Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review
Abstract
:1. Introduction
2. Three-Terminal Organic Synaptic Transistor
2.1. Neuronal and Synaptic Functions Mimicked by Organic FET
2.2. Materials of Organic Synaptic Transistors
2.2.1. Channel Materials
2.2.2. Gate Electrolyte
2.3. Significant Type of Artificial Synaptic Transistor
2.3.1. Floating-Gate Synaptic Transistor
2.3.2. Electric-Double-Layer Synaptic FET (EDLST)
2.3.3. Organic Electrochemical Synaptic FETs (OECSFETs)
2.3.4. Biodegradability and Biocompatibility
3. Artificial Intelligence for the Diagnosis of Neurodegenerative Disorders
Type of Transistor | Structural Feature | Active Layer | Dielectric Medium/EDL Formation | Synaptic Function | Biodegradable/ Biocompatible | Application | Refs. |
---|---|---|---|---|---|---|---|
FeTFT | Bottom gate | α-IGZO | Al:HfO2 | STP, LTP | --- | Potentiation/depression conditions | [1] |
OECT | Bottom gate | DNTT | Dextran | EPSC, STP, LTP | Yes | Eco-friendly and bio-integrated organic electronics | [2] |
ECFET | Bottom gate | ITO | Nanocellulose | EPSC, STP, LTP | Yes | Anxiety disorder | [3] |
ECFET | Top electrode | MoS2 | PVA hydrogel | EPSC, PPF | Yes | Cognitive systems | [11] |
OECTs | Reference electrode | PEDOT:PSS | PBS | EPSC, IPSC, STP | --- | Synaptic cooperation/neuroprosthetics | [12] |
OECT | Top electrode | PEDOT:PSS | NaCl | EPSC | Yes | Synaptic cooperation | [23] |
OECT | Bottom gate | ITO | PVA | EPSC, IPSC, STP | Yes | Biological interfaces | [24] |
OECTs | Bottom gate | ITO | Chitosan | EPSC, LTP, STD, PPF | Yes | Multistore model brain memory | [46] |
OECTs | Bottom gate | InZnO | Chitosan | EPSC, LTP, STD, PPF | Yes | Synaptic memory | [50] |
ECFET | Bottom gate | P3HT | [EMI][TFSA] | EPSC, LTP, STD | ---- | Synaptic memory | [52] |
EDLT | Reference electrode | MoS2 | PVA | EPSC, LTP, STD | Yes | Electronic eyes | [84] |
OECTs | Planar gate | PTBT | [EMIM+][TFSI−]):PVDF-HFP | EPSC, LTP, STD | Yes | ECG recording | [97] |
OSCTs | Top electrode | SWCNTs | Chlorophyll-a | EPSC, LTP, LTM | Yes | Light-stimulated synaptic transistors | [100] |
OSCTs | Top electrode | DNTT | Apple pectinPEM | EPSC, LTP, LTM | Yes | Biological interfaces | [101] |
4. Conclusions and Future Perspectives
- At the artificial synapse level, energy consumption (E) correlates directly with the applied voltage, drain current, and programming pulse duration. Artificial synapses leveraging ion migration with a high electric double-layer (EDL) capacitance in electrolyte gate insulators are favored to mitigate the applied voltage, as they necessitate only a low driving voltage. Additional strategies for minimizing energy consumption (E) involve reducing the duration of programming spikes and downsizing the dimensions of the devices.
- To address the issue of energy dissipation in sensing elements, a solution involves integrating artificial synapses with self-powered sensing components, directing the predominant energy dissipation solely to the synaptic devices. Alternatively, employing functioning artificial synapses endowed with sensing capabilities within a single device provides another avenue for mitigating energy consumption.
