On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies
Abstract
:1. Introduction
2. Bioaerosol Sampling
2.1. Passive Sampling
2.1.1. Passive Sampling under Gravity
2.1.2. Passive Sampling through Electrostatic Attraction
2.1.3. Passive Sampling through Thermal Precipitation
2.2. Active Sampling
2.2.1. Impaction
2.2.2. Cyclone
2.2.3. Impingement
2.2.4. Filtration
2.2.5. Other Approaches
3. Sampling Efficiency Improvement Strategies
4. Detection Methods
4.1. Molecular Detection Method
4.2. Immunological Detection Method
4.2.1. Radioimmunoassay (RIA)
4.2.2. Enzyme-Linked Immunosorbent Assay (ELISA)
4.2.3. Lateral Flow Immunoassay
4.2.4. Improvement of Immunoassays
4.3. Non-Immunodetection Methods
5. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, K.H.; Kabir, E.; Jahan, S.A. Airborne Bioaerosols and Their Impact on Human Health. J. Environ. Sci. 2018, 67, 23–35. [Google Scholar] [CrossRef]
- Cox, J.; Mbareche, H.; Lindsley, W.G.; Duchaine, C. Field Sampling of Indoor Bioaerosols. Aerosol Sci. Technol. 2020, 54, 572–584. [Google Scholar] [CrossRef]
- Qian, S.; Jiang, M.; Liu, Z. Inertial migration of aerosol particles in three-dimensional microfluidic channels. Particuology 2021, 55, 23–34. [Google Scholar] [CrossRef]
- Bian, X.; Lan, Y.; Wang, B.; Zhang, Y.S.; Liu, B.; Yang, P.; Zhang, W.; Qiao, L. Microfluidic Air Sampler for Highly Efficient Bacterial Aerosol Collection and Identification. Anal. Chem. 2016, 88, 11504–11512. [Google Scholar] [CrossRef]
- Pan, Y.Y.; Zhao, B.C.; Zhang, X.; Zhu, W.; Shen, A.G. “Dramatic Growth” of Microbial Aerosols for Visualization and Accurate Counting of Bioaerosols. Anal. Chem. 2023, 95, 13537–13545. [Google Scholar] [CrossRef] [PubMed]
- Santarpia, J.L.; Klug, E.; Ravnholdt, A.; Kinahan, S.M. Environmental sampling for disease surveillance: Recent advances and recommendations for best practice. J. Air Waste Manag. Assoc. 2023, 73, 434–461. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, A.J.; Thomas, L.D. Infectious Diseases Transmitted by Grafts. In Infectious Diseases; Elsevier: Amsterdam, The Netherlands, 2017; pp. 805–807.e1. ISBN 9780702062858. [Google Scholar]
- Lee, S.A.; Willeke, K.; Mainelis, G.; Adhikari, A.; Wang, H.; Reponen, T.; Grinshpun, S.A. Assessment of Electrical Charge on Airborne Microorganisms by a New Bioaerosol Sampling Method. J. Occup. Environ. Hyg. 2004, 1, 127–138. [Google Scholar] [CrossRef] [PubMed]
- Manibusan, S.; Mainelis, G. Passive bioaerosol samplers: A complementary tool for bioaerosol research. A review. J. Aerosol Sci. 2022, 163, 105992. [Google Scholar] [CrossRef] [PubMed]
- Namieśnik, J.; Zabiegała, B.; Kot-Wasik, A.; Partyka, M.; Wasik, A. Passive Sampling and/or Extraction Techniques in Environmental Analysis: A Review. Anal. Bioanal. Chem. 2005, 381, 279–301. [Google Scholar] [CrossRef]
- Seethapathy, S.; Górecki, T.; Li, X. Passive Sampling in Environmental Analysis. J. Chromatogr. A 2008, 1184, 234–253. [Google Scholar] [CrossRef]
- Legan, D.; Vandeven, M.H. Sampling techniques. In Detecting Pathogens in Food; Woodhead Publishing: Cambridge, UK, 2003; pp. 20–51. [Google Scholar]
- Berry, C.M. An Electrostatic Method for Collecting Bacteria from Air. Public Health Rep. 2018, 56, 2044–2051. [Google Scholar] [CrossRef]
- Morrow, P.E.; Mercer, T.T. A Point-to-Plane Electrostatic Precipitator for Particle Size Sampling. Am. Ind. Hyg. Assoc. J. 1964, 25, 8–14. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.Y.H.; Pui, D.Y.H.; Rubow, K.L.; Szymanski, W.W. Electrostatic Effects in Aerosol Sampling and Filtration. Ann. Occup. Hyg. 1985, 29, 251–269. [Google Scholar] [CrossRef] [PubMed]
- Mainelis, G.; Górny, R.L.; Reponen, T.; Trunov, M.; Grinshpun, S.A.; Baron, P.; Yadav, J.; Willeke, K. Effect of Electrical Charges and Fields on Injury and Viability of Airborne Bacteria. Biotechnol. Bioeng. 2002, 79, 229–241. [Google Scholar] [CrossRef] [PubMed]
