open Chem. 2019, 17, 392–400. [Google Scholar] [CrossRef]
- Sun, X.Y.; Zhou, L.; Zhao, W.Y. A novel electrochemical immunosensor for dibutyl phthalate based on Au@Pt/PEI-rGO and DNA hybridization chain reaction signal amplification strategy. Bioelectrochemistry 2022, 145, 108104. [Google Scholar] [CrossRef]
- Wang, X.M.; Chen, C.; Chen, Y.F.; Kong, F.F.; Xu, Z.X. Detection of dibutyl phthalate in food samples by fluorescence ratio immunosensor based on dual-emission carbon quantum dot labelled aptamers. Food Agric. Immunol. 2020, 31, 813–826. [Google Scholar] [CrossRef]
- Zhou, Q.T.; Guo, M.; Wu, S.C.; Fornara, D.; Sarkar, B.; Sun, L.P.; Wang, H.L. Electrochemical sensor based on corncob biochar layer supported chitosan-MIPs for determination of dibutyl phthalate (DBP). J. Electroanal. Chem. 2021, 897, 115549. [Google Scholar] [CrossRef]
- Qin, H.L.; Wang, Z.; Yu, Q.H.; Xu, Q.; Hu, X.Y. Flexible dibutyl phthalate aptasensor based on self-powered CNTs-rGO enzymatic biofuel cells. Sens. Actuat. B-Chem. 2022, 371, 132468. [Google Scholar] [CrossRef]
- Zhang, C.X.; Zhou, J.; Ma, T.T.; Guo, W.F.; Wei, D.; Tan, Y.M.; Deng, Y. Advances in application of sensors for determination of phthalate esters. Chin. Chem. Lett. 2023, 34, 107670. [Google Scholar] [CrossRef]
- Liu, Y.H.; Lian, Z.R.; Li, F.F.; Majid, A.; Wang, J.T. Review on molecular imprinting technology and its application in pre-treatment and detection of marine organic pollutants. Mar. Pollut. Bull. 2021, 169, 112541. [Google Scholar] [CrossRef]
- Zhang, X.; Jiao, P.F.; Ma, Y.H.; Wei, Y.P. Molecular imprinted ZnS quantum dots-based sensor for selective sulfanilamide detection. Polymers 2022, 14, 3540. [Google Scholar] [CrossRef]
- Wang, B.X.; Hong, J.Y.; Liu, C.; Zhu, L.Y.; Jiang, L. An electrochemical molecularly imprinted polymer sensor for rapid β-lactoglobulin detection. Sensors 2021, 21, 8240. [Google Scholar] [CrossRef]
- Ding, S.C.; Lyu, Z.Y.; Li, S.Q.; Ruan, X.F.; Fei, M.G.; Zhou, Y.; Niu, X.H.; Zhu, W.L.; Du, D.; Lin, Y.H. Molecularly imprinted polypyrrole nanotubes based electrochemical sensor for glyphosate detection. Biosens. Bioelectron. 2021, 191, 113434. [Google Scholar] [CrossRef]
- Bora, H.; Mandal, D.; Chandra, A. High-performance, nitrogen-doped, carbon-nanotube-based electrochemical sensor for vitamin D3 detection. ACS Appl. Bio Mater. 2022, 5, 1721–1730. [Google Scholar] [CrossRef]
- Nawaz, M.A.H.; Akhtar, M.H.; Ren, J.; Akhtar, N.; Hayat, A.; Yu, C. Black phosphorus nanosheets/poly (allylamine hydrochloride) based electrochemical immunosensor for the selective detection of human epididymis protein 4. Nanotechnology 2022, 33, 485502. [Google Scholar] [CrossRef]
- To, J.W.F.; Chen, Z.; Yao, H.B.; He, J.J.; Kim, K.; Chou, H.H.; Pan, L.J.; Wilcox, J.; Cui, Y.; Bao, Z.N. Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. ACS Central Sci. 2015, 1, 68–76. [Google Scholar] [CrossRef]