Author Contributions
Funding
Conflicts of Interest
References
- Kim, D.; Jeon, Y.-R.; Ku, B.; Chung, C.; Kim, T.H.; Yang, S.; Won, U.; Jeong, T.; Choi, C. Analog synaptic transistor with al-doped HfO2 ferroelectric thin film. ACS Appl. Mater. Interfaces 2021, 13, 52743–52753. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zhao, X.; Zhang, C.; Tong, Y.; Hu, J.; Zhang, H.; Yang, M.; Ye, X.; Wang, S.; Sun, Z. Ultraflexible, degradable organic synaptic transistors based on natural polysaccharides for neuromorphic applications. Adv. Funct. Mater. 2020, 30, 2006271. [Google Scholar] [CrossRef]
- Wang, W.S.; Shi, Z.W.; Chen, X.L.; Li, Y.; Xiao, H.; Zeng, Y.H.; Pi, X.D.; Zhu, L.Q. Biodegradable oxide neuromorphic transistors for neuromorphic computing and anxiety disorder emulation. ACS Appl. Mater. Interfaces 2023, 15, 47640–47648. [Google Scholar] [CrossRef]
- Friedlein, J.T.; McLeod, R.R.; Rivnay, J. Device physics of organic electrochemical transistors. Org. Electron. 2018, 63, 398–414. [Google Scholar] [CrossRef]
- Fuller, E.J.; Keene, S.T.; Melianas, A.; Wang, Z.; Agarwal, S.; Li, Y.; Tuchman, Y.; James, C.D.; Marinella, M.J.; Yang, J.J. Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing. Science 2019, 364, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Boybat, I.; Le Gallo, M.; Nandakumar, S.; Moraitis, T.; Parnell, T.; Tuma, T.; Rajendran, B.; Leblebici, Y.; Sebastian, A.; Eleftheriou, E. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 2018, 9, 2514. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, Y.; Chen, J.; Wang, J.; Zhou, Y.; Han, S.-T. Semiconductor quantum dots for memories and neuromorphic computing systems. Chem. Rev. 2020, 120, 3941–4006. [Google Scholar] [CrossRef] [PubMed]
- Poon, C.-S.; Zhou, K. Neuromorphic silicon neurons and large-scale neural networks: Challenges and opportunities. Front. Neurosci. 2011, 5, 108. [Google Scholar] [CrossRef]
- Huh, W.; Lee, D.; Lee, C.H. Memristors based on 2d materials as an artificial synapse for neuromorphic electronics. Adv. Mater. 2020, 32, 2002092. [Google Scholar] [CrossRef]
- Prezioso, M.; Merrikh-Bayat, F.; Hoskins, B.D.; Adam, G.C.; Likharev, K.K.; Strukov, D.B. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 2015, 521, 61–64. [Google Scholar] [CrossRef]
- Jiang, J.; Guo, J.; Wan, X.; Yang, Y.; Xie, H.; Niu, D.; Yang, J.; He, J.; Gao, Y.; Wan, Q. 2d MoS2 neuromorphic devices for brain-like computational systems. Small 2017, 13, 1700933. [Google Scholar] [CrossRef] [PubMed]
- Mir, M.; Palma-Florez, S.; Lagunas, A.; López-Martínez, M.J.; Samitier, J. Biosensors integration in blood–brain barrier-on-a-chip: Emerging platform for monitoring neurodegenerative diseases. ACS Sens. 2022, 7, 1237–1247. [Google Scholar] [CrossRef] [PubMed]
- Subbulakshmi Radhakrishnan, S.; Sebastian, A.; Oberoi, A.; Das, S.; Das, S. A biomimetic neural encoder for spiking neural network. Nat. Commun. 2021, 12, 2143. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.-H.; Hwang, H.-G.; Woo, J.-U.; Kim, D.-H.; Kim, T.-W.; Nahm, S. Synaptic plasticity and metaplasticity of biological synapse realized in a KNbO3 memristor for application to artificial synapse. ACS Appl. Mater. Interfaces 2018, 10, 25673–25682. [Google Scholar] [CrossRef] [PubMed]
- Vu, Q.A.; Kim, H.; Nguyen, V.L.; Won, U.Y.; Adhikari, S.; Kim, K.; Lee, Y.H.; Yu, W.J. A high-on/off-ratio floating-gate memristor array on a flexible substrate via cvd-grown large-area 2d layer stacking. Adv. Mater. 2017, 29, 1703363. [Google Scholar] [CrossRef]
- Nandakumar, S.; Le Gallo, M.; Boybat, I.; Rajendran, B.; Sebastian, A.; Eleftheriou, E. A phase-change memory model for neuromorphic computing. J. Appl. Phys. 2018, 124, 152135. [Google Scholar] [CrossRef]