- Dixkens, J.; Fissan, H. Development of an Electrostatic Precipitator for Off-Line Particle Analysis. Aerosol Sci. Technol. 1999, 30, 438–453. [Google Scholar] [CrossRef]
- Gast, R.K.; Mitchell, B.W.; Holt, P.S. Detection of Airborne Salmonella Enteritidis in the Environment of Experimentally Infected Laying Hens by an Electrostatic Sampling Device. Avian Dis. 2004, 48, 148–154. [Google Scholar] [CrossRef]
- Madsen, A.M.; Sharma, A.K. Sampling of High Amounts of Bioaerosols Using a High-Volume Electrostatic Field Sampler. Ann. Occup. Hyg. 2008, 52, 167–176. [Google Scholar] [CrossRef] [PubMed]
- Noss, I.; Wouters, I.M.; Visser, M.; Heederik, D.J.J.; Thorne, P.S.; Brunekreef, B.; Doekes, G. Evaluation of a Low-Cost Electrostatic Dust Fall Collector for Indoor Air Endotoxin Exposure Assessment. Appl. Environ. Microbiol. 2008, 74, 5621–5627. [Google Scholar] [CrossRef]
- Ma, Z.; Zheng, Y.; Cheng, Y.; Xie, S.; Ye, X.; Yao, M. Development of an Integrated Microfluidic Electrostatic Sampler for Bioaerosol. J. Aerosol Sci. 2016, 95, 84–94. [Google Scholar] [CrossRef]
- Roux, J.M.; Kaspari, O.; Heinrich, R.; Hanschmann, N.; Grunow, R. Investigation of a New Electrostatic Sampler for Concentrating Biological and Non-Biological Aerosol Particles. Aerosol Sci. Technol. 2013, 47, 463–471. [Google Scholar] [CrossRef]
- Han, T.; Nazarenko, Y.; Lioy, P.J.; Mainelis, G. Collection Efficiencies of an Electrostatic Sampler with Superhydrophobic Surface for Fungal Bioaerosols. Indoor Air 2011, 21, 110–120. [Google Scholar] [CrossRef]
- Han, T.; Zhen, H.; Fennell, D.E.; Mainelis, G. Design and Evaluation of the Field-Deployable Electrostatic Precipitator with Superhydrophobic Surface (Fdepss) with High Concentration Rate. Aerosol Air Qual. Res. 2015, 15, 2397–2408. [Google Scholar] [CrossRef]
- Han, T.T.; Myers, N.T.; Manibusan, S.; Mainelis, G. Development and Optimization of Stationary Electrostatic Bioaerosol Sampler (SEBS) for Viable and Culturable Airborne Microorganisms. J. Aerosol Sci. 2022, 162, 105951. [Google Scholar] [CrossRef]
- Orr, C.; Martin, R.A. Thermal Precipitator for Continuous Aerosol Sampling. Rev. Sci. Instrum. 1958, 29, 129–130. [Google Scholar] [CrossRef]
- Orr, C.; Gordon, M.T.; Kordecki, M.C. Thermal Precipitation for Sampling Air-Borne Microorganisms. Appl. Microbiol. 1956, 4, 116–118. [Google Scholar] [CrossRef] [PubMed]
- Cember, H.; Hatch, T.; Watson, J.A. Durt Sampling with a Rotating Thermal Precipitator. Am. Ind. Hyg. Assoc. Q. 1953, 14, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Toit, R.S.D.; Gilfillan, T.C. Simultaneous Airborne Dust Samples with Konimeter, Thermal Precipitator and Dosimeter in Asbestos Mines. Ann. Occup. Hyg. 1977, 20, 333–344. [Google Scholar] [CrossRef] [PubMed]
- Tsai, C.J.; Lu, H.-C. Design and Evaluation of a Plate-to-Plate Thermophoretic Precipitator. Aerosol Sci. Technol. 1995, 22, 172–180. [Google Scholar] [CrossRef]
- Maynard, A.D. The Development of a New Thermophoretic Precipitator for Scanning Transmission Electron Microscope Analysis of Ultrafine Aerosol Particles. Aerosol Sci. Technol. 1995, 23, 521–533. [Google Scholar] [CrossRef]
- Wang, B.; Tao, S.; Chen, D.R. A Cylindrical Thermal Precipitator with a Particle Size-Selective Inlet. Aerosol Sci. Technol. 2012, 46, 1227–1238. [Google Scholar] [CrossRef]
- Wang, B.; Ou, Q.; Tao, S.; Chen, D.R. Performance Study of a Disk-to-Disk Thermal Precipitator. J. Aerosol Sci. 2012, 52, 45–56. [Google Scholar] [CrossRef]
- Broßell, D.; Tröller, S.; Dziurowitz, N.; Plitzko, S.; Linsel, G.; Asbach, C.; Azong-Wara, N.; Fissan, H.; Schmidt-Ott, A. A Thermal Precipitator for the Deposition of Airborne Nanoparticles onto Living Cells-Rationale and Development. J. Aerosol Sci. 2013, 63, 75–86. [Google Scholar] [CrossRef]