- Lu, L. Recent advances in synthesis of three-dimensional porous graphene and its applications in construction of electrochemical (bio)sensors for small biomolecules detection. Biosens. Bioelectron. 2018, 110, 180–192. [Google Scholar] [CrossRef]
- Yang, Y.K.; Fang, G.Z.; Wang, X.M.; Pan, M.F.; Qian, H.L.; Liu, H.L.; Wang, S. Sensitive and selective electrochemical determination of quinoxaline-2-carboxylic acid based on bilayer of novel poly(pyrrole) functional composite using one-step electro-polymerization and molecularly imprinted poly(o-phenylenediamine). Anal. Chim. Acta 2014, 806, 136–143. [Google Scholar] [CrossRef]
- Bai, X.Y.; Zhang, B.; Liu, M.; Hu, X.L.; Fang, G.Z.; Wang, S. Molecularly imprinted electrochemical sensor based on polypyrrole/dopamine@graphene incorporated with surface molecularly imprinted polymers thin film for recognition of olaquindox. Bioelectrochemistry 2020, 132, 107398. [Google Scholar] [CrossRef]
- Yamato, H.; Ohwa, M.; Wernet, W. Stability of polypyrrole and poly(3,4-ethylenedioxythiophene) for biosensor application. J. Electroanal. Chem. 1995, 397, 163–170. [Google Scholar] [CrossRef]
- Irvin, J.A.; Reynolds, J.R. Low-oxidation-potential conducting polymers: Alternating substituted Para-phenylene and 3,4-ethylenedioxythiophene repeat units. Polymer 1998, 39, 2339–2347. [Google Scholar] [CrossRef]
- Li, D.D.; Liu, M.; Zhan, Y.Z.; Su, Q.; Zhang, Y.M.; Zhang, D.D. Electrodeposited poly(3,4-ethylenedioxythiophene) doped with graphene oxide for the simultaneous voltametric determination of ascorbic acid, dopamine and uric acid. Microchim. Acta 2020, 187, 94. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Y.X.; Xu, J.K.; Zhu, X.F.; Duan, X.M.; Lu, L.M.; Gao, Y.S.; Xing, H.K.; Yang, T.T.; Ye, G.; Yu, Y.F. Poly(3,4-ethylenedioxythiophene) nanorods/graphene oxide nanocomposite as a new electrode material for the selective electrochemical detection of mercury (II). Synth. Met. 2016, 220, 14–19. [Google Scholar] [CrossRef]
- Hui, Y.; Bian, C.; Xia, S.H.; Tong, J.H.; Wang, J.F. Synthesis and electrochemical sensing application of poly (3,4-ethylenedioxythiophene)-based materials: A review. Anal. Chim. Acta 2018, 1022, 1–19. [Google Scholar] [CrossRef]
- Naseri, M.; Fotouhi, L.; Ehsani, A. Recent progress in the development of conducting polymer-based nanocomposites for electrochemical biosensors applications: A mini-review. Chem. Rec. 2018, 18, 599–618. [Google Scholar] [CrossRef]
- Estrada-Osorio, D.V.; Escalona-Villalpando, R.A.; Gutiérrez, A.; Arriaga, L.G.; Ledesma-García, J. Poly-l-lysine-modified with ferrocene to obtain a redox polymer for mediated glucose biosensor application. Bioelectrochemistry 2022, 146, 108147. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.; Dan, A. Poly-l-lysine-functionalized green-light-emitting carbon dots as a fluorescence turn-on sensor for ultrasensitive detection of endotoxin. ACS Appl. Bio Mater. 2021, 4, 3410–3422. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.D.; Li, L.Z.; Ma, W.N.; Chen, X.; Zhang, Y.M. Electrodeposited reduced graphene oxide incorporating polymerization of L-lysine on electrode surface and its application in simultaneous electrochemical determination of ascorbic acid, dopamine and uric acid. Mat. Sci. Eng. C 2017, 70, 241–249. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhao, X.S. Conducting polymers directly coated on reduced graphene oxide sheets as high-performance supercapacitor electrodes. J. Phys. Chem. C 2012, 116, 5420–5426. [Google Scholar] [CrossRef]
- Choi, K.S.; Liu, F.; Choi, J.S.; Seo, T.S. Fabrication of free-standing multilayered graphene and poly (3,4-ethylenedioxythiophene) composite films with enhanced conductive and mechanical properties. Langmuir 2010, 26, 12902–12908. [Google Scholar] [CrossRef]
- Kumar, S.S.; Kumar, C.S.; Mathiyarasu, J.; Phani, K.L. Stabilized Gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: Nanocomposite formation, stability, and application in catalysis. Langmuir 2007, 23, 3401–3408. [Google Scholar] [CrossRef]
- Paradee, N.; Sirivat, A. Synthesis of poly(3,4-ethylenedioxythiophene) nanoparticles via chemical oxidation Polymerization. Polym. Int. 2014, 63, 106–113. [Google Scholar] [CrossRef]
- Fichet, O.; Tran-Van, F.; Teyssie, D.; Chevrot, C. Interfacial polymerization of a 3,4-ethylenedioxythiophene derivative using langmuir–blodgett technique. spectroscopic and electrochemical characterizations. Thin Solid Films 2002, 411, 280–288. [Google Scholar] [CrossRef]
- Zengin, H.; Zhou, W.; Jin, J.; Czerw, R.; Smith, D.W., Jr.; Echegoyen, L.; Carroll, D.L.; Foulger, S.H.; Ballato, J. Carbon nanotube doped polyaniline. Adv. Mater. 2002, 14, 1480–1483. [Google Scholar] [CrossRef]
- Damlin, P.; Suominen, M.; Heinonen, M.; Kvarnström, C. Non-covalent modification of graphene sheets in PEDOT composite materials by ionic liquids. Carbon 2015, 93, 533–543. [Google Scholar] [CrossRef]
- Liu, P.B.; Huang, Y.; Zhang, X. Preparation and excellent microwave absorption properties of ferromagnetic graphene/poly(3,4-ethylenedioxythiophene)/CoFe2O4 nanocomposites. Powder Technol. 2015, 276, 112–117. [Google Scholar] [CrossRef]
- Janata, J.; Josowicz, M. Conducting polymers in electronic chemical sensors. Nat. Mater. 2003, 2, 19–24. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Li, B.Q.; Song, Z.; Pan, S.H.; Zhang, Z.C.; Yao, H.; Zhu, S.Y.; Xu, G.B. A kanamycin sensor based on an electrosynthesized molecularly imprinted poly-o-phenylenediamine film on a single-walled carbon nanohorn modified glassy carbon electrode. Analyst 2017, 142, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Baranovskaya, V.S.; Berlina, A.N.; Eremin, S.A. A Fluorescence polarization immunoassay procedure for determining dibutyl phthalate in water. J. Anal. Chem. 2022, 77, 466–472. [Google Scholar] [CrossRef]