- Liu, L.; Cheng, Z.; Jiang, B.; Liu, Y.; Zhang, Y.; Yang, F.; Wang, J.; Yu, X.-F.; Chu, P.K.; Ye, C. Optoelectronic artificial synapses based on two-dimensional transitional-metal trichalcogenide. ACS Appl. Mater. Interfaces 2021, 13, 30797–30805. [Google Scholar] [CrossRef]
- Kent, A.D.; Worledge, D.C. A new spin on magnetic memories. Nat. Nanotechnol. 2015, 10, 187–191. [Google Scholar] [CrossRef]
- Kim, S.H.; Hong, K.; Xie, W.; Lee, K.H.; Zhang, S.; Lodge, T.P.; Frisbie, C.D. Electrolyte-gated transistors for organic and printed electronics. Adv. Mater. 2013, 25, 1822–1846. [Google Scholar] [CrossRef]
- Mariani, F.; Decataldo, F.; Bonafè, F.; Tessarolo, M.; Cramer, T.; Gualandi, I.; Fraboni, B.; Scavetta, E. High-endurance long-term potentiation in neuromorphic organic electrochemical transistors by pedot: Pss electrochemical polymerization on the gate electrode. ACS Appl. Mater. Interfaces 2023. [Google Scholar] [CrossRef]
- Kim, M.-K.; Lee, J.-S. Ferroelectric analog synaptic transistors. Nano Lett. 2019, 19, 2044–2050. [Google Scholar] [CrossRef]
- Torricelli, F.; Adrahtas, D.Z.; Bao, Z.; Berggren, M.; Biscarini, F.; Bonfiglio, A.; Bortolotti, C.A.; Frisbie, C.D.; Macchia, E.; Malliaras, G.G. Electrolyte-gated transistors for enhanced performance bioelectronics. Nat. Rev. Methods Primers 2021, 1, 66. [Google Scholar] [CrossRef]
- Ren, G.; He, S.; Zhang, Y.; Zhu, C.; Gong, Z.; Wang, K.; Zhang, L.; Li, Z.; Lu, G.; Yu, H.-D. Assessment of the testing methods for evaluating the performance of organic electrochemical transistors. ACS Appl. Electron. Mater. 2023, 5, 4437–4444. [Google Scholar] [CrossRef]
- Guo, L.Q.; Han, H.; Zhu, L.Q.; Guo, Y.B.; Yu, F.; Ren, Z.Y.; Xiao, H.; Ge, Z.Y.; Ding, J.N. Oxide neuromorphic transistors gated by polyvinyl alcohol solid electrolytes with ultralow power consumption. ACS Appl. Mater. Interfaces 2019, 11, 28352–28358. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.-T.; Tien, H.-C.; Chueh, C.-C.; Lee, W.-Y. Polymer synaptic transistors from memory to neuromorphic computing. Mater. Chem. Phys. 2022, 287, 126263. [Google Scholar] [CrossRef]
- Nguyen, T.D.; Trung, T.Q.; Lee, Y.; Lee, N.-E. Stretchable and stable electrolyte-gated organic electrochemical transistor synapse with a nafion membrane for enhanced synaptic properties. Adv. Eng. Mater. 2022, 24, 2100918. [Google Scholar] [CrossRef]
- Shi, J.; Ha, S.D.; Zhou, Y.; Schoofs, F.; Ramanathan, S. A correlated nickelate synaptic transistor. Nat. Commun. 2013, 4, 2676. [Google Scholar] [CrossRef]
- Yang, J.T.; Ge, C.; Du, J.Y.; Huang, H.Y.; He, M.; Wang, C.; Lu, H.B.; Yang, G.Z.; Jin, K.J. Artificial synapses emulated by an electrolyte-gated tungsten-oxide transistor. Adv. Mater. 2018, 30, 1801548. [Google Scholar] [CrossRef] [PubMed]
- Jo, Y.J.; Kwon, K.Y.; Khan, Z.U.; Crispin, X.; Kim, T.-I. Gelatin hydrogel-based organic electrochemical transistors and their integrated logic circuits. ACS Appl. Mater. Interfaces 2018, 10, 39083–39090. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Lu, M.J.; Chen, F.Z.; Jia, H.M.; Zhou, H.; Li, K.; Zeng, X.; Zhao, W.W.; Lin, P. Multifunctional hydrogel hybrid-gated organic photoelectrochemical transistor for biosensing. Adv. Funct. Mater. 2022, 32, 2109046. [Google Scholar] [CrossRef]
- Ko, J.; Wu, X.; Surendran, A.; Muhammad, B.T.; Leong, W.L. Self-healable organic electrochemical transistor with high transconductance, fast response, and long-term stability. ACS Appl. Mater. Interfaces 2020, 12, 33979–33988. [Google Scholar] [CrossRef] [PubMed]