- Napoli, C.; Marcotrigiano, V.; Montagna, M.T. Air Sampling Procedures to Evaluate Microbial Contamination: A Comparison between Active and Passive Methods in Operating Theatres. BMC Public Health 2012, 12, 594. [Google Scholar] [CrossRef]
- Pasquarella, C.; Albertini, R.; Dall’aglio, P.; Saccani, E.; Sansebastiano, G.E.; Signorelli, C. Air microbial sampling: The state of the art. Ig. Sanita Pubblica 2008, 64, 79–120. [Google Scholar]
- Mainelis, G. Bioaerosol Sampling: Classical Approaches, Advances, and Perspectives. Aerosol Sci. Technol. 2020, 54, 496–519. [Google Scholar] [CrossRef]
- Ghosh, B.; Lal, H.; Srivastava, A. Review of Bioaerosols in Indoor Environment with Special Reference to Sampling, Analysis and Control Mechanisms. Environ. Int. 2015, 85, 254–272. [Google Scholar] [CrossRef]
- Li, M.; Wang, L.; Qi, W.; Liu, Y.; Lin, J. Challenges and Perspectives for Biosensing of Bioaerosol Containing Pathogenic Microorganisms. Micromachines 2021, 12, 798. [Google Scholar] [CrossRef] [PubMed]
- Clauß, M.; Springorum, A.C.; Hartung, J. Effective Collection of Airborne Micro-Organisms by Direct Impaction on Silicone Sealants—Comparison of Different Adherent Surfaces. Aerosol Sci. Technol. 2010, 44, 993–1004. [Google Scholar] [CrossRef]
- Haig, C.W.; Mackay, W.G.; Walker, J.T.; Williams, C. Bioaerosol Sampling: Sampling Mechanisms, Bioefficiency and Field Studies. J. Hosp. Infect. 2016, 93, 242–255. [Google Scholar] [CrossRef]
- Andersen, A.A. New sampler for the collection, sizing, and enumeration of viable airborne particles. J. Bacteriol. 1958, 76, 471–484. [Google Scholar] [CrossRef]
- Lee, B.U.; Kim, S.S. Sampling E. coli and B. subtilis Bacteria Bioaerosols by a New Type of Impactor with a Cooled Impaction Plate. J. Aerosol Sci. 2003, 34, 1097–1100. [Google Scholar] [CrossRef]
- Yao, M.; Mainelis, G. Investigation of Cut-Off Sizes and Collection Efficiencies of Portable Microbial Samplers. Aerosol Sci. Technol. 2006, 40, 595–606. [Google Scholar] [CrossRef]
- Yao, M.; Mainelis, G. Effect of Physical and Biological Parameters on Enumeration of Bioaerosols by Portable Microbial Impactors. J. Aerosol Sci. 2006, 37, 1467–1483. [Google Scholar] [CrossRef]
- Mainelis, G.; Tabayoyong, M. The Effect of Sampling Time on the Overall Performance of Portable Microbial Impactors. Aerosol Sci. Technol. 2010, 44, 75–82. [Google Scholar] [CrossRef]
- Zhen, S.; Li, K.; Yin, L.; Yao, M.; Zhang, H.; Chen, L.; Zhou, M.; Chen, X. A Comparison of the Efficiencies of a Portable BioStage Impactor and a Reuter Centrifugal Sampler (RCS) High Flow for Measuring Airborne Bacteria and Fungi Concentrations. J. Aerosol Sci. 2009, 40, 503–513. [Google Scholar] [CrossRef]
- Park, D.; Kim, Y.-H.; Woo Park, C.; Hwang, J.; Kim, Y.-J. New Bio-Aerosol Collector Using a Micromachined Virtual Impactor. J. Aerosol Sci. 2009, 40, 415–422. [Google Scholar] [CrossRef]
- Chen, H.; Yao, M. A High-Flow Portable Biological Aerosol Trap (HighBioTrap) for Rapid Microbial Detection. J. Aerosol Sci. 2018, 117, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Okuda, T.; Isobe, R. Improvement of a High-Volume Aerosol Particle Sampler for Collecting Submicron Particles through the Combined Use of a Cyclone with a Smoothened Inner Wall and a Circular Cone Attachment. Asian J. Atmos. Environ. 2017, 11, 131–137. [Google Scholar] [CrossRef]
- Pant, K.; Crowe, C.T.; Irving, P. On the Design of Miniature Cyclones for the Collection of Bioaerosols. Powder Technol. 2002, 125, 260–265. [Google Scholar] [CrossRef]
- Lindsley, W.G.; Green, B.J.; Blachere, F.M.; Martin, S.B.; Law, B.F.; Jensen, P.A.; Schafer, M.P.; NIOSH. Sampling and Characterization of Bioaerosols. In NIOSH Manual of Analytical Methods, 5th ed.; 2017; Chapter BA. Available online: https://www.cdc.gov/niosh/nmam/pdf/chapter-ba.pdf (accessed on 20 February 2024).