- Yan, Y.M.; Qu, Y.; Du, R.; Zhou, W.F.; Gao, H.X.; Lu, R.H. Colorimetric assay based on arginine-functionalized gold nanoparticles for the detection of dibutyl phthalate in Baijiu samples. Anal. Methods 2021, 13, 5179–5186. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.R.; Zhang, Z.M.; Liu, Z.J.; Wang, K.; Wu, X.Y.; Zeng, K.; Meng, H.; Zhang, Z. A highly sensitive signal-amplified gold nanoparticle-based electrochemical immunosensor for dibutyl phthalate detection. Biosens. Bioelectron. 2017, 91, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Dolai, J.; Ali, H.; Jana, N.R. Selective capturing and fluorescence “turn on” detection of dibutyl phthalate using a molecular imprinted nanocomposite. New J. Chem. 2021, 45, 19088. [Google Scholar] [CrossRef]
- Bolat, G.; Yaman, Y.T.; Abaci, S. Molecularly imprinted electrochemical impedance sensor for sensitive dibutyl phthalate (DBP) determination. Sens. Actuat. B-Chem. 2019, 299, 12700. [Google Scholar] [CrossRef]
- Zhu, N.F.; Zou, Y.M.; Huang, M.L.; Dong, S.B.; Wu, X.Y.; Liang, G.X.; Han, Z.X.; Zhang, Z. A sensitive, colorimetric immunosensor based on Cu-MOFs and HRP for detection of dibutyl phthalate in environmental and food samples. Talanta 2018, 186, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Yao, N.N.; Zeng, K.; Zhu, N.F.; Wang, Y.; Zhao, B.Y.; Zhang, Z. A novel enzyme-free ratiometric fluorescence immunoassay based on silver nanoparticles for the detection of dibutyl phthalate from Environmental Waters. Biosensors 2022, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- You, J.J.; Liu, H.; Zhang, R.R.; Pan, Q.F.; Sun, A.L.; Zhang, Z.M.; Shi, X.Z. Development and application of tricolor ratiometric fluorescence sensor based on molecularly imprinted nanoparticles for visual detection of dibutyl phthalate in seawater and fish samples. Sci. Total Environ. 2022, 848, 157675. [Google Scholar] [CrossRef]
- Zhu, N.F.; Li, X.S.; Liu, Y.; Liu, J.F.; Wang, Y.W.; Wu, X.Y.; Zhang, Z. Dual amplified ratiometric fluorescence ELISA based on G-quadruplex/hemin DNAzyme using tetrahedral DNA nanostructure as scaffold for ultrasensitive detection of dibutyl phthalate in aquatic system. Sci. Total Environ. 2021, 784, 147212. [Google Scholar] [CrossRef]
- Huang, Y.L.; Lin, Y.; Luo, F.; Wang, P.L.; Wang, J.; Qiu, B.; Guo, L.H.; Lin, Z.Y. Rapid detection of dibutyl phthalate in liquor by a semi-quantitative multicolor immunosensor with naked eyes as readout. Anal. Methods 2019, 11, 524–529. [Google Scholar] [CrossRef]
- Wang, S.; Pan, M.F.; Liu, K.X.; Xie, X.Q.; Yang, J.Y.; Hong, L.P.; Wang, S. A SiO2@MIP electrochemical sensor based on MWCNTs and AuNPs for highly sensitive and selective recognition and detection of dibutyl phthalate. Food Chem. 2022, 381, 132225. [Google Scholar] [CrossRef]
Methods | Sample | Linear Range | LOD | References |
---|---|---|---|---|
Fluorescence Polarization Immunoassay | Bottled drinking water | 0.5–7.5 μg/mL | 0.35 μg/mL (1.25 × 10−6 M) | [57] |
Colorimetric sensor | Baijiu | 0.0–2.8 mg/L | 0.05 mg/L (1.79 × 10−7 M) | [58] |
Electrochemical immunosensor | River water | - | 7 ng/mL (2.5 × 10−8 M) | [59] |
Fluorescence “switch on’’ | Water | 0.025–1 mM | 24 nM (2.4 × 10−8 M) | [60] |