- Ho, J.-C.; Lin, Y.-C.; Chen, C.-K.; Hsu, L.-C.; Chen, W.-C. Hydrogel-based sustainable and stretchable field-effect transistors. Org. Electron. 2022, 100, 106358. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, G.; Zhao, J.; Zhang, H.; Yu, J.; Yang, X.; Zhang, Q.; Zhang, W.; Xu, S.; Sun, J. Piezotronic graphene artificial sensory synapse. Adv. Funct. Mater. 2019, 29, 1900959. [Google Scholar] [CrossRef]
- Peng, X.; Dong, K.; Ye, C.; Jiang, Y.; Zhai, S.; Cheng, R.; Liu, D.; Gao, X.; Wang, J.; Wang, Z.L. A breathable, biodegradable, antibacterial, and self-powered electronic skin based on all-nanofiber triboelectric nanogenerators. Sci. Adv. 2020, 6, eaba9624. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Cho, H.R.; Cha, G.D.; Seo, H.; Lee, S.; Park, C.-K.; Kim, J.W.; Qiao, S.; Wang, L.; Kang, D. Flexible, sticky, and biodegradable wireless device for drug delivery to brain tumors. Nat. Commun. 2019, 10, 5205. [Google Scholar] [CrossRef] [PubMed]
- Teng, L.; Ye, S.; Handschuh-Wang, S.; Zhou, X.; Gan, T.; Zhou, X. Liquid metal-based transient circuits for flexible and recyclable electronics. Adv. Funct. Mater. 2019, 29, 1808739. [Google Scholar] [CrossRef]
- Yang, C.; Suo, Z. Hydrogel ionotronics. Nat. Rev. Mater. 2018, 3, 125–142. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.; Lao, J.; Gao, H.; Yu, J. Hydrogels for flexible electronics. ACS Nano 2023, 17, 9681–9693. [Google Scholar] [CrossRef]
- Kim, S.; Choi, B.; Lim, M.; Yoon, J.; Lee, J.; Kim, H.-D.; Choi, S.-J. Pattern recognition using carbon nanotube synaptic transistors with an adjustable weight update protocol. ACS Nano 2017, 11, 2814–2822. [Google Scholar] [CrossRef]
- Simon, D.T.; Gabrielsson, E.O.; Tybrandt, K.; Berggren, M. Organic bioelectronics: Bridging the signaling gap between biology and technology. Chem. Rev. 2016, 116, 13009–13041. [Google Scholar] [CrossRef]
- Sunwoo, S.-H.; Han, S.I.; Joo, H.; Cha, G.D.; Kim, D.; Choi, S.H.; Hyeon, T.; Kim, D.-H. Advances in soft bioelectronics for brain research and clinical neuroengineering. Matter 2020, 3, 1923–1947. [Google Scholar] [CrossRef]
- Peppas, N.A.; Hoffman, A.S. Hydrogels. In Biomaterials Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 153–166. [Google Scholar]
- Curry, E.J.; Ke, K.; Chorsi, M.T.; Wrobel, K.S.; Miller III, A.N.; Patel, A.; Kim, I.; Feng, J.; Yue, L.; Wu, Q. Biodegradable piezoelectric force sensor. Proc. Natl. Acad. Sci. USA 2018, 115, 909–914. [Google Scholar] [CrossRef]
- Teo, A.J.; Mishra, A.; Park, I.; Kim, Y.-J.; Park, W.-T.; Yoon, Y.-J. Polymeric biomaterials for medical implants and devices. ACS Biomater. Sci. Eng. 2016, 2, 454–472. [Google Scholar] [CrossRef]
- Lee, Y.; Liu, Y.; Seo, D.-G.; Oh, J.Y.; Kim, Y.; Li, J.; Kang, J.; Kim, J.; Mun, J.; Foudeh, A.M. A low-power stretchable neuromorphic nerve with proprioceptive feedback. Nat. Biomed. Eng. 2023, 7, 511–519. [Google Scholar] [CrossRef]
- Yu, F.; Zhu, L.Q.; Gao, W.T.; Fu, Y.M.; Xiao, H.; Tao, J.; Zhou, J.M. Chitosan-based polysaccharide-gated flexible indium tin oxide synaptic transistor with learning abilities. ACS Appl. Mater. Interfaces 2018, 10, 16881–16886. [Google Scholar] [CrossRef]
- Chiong, J.A.; Tran, H.; Lin, Y.; Zheng, Y.; Bao, Z. Integrating emerging polymer chemistries for the advancement of recyclable, biodegradable, and biocompatible electronics. Adv. Sci. 2021, 8, 2101233. [Google Scholar] [CrossRef] [PubMed]
- Bettinger, C.J.; Bao, Z. Organic thin-film transistors fabricated on resorbable biomaterial substrates. Adv. Mater. 2010, 22, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhao, C.; Wang, X.; Meng, J.; Zou, Y.; Noreen, S.; Zhao, L.; Liu, Z.; Ouyang, H.; Tan, P. Fully bioabsorbable capacitor as an energy storage unit for implantable medical electronics. Adv. Sci. 2019, 6, 1801625. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Zhu, L.Q.; Wang, W.; Hui, X.; Liu, Z.P.; Wan, Q. Biodegradable oxide synaptic transistors gated by a biopolymer electrolyte. J. Mater. Chem. C 2016, 4, 7744–7750. [Google Scholar] [CrossRef]