- Hsiao, T.C.; Chen, D.; Greenberg, P.S.; Street, K.W. Effect of Geometric Configuration on the Collection Efficiency of Axial Flow Cyclones. J. Aerosol Sci. 2011, 42, 78–86. [Google Scholar] [CrossRef]
- Brar, L.S.; Sharma, R.P.; Dwivedi, R. Effect of Vortex Finder Diameter on Flow Field and Collection Efficiency of Cyclone Separators. Part. Sci. Technol. 2015, 33, 34–40. [Google Scholar] [CrossRef]
- Elsayed, K.; Lacor, C. The Effect of Cyclone Vortex Finder Dimensions on the Flow Pattern and Performance Using LES. Comput. Fluids 2013, 71, 224–239. [Google Scholar] [CrossRef]
- El-Batsh, H.M. Improving Cyclone Performance by Proper Selection of the Exit Pipe. Appl. Math. Model. 2013, 37, 5286–5303. [Google Scholar] [CrossRef]
- King, M.D.; Thien, B.F.; Tiirikainen, S.; McFarland, A.R. Collection Characteristics of a Batch-Type Wetted Wall Bioaerosol Sampling Cyclone. Aerobiologia 2009, 25, 239–247. [Google Scholar] [CrossRef]
- McFarland, A.R.; Haglund, J.S.; King, M.D.; Hu, S.; Phull, M.S.; Moncla, B.W.; Seo, Y. Wetted Wall Cyclones for Bioaerosol Sampling. Aerosol Sci. Technol. 2010, 44, 241–252. [Google Scholar] [CrossRef]
- Cho, Y.S.; Hong, S.C.; Choi, J.; Jung, J.H. Development of an Automated Wet-Cyclone System for Rapid, Continuous and Enriched Bioaerosol Sampling and Its Application to Real-Time Detection. Sens. Actuators B Chem. 2019, 284, 525–533. [Google Scholar] [CrossRef] [PubMed]
- Sung, G.; Ahn, C.; Kulkarni, A.; Shin, W.G.; Kim, T. Highly Efficient In-Line Wet Cyclone Air Sampler for Airborne Virus Detection. J. Mech. Sci. Technol. 2017, 31, 4363–4369. [Google Scholar] [CrossRef]
- Heo, K.J.; Ko, H.S.; Jeong, S.B.; Kim, S.B.; Jung, J.H. Enriched Aerosol-to-Hydrosol Transfer for Rapid and Continuous Monitoring of Bioaerosols. Nano Lett. 2021, 21, 1017–1024. [Google Scholar] [CrossRef]
- Lee, C.H.; Seok, H.; Jang, W.; Kim, J.T.; Park, G.; Kim, H.U.; Rho, J.; Kim, T.; Chung, T.D. Bioaerosol Monitoring by Integrating DC Impedance Microfluidic Cytometer with Wet-Cyclone Air Sampler. Biosens. Bioelectron. 2021, 192, 113499. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Qi, X.; Peng, Y.; Zhou, L.; Ma, J.; Yao, M. A Robot Assisted High-Flow Portable Cyclone Sampler for Bacterial and SARS-CoV-2 Aerosols. Aerosol Air Qual. Res. 2021, 21, 210130. [Google Scholar] [CrossRef]
- King, M.D.; McFarland, A.R. Bioaerosol Sampling with a Wetted Wall Cyclone: Cell Culturability and DNA Integrity of Escherichia coli Bacteria. Aerosol Sci. Technol. 2012, 46, 82–93. [Google Scholar] [CrossRef]
- Duquenne, P.; Coulais, C.; Bau, S.; Simon, X. Performances of the BC-112 NIOSH Cyclone for the Measurement of Endotoxins in Bioaerosols: A Study in Laboratory Conditions. J. Aerosol Sci. 2018, 116, 92–105. [Google Scholar] [CrossRef]
- Zheng, Y.; Yao, M. Liquid Impinger BioSampler’s Performance for Size-Resolved Viable Bioaerosol Particles. J. Aerosol Sci. 2017, 106, 34–42. [Google Scholar] [CrossRef]
- Jang, J.; Hendriksen, N.B.; Jakobsen, H.H.; Gosewinkel, U. Application of Cytosense Flow Cytometer for the Analysis of Airborne Bacteria Collected by a High Volume Impingement Sampler. J. Microbiol. Methods 2018, 154, 63–72. [Google Scholar] [CrossRef]
- Šantl-Temkiv, T.; Amato, P.; Gosewinkel, U.; Thyrhaug, R.; Charton, A.; Chicot, B.; Finster, K.; Bratbak, G.; Löndahl, J. High-Flow-Rate Impinger for the Study of Concentration, Viability, Metabolic Activity, and Ice-Nucleation Activity of Airborne Bacteria. Environ. Sci. Technol. 2017, 51, 11224–11234. [Google Scholar] [CrossRef] [PubMed]
- Mirzaee, I.; Song, M.; Charmchi, M.; Sun, H. A Microfluidics-Based on-Chip Impinger for Airborne Particle Collection. Lab A Chip 2016, 16, 2254–2264. [Google Scholar] [CrossRef]
- Truyols Vives, J.; Muncunill, J.; Toledo Pons, N.; Baldoví, H.G.; Sala Llinàs, E.; Mercader Barceló, J. SARS-CoV-2 Detection in Bioaerosols Using a Liquid Impinger Collector and DdPCR. Indoor Air 2022, 32, e13002. [Google Scholar] [CrossRef]
- Habibi, N.; Behbehani, M.; Uddin, S.; Al-Salameen, F.; Shajan, A.; Zakir, F. Chapter17—A Safe and Effective Sample Collection Method for Assessment of SARS-CoV-2 in Aerosol Samples. In Environmental Resilience and Transformation in Times of COVID-19; Ramanathan, A.L., Sabarathinam, C., Arriola, F., Prasanna, M.V., Kumar, P., Jonathan, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 173–178. ISBN 978-0-323-85512-9. [Google Scholar]
- Riba, J.; Gleichmann, T.; Zimmermann, S.; Zengerle, R.; Koltay, P. Label-free isolation and deposition of single bacterial cells from heterogeneous samples for clonal culturing. Sci. Rep. 2016, 6, 32837. [Google Scholar] [CrossRef] [PubMed]