Fluorescence ratio immunosensor | Liquor | 12.5–1500 μg/L | 5.0 μg/L (1.79 × 10−8 M) | [24] |
Molecularly imprinted electrochemical impedance sensor | - | 0.01–1.0 μM | 4.5 × 10−9 M | [61] |
Colorimetric immunosensor | Food | - | 1 μg/L (3.5 × 10−9 M) | [62] |
Ratiometric fluorescent immunoassay | Water | 2.31–66.84 ng/mL | 0.86 ng/mL (3.09 × 10−9 M) | [63] |
Tricolor ratiometric fluorescence sensor | Seawater | 2.0–20.0 × 103 μg/L | 0.65 μg/L 2.34 × 10−9 M) | [64] |
Ratiometric fluorescence ELISA | Water | 0.98–73.06 ng/mL | 0.17 ng/mL (6 × 10−10 M) | [65] |
Colorimetric immunoassay | Liquor | 150–2700 mg/L (0.54–9.72 mM) | 76 ng/L (2.73 × 10−10 M) | [66] |
MIP electrochemical sensor | Tap water Baijiu | 10−7 g/L–10−2 g/L | 5.09 × 10−9 g/L (1.83 × 10−11 M) | [67] |
Electrochemical immunosensor | Liquor | 1 pg/mL–0.1 μg/mL | 0.276 pg/mL (9.92 × 10−13 M) | [23] |
MIP electrochemical sensor | Plastic samples | 1 fM–5 µM | 0.88 fM (8.8 × 10−14 M) | This work |
Plastic Samples | Detected (µM) | Added (µM) | DPV | GCMS | ||||
---|---|---|---|---|---|---|---|---|
Found (µM) | Recovery (%) | RSD (%) | Found (µM) | Recovery (%) | RSD (%) | |||
PVC1-W | ND | 0.05 | 0.0512 | 102.4 | 2.9 | 0.0495 | 99.0 | 4.7 |
0.5 | 0.4963 | 99.3 | 4.5 | 0.5113 | 102.3 | 3.8 | ||
PVC1-C | ND | 0.05 | 0.0494 | 98.8 | 4.8 | 0.0512 | 102.4 | 1.4 |
0.5 | 0.5102 | 102.0 | 5.3 | 0.4962 | 99.2 | 4.7 | ||
PVC2-W | ND | 0.05 | 0.0489 | 97.8 | 3.7 | 0.0485 | 97.0 | 5.2 |
0.5 | 0.5226 | 104.5 | 2.6 | 0.4936 | 98.7 | 3.3 | ||
PVC2-C | ND | 0.05 | 0.0492 | 98.5 | 2.7 | 0.0490 | 98.0 | 3.2 |
0.5 | 0.4933 | 98.7 | 6.3 | 0.4926 | 98.5 | 3.7 | ||
PET-W | ND | 0.05 | 0.0533 | 106.6 | 3.8 | 0.0522 | 104.4 | 3.6 |
0.5 | 0.4896 | 97.9 | 5.4 | 0.5205 | 104.1 | 2.9 | ||
PET-C | ND | 0.05 | 0.0511 | 102.2 | 5.6 | 0.0511 | 102.2 | 4.8 |
0.5 | 0.4875 | 97.5 | 2.8 | 0.4976 | 99.5 | 2.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Li, S.; Tang, L.; Li, S.; Hu, C.; Zhang, D.; Chao, L.; Liu, X.; Tan, Y.; Deng, Y. Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers. Biosensors 2024, 14, 121. https://doi.org/10.3390/bios14030121
Zhang C, Li S, Tang L, Li S, Hu C, Zhang D, Chao L, Liu X, Tan Y, Deng Y. Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers. Biosensors. 2024; 14(3):121. https://doi.org/10.3390/bios14030121
Chicago/Turabian StyleZhang, Chuanxiang, Song Li, Lingxiao Tang, Shuo Li, Changchun Hu, Dan Zhang, Long Chao, Xueying Liu, Yimin Tan, and Yan Deng. 2024. "Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers" Biosensors 14, no. 3: 121. https://doi.org/10.3390/bios14030121
APA StyleZhang, C., Li, S., Tang, L., Li, S., Hu, C., Zhang, D., Chao, L., Liu, X., Tan, Y., & Deng, Y. (2024). Ultrasensitive, Label-Free Voltammetric Detection of Dibutyl Phthalate Based on Poly-l-lysine/poly(3,4-ethylenedioxythiophene)-porous Graphene Nanocomposite and Molecularly Imprinted Polymers. Biosensors, 14(3), 121. https://doi.org/10.3390/bios14030121