- Torricelli, F.; Alessandri, I.; Macchia, E.; Vassalini, I.; Maddaloni, M.; Torsi, L. Green materials and technologies for sustainable organic transistors. Adv. Mater. Technol. 2022, 7, 2100445. [Google Scholar] [CrossRef]
- Liu, X.; Sun, C.; Guo, Z.; Zhang, Y.; Zhang, Z.; Shang, J.; Zhong, Z.; Zhu, X.; Yu, X.; Li, R.-W. A flexible dual-gate hetero-synaptic transistor for spatiotemporal information processing. Nanoscale Adv. 2022, 4, 2412–2419. [Google Scholar] [CrossRef]
- Liu, R.; He, Y.; Jiang, S.; Wang, L.; Wan, Q. Synaptic plasticity modulation and coincidence detection emulated in multi-terminal neuromorphic transistors. Org. Electron. 2021, 92, 106125. [Google Scholar] [CrossRef]
- Huynh, H.Q.; Trung, T.Q.; Bag, A.; Do, T.D.; Sultan, M.J.; Kim, M.; Lee, N.E. Bio-inspired artificial fast-adaptive and slow-adaptive mechanoreceptors with synapse-like functions. Adv. Funct. Mater. 2023, 33, 2303535. [Google Scholar] [CrossRef]
- Gerasimov, J.Y.; Gabrielsson, R.; Forchheimer, R.; Stavrinidou, E.; Simon, D.T.; Berggren, M.; Fabiano, S. An evolvable organic electrochemical transistor for neuromorphic applications. Adv. Sci. 2019, 6, 1801339. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, S.; Tan, H.; Qin, Q.H.; van Dijken, S. Energy-efficient organic ferroelectric tunnel junction memristors for neuromorphic computing. Adv. Electron. Mater. 2019, 5, 1800795. [Google Scholar] [CrossRef]
- Ling, H.; Koutsouras, D.A.; Kazemzadeh, S.; Van De Burgt, Y.; Yan, F.; Gkoupidenis, P. Electrolyte-gated transistors for synaptic electronics, neuromorphic computing, and adaptable biointerfacing. Appl. Phys. Rev. 2020, 7, 011307. [Google Scholar] [CrossRef]
- Gkoupidenis, P.; Schaefer, N.; Strakosas, X.; Fairfield, J.A.; Malliaras, G.G. Synaptic plasticity functions in an organic electrochemical transistor. Appl. Phys. Lett. 2015, 107, 263302. [Google Scholar] [CrossRef]
- Arnold, A.J.; Razavieh, A.; Nasr, J.R.; Schulman, D.S.; Eichfeld, C.M.; Das, S. Mimicking neurotransmitter release in chemical synapses via hysteresis engineering in MoS2 transistors. ACS Nano 2017, 11, 3110–3118. [Google Scholar] [CrossRef]
- Lee, S.K.; Cho, Y.W.; Lee, J.S.; Jung, Y.R.; Oh, S.H.; Sun, J.Y.; Kim, S.; Joo, Y.C. Nanofiber channel organic electrochemical transistors for low-power neuromorphic computing and wide-bandwidth sensing platforms. Adv. Sci. 2021, 8, 2001544. [Google Scholar] [CrossRef]
- Yang, C.S.; Shang, D.S.; Liu, N.; Shi, G.; Shen, X.; Yu, R.C.; Li, Y.Q.; Sun, Y. A synaptic transistor based on quasi-2d molybdenum oxide. Adv. Mater. 2017, 29, 1700906. [Google Scholar] [CrossRef]
- Qian, C.; Sun, J.; Kong, L.-a.; Gou, G.; Yang, J.; He, J.; Gao, Y.; Wan, Q. Artificial synapses based on in-plane gate organic electrochemical transistors. ACS Appl. Mater. Interfaces 2016, 8, 26169–26175. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Yang, J.; Xu, C.; Zhang, Q.; Peng, Z. Ionic gels and their applications in stretchable electronics. Macromol. Rapid Commun. 2018, 39, 1800246. [Google Scholar] [CrossRef]
- Lee, J.; Panzer, M.J.; He, Y.; Lodge, T.P.; Frisbie, C.D. Ion gel gated polymer thin-film transistors. J. Am. Chem. Soc. 2007, 129, 4532–4533. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kaake, L.G.; Cho, J.H.; Zhu, X.-Y.; Lodge, T.P.; Frisbie, C.D. Ion gel-gated polymer thin-film transistors: Operating mechanism and characterization of gate dielectric capacitance, switching speed, and stability. J. Phys. Chem. C 2009, 113, 8972–8981. [Google Scholar] [CrossRef]