- Blomquist, G.; Palmgren, U.; Strom, G. Improved Techniques for Sampling Airborne Fungal Particles in Highly Contaminated Environments. Scand. J. Work. Environ. Health 1984, 10, 253–258. [Google Scholar] [CrossRef]
- Pasanen, A.L.; Kalliokoski, P.; Pasanen, P.; Salmi, T.; Tossavainen, A. Fungi Carried from Farmers’ Work into Farm Homes. Am. Ind. Hyg. Assoc. J. 1989, 50, 631–633. [Google Scholar] [CrossRef]
- Eduard, W.; Lacey, J.; Karlsson, K.; Palmgren, U.; Ström, G.; Blomquist, G. Evaluation of Methods for Enumerating Microorganisms in Filter Samples from Highly Contaminated Occupational Environments. Am. Ind. Hyg. Assoc. J. 1990, 51, 427–436. [Google Scholar] [CrossRef]
- Thorne, P.S.; Lange, J.L.; Bloebaum, P.; Kullman, G.J. Bioaerosol Sampling in Field Studies: Can Samples Be Express Mailed? Am. Ind. Hyg. Assoc. J. 1994, 55, 1072–1079. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.-H.; Li, C.-S. The Effect of Sampling Time and Flow Rates on the Bioefficiency of Three Fungal Spore Sampling Methods. Aerosol Sci. Technol. 1998, 28, 511–522. [Google Scholar] [CrossRef]
- Näsman, Å.; Blomquist, G.; Levin, J.-O. Air Sampling of Fungal Spores on Filters. An Investigation on Passive Sampling and Viability. J. Environ. Monit. 1999, 1, 361–365. [Google Scholar] [CrossRef]
- Wang, Z.; Reponen, T.; Grinshpun, S.A.; Górny, R.L.; Willeke, K. Effect of Sampling Time and Air Humidity on the Bioefficiency of Filter Samplers for Bioaerosol Collection. J. Aerosol Sci. 2001, 32, 661–674. [Google Scholar] [CrossRef]
- Predicala, B.Z.; Urban, J.E.; Maghirang, R.G.; Jerez, S.B.; Goodband, R.D. Assessment of Bioaerosols in Swine Barns by Filtration and Impaction. Curr. Microbiol. 2002, 44, 136–140. [Google Scholar] [CrossRef]
- Zhang, Q.; Damit, B.; Welch, J.; Park, H.; Wu, C.-Y.; Sigmund, W. Microwave Assisted Nanofibrous Air Filtration for Disinfection of Bioaerosols. J. Aerosol Sci. 2010, 41, 880–888. [Google Scholar] [CrossRef]
- Shen, H.; Han, M.; Shen, Y.; Shuai, D. Electrospun Nanofibrous Membranes for Controlling Airborne Viruses: Present Status, Standardization of Aerosol Filtration Tests, and Future Development. ACS Environ. Au 2022, 2, 290–309. [Google Scholar] [CrossRef]
- Yoon, K.Y.; Byeon, J.H.; Park, C.W.; Hwang, J. Antimicrobial Effect of Silver Particles on Bacterial Contamination of Activated Carbon Fibers. Environ. Sci. Technol. 2008, 42, 1251–1255. [Google Scholar] [CrossRef]
- Chen, Y.C.; Liao, C.H.; Shen, W.T.; Su, C.; Wu, Y.C.; Tsai, M.H.; Hsiao, S.S.; Yu, K.P.; Tseng, C.H. Effective Disinfection of Airborne Microbial Contamination in Hospital Wards Using a Zero-Valent Nano-Silver/TiO2-Chitosan Composite. Indoor Air 2019, 29, 439–449. [Google Scholar] [CrossRef]
- Heo, K.J.; Jeong, S.B.; Shin, J.; Hwang, G.B.; Ko, H.S.; Kim, Y.; Choi, D.Y.; Jung, J.H. Water-Repellent TiO2-Organic Dye-Based Air Filters for Efficient Visible-Light-Activated Photochemical Inactivation against Bioaerosols. Nano Lett. 2021, 21, 1576–1583. [Google Scholar] [CrossRef]
- Su, X.; Xu, Y.; Zhao, H.; Li, S.; Chen, L. Design and Preparation of Centrifugal Microfluidic Chip Integrated with SERS Detection for Rapid Diagnostics. Talanta 2019, 194, 903–909. [Google Scholar] [CrossRef]
- Peng, J.; Chan, C.; Zhang, S.; Sklavounos, A.A.; Olson, M.E.; Scott, E.Y.; Hu, Y.; Rajesh, V.; Li, B.B.; Chamberlain, M.D.; et al. All-in-One Digital Microfluidics Pipeline for Proteomic Sample Preparation and Analysis. Chem. Sci. 2023, 14, 2887–2900. [Google Scholar] [CrossRef]
- Han, Z.; Peng, C.; Yi, J.; Zhang, D.; Xiang, X.; Peng, X.; Su, B.; Liu, B.; Shen, Y.; Qiao, L. Highly Efficient Exosome Purification from Human Plasma by Tangential Flow Filtration Based Microfluidic Chip. Sens. Actuators B Chem. 2021, 333, 129563. [Google Scholar] [CrossRef]
- Jiang, X.; Liu, Y.; Liu, Q.; Jing, W.; Qin, K.; Sui, G. Rapid Capture and Analysis of Airborne Staphylococcus Aureus in the Hospital Using a Microfluidic Chip. Micromachines 2016, 7, 169. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Hong, S.C.; Kim, W.; Jung, J.H. Highly Enriched, Controllable, Continuous Aerosol Sampling Using Inertial Microfluidics and Its Application to Real-Time Detection of Airborne Bacteria. ACS Sens. 2017, 2, 513–521. [Google Scholar] [CrossRef] [PubMed]
- Lee, I.; Jeon, E.; Lee, J. On-site bioaerosol sampling and detection in microfluidic platforms. Trends Anal. Chem. 2023, 158, 116880. [Google Scholar] [CrossRef] [PubMed]