- Liu, G.; Li, Q.; Shi, W.; Liu, Y.; Liu, K.; Yang, X.; Shao, M.; Guo, A.; Huang, X.; Zhang, F. Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors. Adv. Funct. Mater. 2022, 32, 2200959. [Google Scholar] [CrossRef]
- Lee, D.; Cho, K.G.; Seol, K.H.; Lee, S.; Choi, S.-H.; Lee, K.H. Low voltage, high gain electrolyte-gated complementary inverters based on transfer-printed block copolymer ion gels. Org. Electron. 2019, 71, 266–271. [Google Scholar] [CrossRef]
- Alquraishi, W.; Fu, Y.; Qiu, W.; Wang, J.; Chen, Y.; Kong, L.-A.; Sun, J.; Gao, Y. Hybrid optoelectronic synaptic functionality realized with ion gel-modulated in2o3 phototransistors. Org. Electron. 2019, 71, 72–78. [Google Scholar] [CrossRef]
- Lee, K.H.; Kang, M.S.; Zhang, S.; Gu, Y.; Lodge, T.P.; Frisbie, C.D. “Cut and stick” rubbery ion gels as high capacitance gate dielectrics. Adv. Mater. 2012, 24, 4457–4462. [Google Scholar] [CrossRef]
- Wang, D.; Zhao, S.; Yin, R.; Li, L.; Lou, Z.; Shen, G. Recent advanced applications of ion-gel in ionic-gated transistor. npj Flex. Electron. 2021, 5, 13. [Google Scholar] [CrossRef]
- Fillaud, L.; Petenzi, T.; Pallu, J.; Piro, B.; Mattana, G.; Noel, V. Switchable hydrogel-gated organic field-effect transistors. Langmuir 2018, 34, 3686–3693. [Google Scholar] [CrossRef]
- Wang, R.; Chen, P.; Hao, D.; Zhang, J.; Shi, Q.; Liu, D.; Li, L.; Xiong, L.; Zhou, J.; Huang, J. Artificial synapses based on lead-free perovskite floating-gate organic field-effect transistors for supervised and unsupervised learning. ACS Appl. Mater. Interfaces 2021, 13, 43144–43154. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yang, J.Q.; Zhou, L.; Mao, J.Y.; Zhang, S.R.; Zhou, Y.; Han, S.T. Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites. Adv. Funct. Mater. 2018, 28, 1805599. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Y.; Yu, Y.; Song, X.; Zhang, H.; Cao, M.; Che, Y.; Dai, H.; Yang, J.; Yao, J. Ambipolar quantum-dot-based low-voltage nonvolatile memory with double floating gates. ACS Photonics 2017, 4, 2220–2227. [Google Scholar] [CrossRef]
- Wang, W.; Ma, D.; Gao, Q. Organic thin-film transistor memory with Ag floating-gate. Microelectron. Eng. 2012, 91, 9–13. [Google Scholar] [CrossRef]
- Qu, T.Y.; Sun, Y.; Chen, M.L.; Liu, Z.B.; Zhu, Q.B.; Wang, B.W.; Zhao, T.Y.; Liu, C.; Tan, J.; Qiu, S. A flexible carbon nanotube sen-memory device. Adv. Mater. 2020, 32, 1907288. [Google Scholar] [CrossRef]
- Baeg, K.J.; Noh, Y.Y.; Sirringhaus, H.; Kim, D.Y. Controllable shifts in threshold voltage of top-gate polymer field-effect transistors for applications in organic nano floating gate memory. Adv. Funct. Mater. 2010, 20, 224–230. [Google Scholar] [CrossRef]
- Xu, K.; Liang, J.; Woeppel, A.; Bostian, M.E.; Ding, H.; Chao, Z.; McKone, J.R.; Beckman, E.J.; Fullerton-Shirey, S.K. Electric double-layer gating of two-dimensional field-effect transistors using a single-ion conductor. ACS Appl. Mater. Interfaces 2019, 11, 35879–35887. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, G.; Xin, Z.; Fu, C.; Wan, Q.; Shan, F. Solution-processed, electrolyte-gated In2O3 flexible synaptic transistors for brain-inspired neuromorphic applications. ACS Appl. Mater. Interfaces 2019, 12, 1061–1068. [Google Scholar] [CrossRef]
- Wan, C.J.; Liu, Y.H.; Feng, P.; Wang, W.; Zhu, L.Q.; Liu, Z.P.; Shi, Y.; Wan, Q. Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates. Adv. Mater. 2016, 28, 5878–5885. [Google Scholar] [CrossRef]
- He, Y.; Yang, Y.; Nie, S.; Liu, R.; Wan, Q. Electric-double-layer transistors for synaptic devices and neuromorphic systems. J. Mater. Chem. C 2018, 6, 5336–5352. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Wan, C.J.; Guo, L.Q.; Shi, Y.; Wan, Q. Artificial synapse network on inorganic proton conductor for neuromorphic systems. Nat. Commun. 2014, 5, 3158. [Google Scholar] [CrossRef] [PubMed]
- Xie, D.; Jiang, J.; Hu, W.; He, Y.; Yang, J.; He, J.; Gao, Y.; Wan, Q. Coplanar multigate MoS2 electric-double-layer transistors for neuromorphic visual recognition. ACS Appl. Mater. Interfaces 2018, 10, 25943–25948. [Google Scholar] [CrossRef] [PubMed]
- Feng, P.; Xu, W.; Yang, Y.; Wan, X.; Shi, Y.; Wan, Q.; Zhao, J.; Cui, Z. Printed neuromorphic devices based on printed carbon nanotube thin-film transistors. Adv. Funct. Mater. 2017, 27, 1604447. [Google Scholar] [CrossRef]
- Wan, C.; Chen, G.; Fu, Y.; Wang, M.; Matsuhisa, N.; Pan, S.; Pan, L.; Yang, H.; Wan, Q.; Zhu, L. An artificial sensory neuron with tactile perceptual learning. Adv. Mater. 2018, 30, 1801291. [Google Scholar] [CrossRef]
- Leong, W.L.; Mathews, N.; Tan, B.; Vaidyanathan, S.; Dötz, F.; Mhaisalkar, S. Towards printable organic thin film transistor based flash memory devices. J. Mater. Chem. 2011, 21, 5203–5214. [Google Scholar] [CrossRef]
- Bhunia, R.; Boahen, E.K.; Kim, D.J.; Oh, H.; Kong, Z.; Kim, D.H. Neural-inspired artificial synapses based on low-voltage operated organic electrochemical transistors. J. Mater. Chem. C 2023, 11, 7485–7509. [Google Scholar] [CrossRef]
- Oh, S.-H.; Oh, M.; Lee, S.; Kim, D.-K.; Lee, J.-S.; Lee, S.-K.; Kang, S.-K.; Joo, Y.-C. Fast and durable nanofiber mat channel organic electrochemical transistors. ACS Appl. Mater. Interfaces 2023, 15, 39614–39624. [Google Scholar] [CrossRef]
- Huang, H.; Ge, C.; Liu, Z.; Zhong, H.; Guo, E.; He, M.; Wang, C.; Yang, G.; Jin, K. Electrolyte-gated transistors for neuromorphic applications. J. Semicond. 2021, 42, 013103. [Google Scholar] [CrossRef]
- Seo, S.; Lee, J.-J.; Lee, H.-J.; Lee, H.W.; Oh, S.; Lee, J.J.; Heo, K.; Park, J.-H. Recent progress in artificial synapses based on two-dimensional van der waals materials for brain-inspired computing. ACS Appl. Electron. Mater. 2020, 2, 371–388. [Google Scholar] [CrossRef]
- Bernards, D.A.; Malliaras, G.G. Steady state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 2007, 17, 3538–3544. [Google Scholar] [CrossRef]
- He, Y.; Jiang, S.; Chen, C.; Wan, C.; Shi, Y.; Wan, Q. Electrolyte-gated neuromorphic transistors for brain-like dynamic computing. J. Appl. Phys. 2021, 130, 190904. [Google Scholar] [CrossRef]
- Wan, C.; Zhu, L.; Liu, Y.; Feng, P.; Liu, Z.; Cao, H.; Xiao, P.; Shi, Y.; Wan, Q. Proton conducting graphene oxide coupled neuron transistors for brain-inspired cognitive systems. arXiv 2015, arXiv:1510.06115. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Liu, N.; Zhu, L.; Shi, Y.; Wan, Q. Energy-efficient artificial synapses based on flexible igzo electric-double-layer transistors. IEEE Electron Device Lett. 2014, 36, 198–200. [Google Scholar] [CrossRef]
- Yang, K.; Yuan, S.; Huan, Y.; Wang, J.; Tu, L.; Xu, J.; Zou, Z.; Zhan, Y.; Zheng, L.; Seoane, F. Tunable flexible artificial synapses: A new path toward a wearable electronic system. npj Flex. Electron. 2018, 2, 20. [Google Scholar] [CrossRef]
- Wang, S.; Chen, X.; Zhao, C.; Kong, Y.; Lin, B.; Wu, Y.; Bi, Z.; Xuan, Z.; Li, T.; Li, Y. An organic electrochemical transistor for multi-modal sensing, memory and processing. Nat. Electron. 2023, 6, 281–291. [Google Scholar] [CrossRef]
- Zhang, F.; Li, C.; Li, Z.; Dong, L.; Zhao, J. Recent progress in three-terminal artificial synapses based on 2d materials: From mechanisms to applications. Microsyst. Nanoeng. 2023, 9, 16. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lu, Y.; Jiang, D.; Li, Z.; Zeng, Y.; Zhang, S.; Ye, Y.; Liu, Z.; Ou, Q.; Wang, Y. Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors. Adv. Mater. 2020, 32, 2001227. [Google Scholar] [CrossRef]