- Piri, A.; Hyun, K.A.; Jung, H.; Nama, K.S.; Hwang, J. Enhanced enrichment of collected airborne coronavirus and influenza virus samples via a ConA-coated microfluidic chip for PCR detection. J. Hazard. Mater. 2024, 465, 133249. [Google Scholar] [CrossRef]
- Guo, J.; Lv, M.; Liu, Z.; Qin, T.; Qiu, H.; Zhang, L.; Lu, J.; Hu, L.; Yang, W.; Zhou, D. Comprehensive performance evaluation of six bioaerosol samplers based on an aerosol wind tunnel. Environ. Int. 2024, 183, 108402. [Google Scholar] [CrossRef] [PubMed]
- Kabir, E.; Azzouz, A.; Raza, N.; Bhardwaj, S.K.; Kim, K.H.; Tabatabaei, M.; Kukkar, D. Recent Advances in Monitoring, Sampling, and Sensing Techniques for Bioaerosols in the Atmosphere. ACS Sens. 2020, 5, 1254–1267. [Google Scholar] [CrossRef] [PubMed]
- Mbareche, H.; Brisebois, E.; Veillette, M.; Duchaine, C. Bioaerosol Sampling and Detection Methods Based on Molecular Approaches: No Pain No Gain. Sci. Total Environ. 2017, 599–600, 2095–2104. [Google Scholar] [CrossRef] [PubMed]
- Thiele, D. Polymerase Chain Reaction (PCR) and Applications. Immun. Und Infekt. 1991, 19, 138–142. [Google Scholar]
- Xu, Z.; Wu, Y.; Shen, F.; Chen, Q.; Tan, M.; Yao, M. Bioaerosol Science, Technology, and Engineering: Past, Present, and Future. Aerosol Sci. Technol. 2011, 45, 1337–1349. [Google Scholar] [CrossRef]
- King, M.D.; Lacey, R.E.; Pak, H.; Fearing, A.; Ramos, G.; Baig, T.; Smith, B.; Koustova, A. Assays and Enumeration of Bioaerosols-Traditional Approaches to Modern Practices. Aerosol Sci. Technol. 2020, 54, 611–633. [Google Scholar] [CrossRef]
- Chang, C.W.; Chou, F.C.; Hung, P.Y. Evaluation of Bioaerosol Sampling Techniques for Legionella Pneumophila Coupled with Culture Assay and Quantitative PCR. J. Aerosol Sci. 2010, 41, 1055–1065. [Google Scholar] [CrossRef]
- Gobert, G.; Cotillard, A.; Fourmestraux, C.; Pruvost, L.; Miguet, J.; Boyer, M. Droplet digital PCR improves absolute quantification of viable lactic acid bacteria in faecal samples. J. Microbiol. Methods 2018, 148, 64–73. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.C.; Laperriere, G.; Germain, H. Droplet Digital PCR versus qPCR for gene expression analysis with low abundant targets: From variable nonsense to publication quality data. Sci. Rep. 2017, 7, 2409. [Google Scholar] [CrossRef] [PubMed]
- Onwusereaka, C.O.; Jalaludin, J.; Oluchi, S.E.; Choo, V.C.P. New generation sequencing: Molecular approaches for the detection and monitoring of bioaerosols in an indoor environment: A systematic review. Rev. Environ. Health 2024. [Google Scholar] [CrossRef]
- Huffman, J.A.; Perring, A.E.; Savage, N.J.; Clot, B.; Crouzy, B.; Tummon, F.; Shoshanim, O.; Damit, B.; Schneider, J.; Sivaprakasam, V.; et al. Real-Time Sensing of Bioaerosols: Review and Current Perspectives. Aerosol Sci. Technol. 2020, 54, 465–495. [Google Scholar] [CrossRef]
- Balint, M.; Bahram, M.; Eren, A.M.; Faust, K.; Fuhrman, J.A.; Lindahl, B.; O’Hara, R.B.; Opik, M.; Sogin, M.L.; Unterseher, M.; et al. Millions of reads, thousands of taxa: Microbial community structure and associations analyzed via marker genes. FEMS Microbiol. Rev. 2016, 40, 686–700. [Google Scholar] [CrossRef]
- Niu, M.; Zhou, Z.; Yang, Y.; Sun, Y.; Zhu, T.; Shen, F. Abundance and composition of airborne archaea during springtime mixed dust and haze periods in Beijing, China. Sci. Total Environ. 2021, 752, 141641. [Google Scholar] [CrossRef]
- Just, N.; Lecours, P.B.; Marcoux-Voiselle, M.; Kirychuk, S.; Veillette, M.; Singh, B.; Duchaine, C. Archaeal characterization of bioaerosols from cage-housed and floor-housed poultry operations. Can. J. Microbiol. 2013, 59, 46–50. [Google Scholar] [CrossRef]
- Nehme, B.; Gilbert, Y.; Letourneau, V.; Forster, R.J.; Veillette, M.; Villemur, R.; Duchain, C. Culture-Independent Characterization of Archaeal Biodiversity in Swine Confinement Building Bioaerosols. Appl. Environ. Microbiol. 2009, 75, 5445–5450. [Google Scholar] [CrossRef]
- Sánchez-Parra, B.; Núñez, A.; García, A.M.; Campoy, P.; Moreno, D.A. Distribution of airborne pollen, fungi and bacteria at four altitudes using high-throughput DNA sequencing. Atmos. Res. 2021, 249, 105306. [Google Scholar] [CrossRef]
- Núñez, A.; Amo de Paz, G.; Ferencova, Z.; Rastrojo, A.; Guantes, R.; García, A.M.; Alcamí, A.; Gutiérrez-Bustillo, A.M.; Moreno, D.A. Validation of the Hirst-Type Spore Trap for Simultaneous Monitoring of Prokaryotic and Eukaryotic Biodiversities in Urban Air Samples by Next-Generation Sequencing. Appl. Environ. Microbiol. 2017, 83, e00472-17. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Zhang, P.; Chen, S.; Zhu, J.; Huang, H. In Analysis of bio-aerosol based on laser-induced f luorescence technique. In Proceedings of the Sixth International Conference on Optical and Photonic Engineering (icOPEN 2018), Shanghai, China, 8–11 May 2018; International Society for Optics and Photonics (SPIE): Bellingham, WA, USA, 2018; p. 108273G. [Google Scholar]
- Notomi, T.; Mori, Y.; Tomita, N.; Kanda, H. Loop-Mediated Isothermal Amplification (LAMP): Principle, Features, and Future Prospects. J. Microbiol. 2015, 53, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Dhama, K.; Karthik, K.; Chakraborty, S.; Tiwari, R.; Kapoor, S.; Kumar, A.; Thomas, P. Loop-mediated isothermal amplification of DNA (LAMP): A new diagnostic tool lights the world of diagnosis of animal and human pathogens: A review. Pak. J. Biol. Sci. 2014, 17, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Iwanaga, S. Biochemical principle of Limulus test for detecting bacterial endotoxins. Proc. Jpn. Acad. Ser. B 2007, 83, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Toma, K.; Miki, D.; Yoshimura, N.; Arakawa, T.; Yatsuda, H.; Mitsubayashi, K. A gold nanoparticle-assisted sensitive SAW (surface acoustic wave) immunosensor with a regeneratable surface for monitoring of dust mite allergens. Sens. Actuators B Chem. 2017, 249, 685–690. [Google Scholar] [CrossRef]
- Zhao, X.; Lin, C.W.; Wang, J.; Oh, D.H. Advances in Rapid Detection Methods for Foodborne Pathogens. J. Microbiol. Biotechnol. 2014, 24, 297–312. [Google Scholar] [CrossRef] [PubMed]
- Law, J.W.F.; Mutalib, N.S.A.; Chan, K.G.; Lee, L.H. Rapid Metho Ds for the Detection of Foodborne Bacterial Pathogens: Principles, Applications, Advantages and Limitations. Front. Microbiol. 2014, 5, 770. [Google Scholar] [CrossRef]
- Eckert, H.G. Radioimmunoassay. Angew. Chem. 1976, 15, 525–533. [Google Scholar] [CrossRef]
- Skelley, D.S.; Brown, L.P.; Besch, P.K. Radioimmunoassay. Clin. Chem. 1973, 19, 146–186. [Google Scholar] [CrossRef]
- Shah, K.; Maghsoudlou, P. Enzyme-Linked Immunosorbent Assay (ELISA): The Basics. Br. J. Hosp. Med. 2016, 77, C98–C101. [Google Scholar] [CrossRef]
- Lequin, R.M. Enzyme Immunoassay (EIA)/Enzyme-Linked Immunosorbent Assay (ELISA). Clin. Chem. 2005, 51, 2415–2418. [Google Scholar] [CrossRef]
- Konstantinou, N.G. Food Allergens: Methods and Protocols. EUFIC Rev. 2017, 1592, 1–299. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral Flow Assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Sohrabi, H.; Majidi, M.R.; Fakhraei, M.; Jahanban-Esfahlan, A.; Hejazi, M.; Oroojalian, F.; Baradaran, B.; Tohidast, M.; de la Guardia, M.; Mokhtarzadeh, A. Lateral Flow Assays (LFA) for Detection of Pathogenic Bacteria: A Small Point-of-Care Platform for Diagnosis of Human Infectious Diseases. Talanta 2022, 243, 123330. [Google Scholar] [CrossRef] [PubMed]
- Kwon, H.J.; Fronczek, C.F.; Angus, S.V.; Nicolini, A.M.; Yoon, J.-Y. Rapid and sensitive detection of H1N1/2009 virus from aerosol samples with a microfluidic immunosensor. J. Lab. Autom. 2014, 19, 322–331. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.R.; Fatisson, J.; Olsson, A.L.; Tufenkji, N.; Ferro, A.R. Real-time monitoring of airborne ca allergen using a QCM-based immunosensor. Sens. Actuators B Chem. 2014, 190, 851–857. [Google Scholar] [CrossRef]
- Kovar, D.; Farka, Z.; Skladal, P. Detection of aerosolized biological agents using the piezoelectric immunosensor. Anal. Chem. 2014, 86, 8680–8686. [Google Scholar] [PubMed]
- Campbell, G.A.; Delesdernier, D.; Mutharasan, R. Detection of airborne Bacillus anthracis spores by an integrated system of an air sampler and a cantilever immunosensor. Sens. Actuators B Chem. 2007, 127, 376–382. [Google Scholar] [CrossRef]
- Usachev, E.; Usacheva, O.; Agranovski, I. Surface plasmon resonance–based real-time bioaerosol detection. J. Appl. Microbiol. 2013, 115, 766–773. [Google Scholar] [CrossRef] [PubMed]
- Usachev, E.V.; Agranovski, E.; Usacheva, O.V.; Agranovski, I.E. Multiplexed Surface Plasmon Resonance based real time viral aerosol detection. J. Aerosol Sci. 2015, 90, 136–143. [Google Scholar] [CrossRef]
- Miyajima, K.; Suzuki, Y.; Miki, D.; Arai, M.; Arakawa, T.; Shimomura, H.; Shiba, K.; Mitsubayashi, K. Direct analysis of airborne mite allergen (Der f1) in the residential atmosphere by chemifluorescent immunoassay using bioaerosol sampler. Talanta 2014, 123, 241–246. [Google Scholar] [CrossRef] [PubMed]
- Skladal, P.; Svabenska, E.; Zeravík, J.; Pribyl, J.; Siskova, P.; Tjarnhage, T.; Gustafson, I. Electrochemical immunosensor coupled to cyclone air sampler for detection of Escherichia coli DH5α in bioaerosols. Electroanalysis 2012, 24, 539–546. [Google Scholar] [CrossRef]