- Ou, Q.; Yang, B.; Zhang, J.; Liu, D.; Chen, T.; Wang, X.; Hao, D.; Lu, Y.; Huang, J. Degradable photonic synaptic transistors based on natural biomaterials and carbon nanotubes. Small 2021, 17, 2007241. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, C.; Zhao, X.; Tong, Y.; Tang, Q.; Liu, Y. Ultrasensitive and degradable ultraflexible synaptic transistors based on natural pectin. ACS Appl. Electron. Mater. 2021, 4, 316–325. [Google Scholar] [CrossRef]
- Dai, S.; Wang, Y.; Zhang, J.; Zhao, Y.; Xiao, F.; Liu, D.; Wang, T.; Huang, J. Wood-derived nanopaper dielectrics for organic synaptic transistors. ACS Appl. Mater. Interfaces 2018, 10, 39983–39991. [Google Scholar] [CrossRef] [PubMed]
- Dai, S.; Liu, X.; Liu, Y.; Xu, Y.; Zhang, J.; Wu, Y.; Cheng, P.; Xiong, L.; Huang, J. Emerging iontronic neural devices for neuromorphic sensory computing. Adv. Mater. 2023, 35, 2300329. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Chortos, A.; Xu, W.; Liu, Y.; Oh, J.Y.; Son, D.; Kang, J.; Foudeh, A.M.; Zhu, C.; Lee, Y. A bioinspired flexible organic artificial afferent nerve. Science 2018, 360, 998–1003. [Google Scholar] [CrossRef]
- Wang, N.; Yang, A.; Fu, Y.; Li, Y.; Yan, F. Functionalized organic thin film transistors for biosensing. Acc. Chem. Res. 2019, 52, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Go, G.-T.; Lee, Y.; Seo, D.-G.; Pei, M.; Lee, W.; Yang, H.; Lee, T.-W. Achieving microstructure-controlled synaptic plasticity and long-term retention in ion-gel-gated organic synaptic transistors. Adv. Intell. Syst. 2020, 2, 2000012. [Google Scholar] [CrossRef]
- Go, G.T.; Lee, Y.; Seo, D.G.; Lee, T.W. Organic neuroelectronics: From neural interfaces to neuroprosthetics. Adv. Mater. 2022, 34, 2201864. [Google Scholar] [CrossRef]
- Lin, P.; Yan, F.; Yu, J.; Chan, H.L.; Yang, M. The application of organic electrochemical transistors in cell-based biosensors. Adv. Mater. 2010, 22, 3655–3660. [Google Scholar] [CrossRef]
- Wang, C.; Yokota, T.; Someya, T. Natural biopolymer-based biocompatible conductors for stretchable bioelectronics. Chem. Rev. 2021, 121, 2109–2146. [Google Scholar] [CrossRef]
- Nam, E.; Nam, G.; Lim, M.H. Synaptic Copper, Amyloid-β, and Neurotransmitters in Alzheimer’s Disease; ACS Publications: Washington, DC, USA, 2019; Volume 59, pp. 15–17. [Google Scholar]
- Da, Y.; Luo, S.; Tian, Y. Real-time monitoring of neurotransmitters in the brain of living animals. ACS Appl. Mater. Interfaces 2022, 15, 138–157. [Google Scholar] [CrossRef]
- Wang, T.; Wang, M.; Wang, J.; Yang, L.; Ren, X.; Song, G.; Chen, S.; Yuan, Y.; Liu, R.; Pan, L. A chemically mediated artificial neuron. Nat. Electron. 2022, 5, 586–595. [Google Scholar] [CrossRef]
- Tran, D.M.; Son, J.W.; Ju, T.-S.; Hwang, C.; Park, B.H. Dopamine-regulated plasticity in MoO3 synaptic transistors. ACS Appl. Mater. Interfaces 2023, 15, 49329–49337. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bag, S.P.; Lee, S.; Song, J.; Kim, J. Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review. Biosensors 2024, 14, 150. https://doi.org/10.3390/bios14030150
Bag SP, Lee S, Song J, Kim J. Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review. Biosensors. 2024; 14(3):150. https://doi.org/10.3390/bios14030150
Chicago/Turabian StyleBag, Sankar Prasad, Suyoung Lee, Jaeyoon Song, and Jinsink Kim. 2024. "Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review" Biosensors 14, no. 3: 150. https://doi.org/10.3390/bios14030150
APA StyleBag, S. P., Lee, S., Song, J., & Kim, J. (2024). Hydrogel-Gated FETs in Neuromorphic Computing to Mimic Biological Signal: A Review. Biosensors, 14(3), 150. https://doi.org/10.3390/bios14030150