- Seo, H.; Jeong, Y.S.; Bae, J.; Choi, K.; Seo, M.Y. Detection of Micrometer-Sized Virus Aerosols by Using a Real-Time Bioaerosol Monitoring System. Biosensors 2024, 14, 27. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Seo, H.; Han, S.; Koh, Y.J.; Choi, K. A Simple Method for Generating Narrowly-dispersed Bioaerosols in Various Sizes. Aerosol Air Qual. Res. 2023, 23, 220218. [Google Scholar] [CrossRef]
- Pan, Y.L.; Kalume, A.; Beresnev, L.; Wang, C.; Kinahan, S.; Rivera, D.N.; Crownd, K.V.; Santarpia, J. Rapid bioaerosol detection by measuring circular intensity differential scattering (CIDS) from single flowing through particle. Aerosol Sci. Technol. 2024, 58, 91–98. [Google Scholar] [CrossRef]
- Saari, S.; Reponen, T.; Keskinen, J. Performance of two fluorescence-based real-time bioaerosol detectors: BioScout vs. UVAPS. Aerosol Sci. Technol. 2014, 48, 371–378. [Google Scholar] [CrossRef]
- Kaliszewski, M.; Włodarski, M.; Młynczak, J.; Leskiewicz, M.; Bombalska, A.; Mularczyk-Oliwa, M.; Kwasny, M.; Bulinski, D.; Kopczynski, K. A new real-time bio-aerosol fluorescence detector based on semiconductor CW excitation UV laser. J. Aerosol Sci. 2016, 100, 14–25. [Google Scholar] [CrossRef]
- Markey, E.; Clancy, J.H.; Martínez-Bracero, M.; Neeson, F.; Sarda-Estève, R.; Baisnée, D.; McGillicuddy, E.J.; Sewell, G.; O’Connor, D.J. A Modified Spectroscopic Approach for the Real-Time Detection of Pollen and Fungal Spores at a Semi-Urban Site Using the WIBS-4+, Part I. Sensors 2022, 22, 8747. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Calis, A.; Luo, Y.; Chen, C.; Lutton, M.; Rivenson, Y.; Lin, X.; Koydemir, H.C.; Zhang, Y.; Wang, H.; et al. Label-free bioaerosol sensing using mobile microscopy and deep earning. ACS Photonics 2018, 5, 4617–4627. [Google Scholar] [CrossRef]
- Wu, Y.; Ray, A.; Wei, Q.; Feizi, A.; Tong, X.; Chen, E.; Luo, Y.; Ozcan, A. Deep Learning Enables High-Throughput Analysis of Particle-Aggregation-Based Biosensors Imaged Using Holography. ACS Photonics 2019, 6, 294–301. [Google Scholar] [CrossRef]
- Li, Q.; Chen, X.; Jiang, Y.; Jiang, C. Cultural, physiological, and biochemical identification of actinobacteria. In Actinobacteria-Basics and Biotechnological Applications; InTech: London, UK, 2016. [Google Scholar] [CrossRef]
- Leskiewicz, M.; Kaliszewski, M.; Włodarski, M.; Młynczak, J.; Mierczyk, Z.; Kopczynski, K. Improved real-time bio-aerosol classification using artificial neural networks. Atmos. Meas. Technol. 2018, 11, 6259–6270. [Google Scholar] [CrossRef]
- Duquenne, P.; Simon, X.; Koehler, V.; Goncalves-Machado, S.; Greff, G.; Nicot, T.; Poirot, P. Documentation of bioaerosol concentrations in an indoor composting facility in France. J. Environ. Monit. 2012, 14, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Park, J.W.; Kim, H.R.; Hwang, J. Continuous and real-time bioaerosol monitoring by combine aerosol-to-hydrosol sampling and ATP bioluminescence assay. Anal. Chim. Acta 2016, 941, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Farka, Z.; Kovar, D.; Skladal, P. Quartz crystal microbalance biosensor for rapid detection of aerosolized microorganisms. In Chemical, Biological, Radiological, Nuclear, and Explosives (CBRNE) Sensing XVI; International Society for Optics and Photonics: Bellingham, WA, USA, 2015; p. 945507. [Google Scholar] [CrossRef]
Sampling Method | Type | Pros | Cons |
---|---|---|---|
Gravity | Passive |
|
|
Electrostatic attraction | Passive |
|
|
Thermal precipitation | Passive |
|
|
Impaction | Active |
|
|
Cyclone | Active |
|
|
Impingement | Active |
|
|
Filtration | Active |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rastmanesh, A.; Boruah, J.S.; Lee, M.-S.; Park, S. On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies. Biosensors 2024, 14, 122. https://doi.org/10.3390/bios14030122
Rastmanesh A, Boruah JS, Lee M-S, Park S. On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies. Biosensors. 2024; 14(3):122. https://doi.org/10.3390/bios14030122
Chicago/Turabian StyleRastmanesh, Afagh, Jayanta S. Boruah, Min-Seok Lee, and Seungkyung Park. 2024. "On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies" Biosensors 14, no. 3: 122. https://doi.org/10.3390/bios14030122
APA StyleRastmanesh, A., Boruah, J. S., Lee, M. -S., & Park, S. (2024). On-Site Bioaerosol Sampling and Airborne Microorganism Detection Technologies. Biosensors, 14(3), 122. https://doi.org/10.3390/bios14030122